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We present two collocation algorithms based on interpolating and approximating subdivision schemes for the solution of fourth
order boundary value problems arising in the mathematical modeling of viscoelastic, and inelastic flows, deformation of beams,
arches, and load bearing members like street lights and robotic arms in multipurpose engineering systems. Numerical examples
are given to illustrate the algorithms. We conclude that approximating schemes based collocation algorithms give better solution
than interpolating schemes based collocation algorithms. Main purpose of this paper is to explore and seek the applications of
interpolating and approximating subdivision schemes in the field of boundary value problems along with intrinsic comparison of
the results obtained by algorithms based on these schemes. A comparison with other approaches of this type of boundary value
problems in order to see the advantages of the proposed methods is also given.

1. Introduction

Subdivision schemes propose consistent and efficient iter-
ative algorithms to produce smooth curves and surfaces
from a discrete set of control points by subdividing them
according to some refining rules, recursively. In recent years,
subdivision techniques have become an integral part of
computer graphics due to their wide range of applications
in many areas such as engineering, medical science, graphic
visualization, and image processing. The idea of subdivision
has been initiated by de Rham [1]. Later on, Dyn et al.
[2] studied a family of schemes with mask of size four,
indexed by a tension parameter. Subdivision schemes can
be classified into two important branches, approximating
and interpolating ones. Approximating scheme means that
the limit curve approximates the initial polygon and that,
after subdivision, only the newly generated control points are
in the limit curve, while interpolating scheme means that,

after subdivision, the control points of the original control
polygon and the newly generated control points both lie on
the limit curve. Mustafa and Rehman [3] unified existing
even-point interpolating and approximating schemes by
offering general formula for the mask of (2𝑚 + 4)-point
even-ary subdivision scheme. Aslam et al. [4] presented an
explicit formula which unified the mask of (2𝑚 − 1)-point
interpolating as well as approximating schemes. Mustafa et
al. [5, 6] presented an explicit formula for the mask of odd-
points 𝑏-ary interpolating subdivision schemes. Following
are the advantages and disadvantages of interpolating and
approximating subdivision schemes in the field of geometric
modeling:

(i) Interpolating schemes are more useful for engineer-
ing applications, especially the schemes with the
shape control but approximating schemes do not
satisfy the shape control property.
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(ii) Interpolating subdivision schemes have the drawback
that, in order to create smoother curves, it is necessary
to enlarge the support of the mask. The designers in
geometric modeling require subdivision schemes to
have their masks with a possibly smaller support and
to create good smooth curves.

(iii) Approximating schemes yield smoother curves with
smaller support as compared to the interpolating
schemes.

In this paper, we want to find the answers of the follow-
ing questions. Are there attractive characteristics of these
schemes in the context of solution of boundary value
problems? Do approximating (interpolating) schemes play
better role than interpolating (approximation) schemes in
this case? To seek answers of these questions, we consider
the following interpolating [7–9] and approximating [10]
subdivision schemes:
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with order of continuity 𝐶4. Schemes (1) and (2) reproduce
polynomial curves of degree nine and three by [11] and [10],
respectively. Cardinal supports of these schemes are [−8, 8]
and [−6, 6], respectively.

We construct collocation algorithms by using the basis
functions of the above interpolating and approximating sub-
division schemes for the numerical solution of linear fourth
order boundary value problems arising in the mathematical
modeling of viscoelastic and inelastic flows, deformation

of beams, arches, and load bearing members like street
lights and robotic arms inmultipurpose engineering systems,
where elastic members serve as key elements for shedding
or transmitting loads and in plate deflection theory and
many other areas of engineering and applied mathematics.
The mathematical form of these types of problems is given
by

𝑦
(iv)
(𝑥) = 𝑎 (𝑥) 𝑦 (𝑥) + 𝑏 (𝑥) , 0 ⩽ 𝑥 ⩽ 1, (3)

subject to the boundary condition

𝑦 (0) = 𝛼,

𝑦
󸀠
(0) = 𝛽,

𝑦 (1) = 𝛾,

𝑦
󸀠
(1) = 𝜔,

(4)

where 𝑎(𝑥) and 𝑏(𝑥) are continuous and 𝑎(𝑥) ⩾ 0 on [0, 1].
Analytic solution of such type of boundary value problem
is possible only in very rare cases. Qu and Agarwal [12, 13]
solved this type of problems by interpolatory subdivision
scheme based collocation algorithm. But they have computed
the solution of second order boundary value problems using
6-point interpolating scheme based collocation algorithm.
Mustafa and Ejaz [14] solved third order boundary value
problems by using 8-point interpolatory subdivision scheme
based collocation algorithm. Until now fourth order bound-
ary value problems have not been solved by subdivision based
collocation algorithms. This motivates us to find numeri-
cal solution of fourth order boundary value problems by
interpolating and approximating subdivision schemes based
collocation algorithms.

The outline of the paper is as follows. In Section 2,
we construct subdivision matrices of subdivision schemes
(1) and (2) for the computation of eigenvalues and their
corresponding (right and left) eigenvectors. Basis functions
and their derivatives have been also discussed in this section.
In Section 3, subdivision based collocation algorithms for
solution of (3) are formulated. Approximation properties of
these algorithms are also given in Section 3. In Section 4,
numerical examples are presented. Comparison of approxi-
mate solutions by interpolating and approximating schemes
based collocation algorithms is also given. Conclusion is
given in Section 5.

2. Basic Properties of the Schemes

In this section, we construct subdivision matrices of the
schemes defined in (1) and (2) for the computation of
eigenvalues and their corresponding eigenvectors. Basis func-
tions of these schemes and their derivatives have also been
discussed in this section.

2.1. Subdivision Matrices. If 𝑆1 and 𝑆2 are subdivision matri-
ces of schemes (1) and (2), then these matrices are defined as
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where 𝐿1 = 19845/32768, 𝐿2 = −2205/32768, 𝐿3 =
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where 𝑠1 = 23/16384, 𝑠2 = −285/8192, 𝑠3 = 2073/16384,
𝑠4 = 3333/4096, 𝑠󸀠1 = −3/32768, 𝑠

󸀠

2 = −33/32768, 𝑠
󸀠

3 =

−1931/32768, and 𝑠󸀠4 = 18351/32768.

The first ten real eigenvalues of matrices 𝑆1 and 𝑆2 are the
same which are given as follows:

𝜆𝑖 = 1, 1
2
,
1
4
,
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8
,
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,
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32
,
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64
,
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128
,
1
256
,
1
512
,

𝑖 = 0, 1, 2, . . . , 9.

(7)

The remaining eigenvalues are complex which are not
required. For above eigenvalues 𝜆𝑖, the eigenvectors 𝜐𝑅𝑖 and
𝜐𝐿 𝑖 that satisfies 𝑆1𝜐𝑅𝑖 = 𝜆𝑖𝜐𝑅𝑖 and 𝜐𝐿 𝑖𝑆

𝑇

1 = 𝜐𝐿 𝑖𝜆𝑖 are called
right and left eigenvectors of the matrix 𝑆1, respectively. We
can also define the right ]𝑅𝑖 and left ]𝐿 𝑖 eigenvectors of 𝑆2
in a similar way. The normalized left and right eigenvectors
corresponding to first five eigenvalues of 𝑆1 and 𝑆2 are given
in Tables 1 and 2, respectively.

2.2. Basis Functions. The basis functions for the convergent
subdivision schemes (1) and (2) are the limit curves 𝜙(𝑥) and
Φ(𝑥) generated from the cardinal data {𝑝𝑖 = (𝑖, 𝛿0)

𝑇
}. 𝜙(𝑥)

and Φ(𝑥) are also known as fundamental solutions of the
subdivision schemes, so

𝜙 (𝑖) = Φ (𝑖) =
{

{

{

1, 𝑖 = 0,

0, 𝑖 ̸= 0.
(8)
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Table 1: Eigenvalues and eigenvectors of the matrix 𝑆1.

Eigenvalues
𝜆𝑖

Corresponding right and left eigenvectors

1 𝜐𝑅0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
𝑇

𝜐𝐿0 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
𝑇

1
2

𝜐𝑅1 = (−8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8)
𝑇

𝜐𝐿1 = (−1575, −1474560, −315738080, −1397587968, 43588613880, −4311679549440, 1336741045920, −4824847319040,

0, 4824847319040, −1336741045920, 4311679549440, −43588613880, 1397587968, 315738080,

1474560, 1575)𝑇/5841884245680

1
4

𝜐𝑅2 = (64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64)
𝑇

𝜐𝐿2 = (459375, 215040000, 47660030080, 103151616000, −3882427261296, 23490017902592, −84313449846912,

313469774708736, −497829885297150, 313469774708736, −84313449846912, 23490017902592, −3882427261296,

103151616000, 47660030080, 215040000, 459375)𝑇/259624836213120

1
8

𝜐𝑅3 = (−512, −343, −216, −125, −64, −27, −8, −1, 0, 1, 8, 27, 64, 125, 216, 343, 512)
𝑇

𝜐𝐿3 = (−104125, −24371200, 1177382520, −5986263040, −10571778214, 207884427264, −972244098856, −1386160480256,

0, 1386160480256, 972244098856, −207884427264, 10571778214, 5986263040, −1177382520, 24371200,

104125)𝑇/9460416859904

1
16

𝜐𝑅4 = (4096, 2401, 1296, 625, 256, 81, 16, 1, 0, 1, 16, 81, 256, 625, 1296, 2401, 4096)
𝑇

𝜐𝐿4 = (392875, 45977600, −1296269280, 5912719360, 1180083476, −86261280768, 332951715808, −67767008256,

850467338370, −67767008256, 332951715808, −86261280768, 1180083476, 5912719360, −1296269280,

45977600, 392875)𝑇/183768238080

Table 2: Eigenvalues and eigenvectors of the matrix 𝑆2.

Eigenvalues 𝜆𝑖 Corresponding right and left eigenvectors

1
]𝑅0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

𝑇

]
𝐿0
= (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)𝑇

1
2

]𝑅1 = (−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6)
𝑇

]𝐿1 = (−271, 1475866, 286711948, −3680077858, 73546185237, −507541369116, 0, 507541369116,

−73546185237, 3680077858, −286711948, −1475866, 271)𝑇/740670013440

1
4

]𝑅2 = (36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36)
𝑇

]𝐿2 = (−3927, 10663114, −582891346, −38170879262, 32176934487, 2719571096148, −5426009838428,

2719571096148, 32176934487, −38170879262, −582891346, 10663114, −3927)𝑇/4991362191360

1
8

]𝑅3 = (−216, −125, −64, −27, −8, −1, 0, 1, 8, 27, 64, 125, 216)
𝑇

]𝐿3 = (23, −31050, −1351836, 21998258, −507201588, 193168476, 0,

−193168476, 507201588, −21998258, 1351836, 31050, −23)𝑇/635351040

1
16

]𝑅4 = (1/27)(51867, 25027, 10267, 3267, 667, 67, 27, 67, 667, 3267, 10267, 25027, 51867)
𝑇

]
𝐿4
= (−6693, 4466462, 117537274, −1293454266, 6372836901, −15842276196, 21281793036,

−15842276196, 6372836901, −1293454266, 117537274, 4466462, −6693)𝑇/42150297600

Furthermore, 𝜙(𝑥) = Φ(𝑥) satisfies the following two-scale
equation:

𝜙 (𝑥) =

𝑝

∑
𝑗=−𝑝

𝑎𝑖𝜙 (2𝑥− 𝑖) ,

Sup (𝜙) = (−𝑝− 1, 𝑝 + 1) .

(9)

The 𝑙th derivative of basis function at integers satisfies the
relation

𝜙
(𝑙)
(𝑥) =

𝑝

∑
𝑗=−𝑝

𝑎𝑖𝜙
(𝑙)
(2𝑥− 𝑖) ,

Sup (𝜙) = [−𝑝, 𝑝] .

(10)
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Since 𝜐𝑇
𝑅𝑖
𝜐𝐿𝑗 = 1 and ]𝑇

𝑅𝑖
]𝐿𝑗 = 1 for 𝑖 = 𝑗 and 0 otherwise,

then, by [16], we get the following result.

Lemma 1. The fundamental solution (cardinal basis) 𝜙(𝑥) of
the subdivision scheme (1) is four times continuously differen-
tiable, supported on [−8, 8], and its derivatives at integers are
given by

𝜙
󸀠
(𝑡) = 2 sgn (𝑡) 𝑒𝑇

|𝑡|
𝜐𝐿1 ,

𝜙
󸀠󸀠
(𝑡) = 22𝑒𝑇

|𝑡|
𝜐𝐿2 ,

𝜙
󸀠󸀠󸀠
(𝑡) = 23 sgn (𝑡) 𝑒𝑇

|𝑡|
𝜐𝐿3 ,

𝜙
𝑖V
(𝑡) = 24𝑒𝑇

|𝑡|
𝜐𝐿4 ,

− 8 ⩽ 𝑡 ⩽ 8,

(11)

where 𝜐𝐿 𝑖 , 0 ⩽ 𝑖 ⩽ 4, are defined in Table 1; the sgn function of
a real number 𝑡 is defined as

sgn (𝑡) =
{{{{

{{{{

{

−1, 𝑡 < 0,

0, 𝑡 = 0,

1, 𝑡 > 0.

(12)

𝑒𝑡’s are the column matrices defined as

𝑒𝑡 = (𝑎8𝑡, 𝑎7𝑡, 𝑎6𝑡, 𝑎5𝑡, 𝑎4𝑡, 𝑎3𝑡, 𝑎2𝑡, 𝑎1𝑡, 𝑎0𝑡, 𝑎−1𝑡, 𝑎−2𝑡,

𝑎−3𝑡, 𝑎−4𝑡, 𝑎−5𝑡, 𝑎−6𝑡, 𝑎−7𝑡, 𝑎−8𝑡)
𝑇
,

(13)

where 0 ≤ 𝑡 ≤ 8 and

𝑎𝑖𝑡 =
{

{

{

1, 𝑖 = 𝑡,

0, 𝑖 ̸= 𝑡.
(14)

Lemma 2. The fundamental solution Φ(𝑥) of subdivision
scheme (2) defined in (9) is four times continuously differen-
tiable, supported on [−6, 6], and its derivatives at integers are
defined as

Φ
󸀠
(𝑡) = 2 sgn (𝑡) 𝑒𝑇

|𝑡|
]𝐿1 ,

Φ
󸀠󸀠
(𝑡) = 22𝑒𝑇

|𝑡|
]𝐿2 ,

Φ
󸀠󸀠󸀠
(𝑡) = 23 sgn (𝑡) 𝑒𝑇

|𝑡|
]𝐿3 ,

Φ
𝑖V
(𝑡) = 24𝑒𝑇

|𝑡|
]𝐿4

− 6 ⩽ 𝑡 ⩽ 6,

(15)

where ]𝐿 𝑖 for 0 ⩽ 𝑖 ⩽ 4 are defined in Table 2; the sgn function
of a real number 𝑡 is defined by (12); 𝑒𝑡’s are the columnmatrices
defined as

𝑒𝑡 = (𝑎6𝑡, 𝑎5𝑡, 𝑎4𝑡, 𝑎3𝑡, 𝑎2𝑡, 𝑎1𝑡, 𝑎0𝑡, 𝑎−1𝑡, 𝑎−2𝑡, 𝑎−3𝑡, 𝑎−4𝑡,

𝑎−5𝑡, 𝑎−6𝑡)
𝑇
, 0 ⩽ 𝑡 ⩽ 6,

(16)

where 𝑎𝑖𝑡 are defined by (14).

From (11) and (15), we get values of derivatives at the
integers given in Tables 3 and 4, respectively.

3. Description of Numerical Algorithms

In this section, first we formulate two collocation algorithms
which are based on interpolating (1) and approximating (2)
subdivision schemes for the solution of (3). Then we settle
down the boundary conditions to get unique solution.

3.1. Collocation Algorithms. Here we formulate two colloca-
tion algorithms based on two subdivision schemes. These
collocation algorithms are defined in coming subsections.

3.1.1. Interpolating Collocation Algorithm. The collocation
algorithm based on interpolating scheme (1), say, interpolat-
ing collocating algorithm, is given below. In this algorithm,
we assume approximate solution 𝑍1(𝑥) of (3) as

𝑍1 (𝑥) =
𝑁+8
∑
𝑖=−8
𝑧𝑖𝜙(

𝑥 − 𝑥𝑖

ℎ
) , 0 ⩽ 𝑥 ⩽ 1, (17)

where 𝑁 is the positive integer 𝑁 ⩾ 8, ℎ = 1/𝑁 and 𝑥𝑖 =
𝑖/𝑁 = 𝑖ℎ, and {𝑧𝑖} are the unknown to be determined for the
solution of (3). The collocation algorithm, together with the
boundary conditions to be discussed, is given by

𝑍
iv
1 (𝑥𝑗) = 𝑎 (𝑥𝑗)𝑍1 (𝑥𝑗) + 𝑏 (𝑥𝑗) ,

𝑗 = 0, 1, 2, . . . , 𝑁,
(18)

with the following type of boundary conditions:

𝑍1 (0) = 𝛼,

𝑍
󸀠

1 (0) = 𝛽,

𝑍1 (𝑁) = 𝛾,

𝑍
󸀠

1 (𝑁) = 𝜔,

(19)

where 𝛼, 𝛽, 𝛾, and 𝜔 are constants. Let 𝑎𝑗 = 𝑎(𝑥𝑗), 𝑏𝑗 = 𝑏(𝑥𝑗);
then (18) can be written as

𝑍
iv
1 (𝑥𝑗) = 𝑎𝑗𝑍1 (𝑥𝑗) + 𝑏𝑗, 𝑗 = 0, 1, 2, . . . , 𝑁, (20)

where

𝑍
iv
1 (𝑥𝑗) =

1
ℎ4

𝑁+8
∑
𝑖=−8
𝑧𝑖𝜙

iv
(
𝑥𝑗 − 𝑥𝑖

ℎ
) . (21)

Using (17) and (21) in (20), we get the following𝑁+ 1 system
of equations:
𝑁+8
∑
𝑖=−8
𝑧𝑖𝜙

iv
(
𝑥𝑗 − 𝑥𝑖

ℎ
)− ℎ

4
𝑎𝑗

𝑁+8
∑
𝑖=−8
𝑧𝑖𝜙(

𝑥𝑗 − 𝑥𝑖

ℎ
) = ℎ

4
𝑏𝑗,

𝑗 = 0, 1, 2, . . . , 𝑁.

(22)

3.1.2. Approximating Collocation Algorithm. In approximat-
ing collocating algorithm (i.e., algorithm based on approxi-
mating scheme (2)), we assume approximate solution 𝑍2(𝑥)
of (3) as

𝑍2 (𝑥) =
𝑁+6
∑
𝑖=−6
𝑧𝑖Φ(

𝑥 − 𝑥𝑖

ℎ
) , 0 ⩽ 𝑥 ⩽ 1, (23)
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Table 3: Derivatives of 𝜙 at cardinal data by (11).

At\Derivatives 𝜙󸀠 𝜙󸀠󸀠 𝜙󸀠󸀠󸀠 𝜙iv

0 0 −
2370618501415
309077185968

0 33869667
457408

±1 ∓
1914621952
1159104017

3265310153216
676106344305

±
43317515008
15295995855

−
5295054752
89730585

±2 ±
530452796
1159104017

−
878265102572
676106344305

∓
121530512357
61183983420

10404741119
358922340

±3 ∓
1470464
13780629

734063059456
2028319032915

±
240606976
566518365

−
74879584
9970065

±4 ±
17297069
1159104017

−
80883901277
1352212688610

∓
5285889107
244735933680

295020869
2871378720

±5 ∓
2772992

5795520085
214899200

135221268861
∓

37414144
3059199171

9238624
17946117

±6 ∓
1127636

10431936153
297875188

405663806583
±

1090169
453214692

−
900187
7976052

±7 ∓
4096

8113728119
64000

19317324123
∓

21760
437028453

71840
17946117

±8 ∓
5

9272832136
4375

618154371936
∓

2975
13984910496

11225
328157568

Table 4: Derivatives of Φ at cardinal data by (15).

At\Derivatives Φ󸀠 Φ󸀠󸀠 Φ󸀠󸀠󸀠 Φiv

0 0 −
1356502459607
311960136960

0 1773482753
219532800

±1 ∓
42295114093
30861250560

226630924679
103986712320

±
596199
245120

−
1320189683
219532800

±2 ±
3502199297
17635000320

3575214943
138648949760

∓
1565437
980480

708092989
292710400

±3 ∓
1840038929
185167503360

−
19085439631
623920273920

±
10999129
39709440

−
215575711
439065600

±4 ±
71677987

92583751680
−

291445673
623920273920

∓
12517
735360

58768637
1317196800

±5 ±
105419

26452500480
5331557

623920273920
∓

115
294144

2233231
1317196800

±6 ∓
271

370335006720
−

1309
415946849280

±
23

79418880
−

2231
878131200

where 𝑁 is the positive integer 𝑁 ⩾ 6, ℎ = 1/𝑁 and 𝑥𝑖 =
𝑖/𝑁 = 𝑖ℎ, and {𝑧𝑖} are the unknown to be determined for the
solution of (3). The collocation algorithm, together with the
boundary conditions to be discussed, is given by

𝑍
iv
2 (𝑥𝑗) = 𝑎 (𝑥𝑗)𝑍2 (𝑥𝑗) + 𝑏 (𝑥𝑗) ,

𝑗 = 0, 1, 2, . . . , 𝑁,
(24)

with the following type of boundary conditions:

𝑍2 (0) = 𝛼,

𝑍
󸀠

2 (0) = 𝛽,

𝑍2 (𝑁) = 𝛾,

𝑍
󸀠

2 (𝑁) = 𝜔.

(25)

Equation (24) can be written as

𝑍
iv
2 (𝑥𝑗) = 𝑎𝑗𝑍2 (𝑥𝑗) + 𝑏𝑗, 𝑗 = 0, 1, 2, . . . , 𝑁, (26)

where

𝑍
iv
2 (𝑥𝑗) =

1
ℎ4

𝑁+6
∑
𝑖=−6
𝑧𝑖Φ

iv
(
𝑥𝑗 − 𝑥𝑖

ℎ
) . (27)
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Using (23) and (27) in (26), we get the following𝑁+1 system
of equations:

𝑁+6
∑
𝑖=−6
𝑧𝑖Φ

iv
(
𝑥𝑗 − 𝑥𝑖

ℎ
)− ℎ

4
𝑎𝑗

𝑁+6
∑
𝑖=−6
𝑧𝑖Φ(

𝑥𝑗 − 𝑥𝑖

ℎ
) = ℎ

4
𝑏𝑗,

𝑗 = 0, 1, 2, . . . , 𝑁.

(28)

Now we simplify systems (22) and (28) in the following
theorems.

Theorem 3 (interpolating collocation algorithm). For 𝑗 = 0
by (22), one gets

𝑧−8𝜙
𝑖V
−8 + 𝑧−7𝜙

𝑖V
−7 + 𝑧−6𝜙

𝑖V
−6 + 𝑧−5𝜙

𝑖V
−5 + 𝑧−4𝜙

𝑖V
−4

+ 𝑧−3𝜙
𝑖V
−3 + 𝑧−2𝜙

𝑖V
−2 + 𝑧−1𝜙

𝑖V
−1 + 𝑧0𝑞0 + 𝑧1𝜙

𝑖V
1

+ 𝑧2𝜙
𝑖V
2 + 𝑧3𝜙

𝑖V
3 + 𝑧4𝜙

𝑖V
4 + 𝑧5𝜙

𝑖V
5 + 𝑧6𝜙

𝑖V
6 + 𝑧7𝜙

𝑖V
7

+ 𝑧8𝜙
𝑖V
8 = ℎ

4
𝑏0,

(29)

where 𝜙𝑖V
𝑗
= 𝜙𝑖V(𝑗) and 𝑞0 = 𝜙𝑖V0 − 𝑎0ℎ

4.

Proof. Substituting 𝑗 = 0 in (22), we get

{𝑧−8𝜙
iv
(
𝑥0 − 𝑥−8
ℎ

)+ 𝑧−7𝜙
iv
(
𝑥0 − 𝑥−7
ℎ

)+ ⋅ ⋅ ⋅

+ 𝑧𝑁+7𝜙
iv
(
𝑥0 − 𝑥𝑁+7

ℎ
)+ 𝑧𝑁+8𝜙

iv
(
𝑥0 − 𝑥𝑁+8

ℎ
)}

− 𝑎0ℎ
4
{𝑧−8𝜙(

𝑥0 − 𝑥−8
ℎ

)+ 𝑧−7𝜙(
𝑥0 − 𝑥−7
ℎ

)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+7𝜙(
𝑥0 − 𝑥𝑁+7

ℎ
)

+ 𝑧𝑁+8𝜙(
𝑥0 − 𝑥𝑁+8

ℎ
)} = ℎ

4
𝑏0.

(30)

For 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, . . . , 𝑁, this implies

𝑧−8𝜙
iv
(8) + 𝑧−7𝜙

iv
(7) + ⋅ ⋅ ⋅ + 𝑧𝑁+7𝜙

iv
(−𝑁− 7)

+ 𝑧𝑁+8𝜙
iv
(−𝑁− 8) − 𝑎0ℎ

4
{𝑧−8𝜙 (8) + 𝑧−7𝜙 (7)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+7𝜙 (−𝑁− 7) + 𝑧𝑁+8𝜙 (−𝑁− 8)} = ℎ
4
𝑏0.

(31)

Since the cardinal support of basis function 𝜙(𝑥) is [−8, 8], so
𝜙󸀠(𝑥), 𝜙󸀠󸀠(𝑥), 𝜙󸀠󸀠󸀠(𝑥), and 𝜙iv(𝑥) are zero outside the interval
[−8, 8]; also, by Table 3, we get

𝑧−8𝜙
iv
(8) + 𝑧−7𝜙

iv
(7) + 𝑧−6𝜙

iv
(6) + 𝑧−5𝜙

iv
(5)

+ 𝑧−4𝜙
iv
(4) + 𝑧−3𝜙

iv
(3) + 𝑧−2𝜙

iv
(2)

+ 𝑧−1𝜙
iv
(1) + 𝑧0𝜙

iv
(0) + 𝑧1𝜙

iv
(−1)

+ 𝑧2𝜙
iv
(−2) + 𝑧3𝜙

iv
(−3) + 𝑧4𝜙

iv
(−4)

+ 𝑧5𝜙
iv
(−5) + 𝑧6𝜙

iv
(−6) + 𝑧7𝜙

iv
(−7)

+ 𝑧8𝜙
iv
(−8) − 𝑎0ℎ

4
𝑧0𝜙 (0) = ℎ

4
𝑏0.

(32)

If 𝜙iv
𝑖
= 𝜙iv(𝑖), then

𝑧−8𝜙
iv
8 + 𝑧−7𝜙

iv
7 + 𝑧−6𝜙

iv
6 + 𝑧−5𝜙

iv
5 + 𝑧−4𝜙

iv
4 + 𝑧−3𝜙

iv
3

+ 𝑧−2𝜙
iv
2 + 𝑧−1𝜙

iv
1 + 𝑧0 (𝜙

iv
0 − 𝑎0ℎ

4
) + 𝑧1𝜙

iv
−1

+ 𝑧2𝜙
iv
−2 + 𝑧3𝜙

iv
−3 + 𝑧4𝜙

iv
−4 + 𝑧5𝜙

iv
−5 + 𝑧6𝜙

iv
−6

+ 𝑧7𝜙
iv
−7 + 𝑧8𝜙

iv
−8 = ℎ

4
𝑏0.

(33)

As we observe from Table 3, 𝜙iv
−𝑖
= 𝜙iv
𝑖
; we have

𝑧−8𝜙
iv
−8 + 𝑧−7𝜙

iv
−7 + 𝑧−6𝜙

iv
−6 + 𝑧−5𝜙

iv
−5 + 𝑧−4𝜙

iv
−4

+ 𝑧−3𝜙
iv
−3 + 𝑧−2𝜙

iv
−2 + 𝑧−1𝜙

iv
−1 + 𝑧0 (𝜙

iv
0 − 𝑎0ℎ

4
)

+ 𝑧1𝜙
iv
1 + 𝑧2𝜙

iv
2 + 𝑧3𝜙

iv
3 + 𝑧4𝜙

iv
4 + 𝑧5𝜙

iv
5 + 𝑧6𝜙

iv
6

+ 𝑧7𝜙
iv
7 + 𝑧8𝜙

iv
8 = ℎ

4
𝑏0.

(34)

For 𝑞0 = 𝜙
iv
0 −𝑎0ℎ

4, we get (29).This completes the proof.

Theorem 4 (interpolating collocation algorithm). For 𝑗 =
1, 2, 3, . . . , 𝑁, system (22) is equivalent to

𝑧−8𝜙
iv
−𝑗−8 + 𝑧−7𝜙

iv
−𝑗−7 + ⋅ ⋅ ⋅ + 𝑧0𝜙

iv
−𝑗

+ 𝑧1 (𝜙
iv
1−𝑗 − 𝑎𝑗ℎ

4
𝜙1−𝑗) + 𝑧2 (𝜙

iv
2−𝑗 − 𝑎𝑗ℎ

4
𝜙2−𝑗)

+ ⋅ ⋅ ⋅ + 𝑧𝑁 (𝜙
iv
𝑁−𝑗
− 𝑎𝑗ℎ

4
𝜙𝑁−𝑗) + 𝑧𝑁+1𝜙

iv
𝑁+1−𝑗

+ ⋅ ⋅ ⋅ + 𝑧𝑁+8𝜙
iv
𝑁+8−𝑗 = ℎ

4
𝑏𝑗.

(35)

Proof. By expanding (22), we get

𝑧−8𝜙
iv
(
𝑥𝑗 − 𝑥−8

ℎ
)+ 𝑧−7𝜙

iv
(
𝑥𝑗 − 𝑥−7

ℎ
)+ ⋅ ⋅ ⋅

+ 𝑧𝑁+7𝜙
iv
(
𝑥𝑗 − 𝑥𝑁+7

ℎ
)+ 𝑧𝑁+8𝜙

iv
(
𝑥𝑗 − 𝑥𝑁+8

ℎ
)

− 𝑎𝑗ℎ
4
{𝑧−8𝜙(

𝑥𝑗 − 𝑥−8

ℎ
)+ 𝑧−7𝜙(

𝑥𝑗 − 𝑥−7

ℎ
)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+7𝜙(
𝑥𝑗 − 𝑥𝑁+7

ℎ
)

+ 𝑧𝑁+8𝜙(
𝑥𝑗 − 𝑥𝑁+8

ℎ
)} = ℎ

4
𝑏𝑗.

(36)

For 𝑥𝑗 = 𝑗ℎ, 𝑗 = 1, 2, . . . , 𝑁, we get

𝑧−8𝜙
iv
(𝑗 + 8) + 𝑧−7𝜙

iv
(𝑗 + 7) + ⋅ ⋅ ⋅ + 𝑧𝑁+7𝜙

iv
(𝑗 −𝑁

− 7) + 𝑧𝑁+8𝜙
iv
(𝑗 −𝑁− 8) − 𝑎𝑗ℎ

4
{𝑧−8𝜙 (𝑗 + 8)

+ 𝑧−7𝜙 (𝑗 + 7) + ⋅ ⋅ ⋅ + 𝑧𝑁+7𝜙 (𝑗 −𝑁− 7)

+ 𝑧𝑁+8𝜙 (𝑗 −𝑁− 8)} = ℎ
4
𝑏𝑗.

(37)
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This implies

𝑧−8 (𝜙
iv
(𝑗 + 8) − 𝑎𝑗ℎ

4
𝜙 (𝑗 + 8))

+ 𝑧−7 (𝜙
iv
(𝑗 + 7) − 𝑎𝑗ℎ

4
𝜙 (𝑗 + 7)) + ⋅ ⋅ ⋅

+ 𝑧𝑁+7 (𝜙
iv
(𝑗 −𝑁− 7) − 𝑎𝑗ℎ

4
𝜙 (𝑗 −𝑁− 7))

+ 𝑧𝑁+8 (𝜙
iv
(𝑗 −𝑁− 8) − 𝑎𝑗ℎ

4
𝜙 (𝑗 −𝑁− 8))

= ℎ
4
𝑏𝑗.

(38)

If 𝜙iv
𝑗
= 𝜙iv(𝑗), for 𝑗 = 1, 2, . . . , 𝑁, then

𝑧−8 (𝜙
iv
𝑗+8 − 𝑎𝑗ℎ

4
𝜙𝑗+8) + 𝑧−7 (𝜙

iv
𝑗+7 − 𝑎𝑗ℎ

4
𝜙𝑗+7) + ⋅ ⋅ ⋅

+ 𝑧𝑁+7 (𝜙
iv
𝑗−𝑁−7 − 𝑎𝑗ℎ

4
𝜙𝑗−𝑁−7)

+ 𝑧𝑁+8 (𝜙
iv
𝑗−𝑁−8 − 𝑎𝑗ℎ

4
𝜙𝑗−𝑁−8) = ℎ

4
𝑏𝑗.

(39)

As we observe from Table 3, 𝜙iv
−𝑗
= 𝜙iv
𝑗
, 𝑗 = 1, 2, . . . , 𝑁; then

the above equation can be written as

𝑧−8 (𝜙
iv
−𝑗−8 − 𝑎𝑗ℎ

4
𝜙−𝑗−8) + 𝑧−7 (𝜙

iv
−𝑗−7 − 𝑎𝑗ℎ

4
𝜙−𝑗−7)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+7 (𝜙
iv
𝑁+7−𝑗 − 𝑎𝑗ℎ

4
𝜙𝑁+7−𝑗)

+ 𝑧𝑁+8 (𝜙
iv
𝑁+8−𝑗 − 𝑎𝑗ℎ

4
𝜙𝑁+8−𝑗) = ℎ

4
𝑏𝑗.

(40)

Since 𝜙󸀠(𝑥), 𝜙󸀠󸀠(𝑥), 𝜙󸀠󸀠󸀠(𝑥), and 𝜙iv(𝑥) are zero outside the
interval [−8, 8], then by Table 3, we get (35).

Theorem 5 (approximating collocation algorithm). For 𝑗 =
0, by (28), one gets

𝑧−6Φ
𝑖V
−6 + 𝑧−5Φ

𝑖V
−5 + 𝑧−4Φ

𝑖V
−4 + 𝑧−5Φ

𝑖V
−5 + 𝑧−4Φ

𝑖V
−4

+ 𝑧−3Φ
𝑖V
−3 + 𝑧−2Φ

𝑖v
−2 + 𝑧−1Φ

𝑖V
−1 + 𝑧0𝑞0 + 𝑧1Φ

𝑖V
1

+ 𝑧2Φ
𝑖V
2 + 𝑧3Φ

𝑖V
3 + 𝑧4Φ

𝑖V
4 + 𝑧5Φ

𝑖V
5 + 𝑧6Φ

𝑖V
6

= ℎ
4
𝑏0,

(41)

whereΦ𝑖V
𝑗
= Φ𝑖V(𝑗) and Υ0 = Φ𝑖V0 − 𝑎0ℎ

4.

Proof. Substituting 𝑗 = 0 in (28), we get

{𝑧−6Φ
iv
(
𝑥0 − 𝑥−6
ℎ

)+ 𝑧−5Φ
iv
(
𝑥0 − 𝑥−5
ℎ

)+ ⋅ ⋅ ⋅

+ 𝑧𝑁+5Φ
iv
(
𝑥0 − 𝑥𝑁+5

ℎ
)

+ 𝑧𝑁+6Φ
iv
(
𝑥0 − 𝑥𝑁+6

ℎ
)}

− 𝑎0ℎ
4
{𝑧−6Φ(

𝑥0 − 𝑥−6
ℎ

)+ 𝑧−5Φ(
𝑥0 − 𝑥−5
ℎ

)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+5Φ(
𝑥0 − 𝑥𝑁+5

ℎ
)

+ 𝑧𝑁+6Φ(
𝑥0 − 𝑥𝑁+6

ℎ
)} = ℎ

4
𝑏0.

(42)

For 𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2, . . . , 𝑁, this implies

𝑧−6Φ
iv
(6) + 𝑧−5Φ

iv
(5) + ⋅ ⋅ ⋅ + 𝑧𝑁+5Φ

iv
(−𝑁− 5)

+ 𝑧𝑁+6Φ
iv
(−𝑁− 6) − 𝑎0ℎ

4
{𝑧−6Φ (6) + 𝑧−5Φ (5)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+5Φ (−𝑁− 5) + 𝑧𝑁+6Φ (−𝑁− 6)}

= ℎ
4
𝑏0.

(43)

Since the cardinal support of basis functionΦ(𝑥) is [−6, 6], so
Φ󸀠(𝑥),Φ󸀠󸀠(𝑥),Φ󸀠󸀠󸀠(𝑥), andΦiv(𝑥) are zero outside the interval
[−6, 6]; also, by Table 4, we get

𝑧−6Φ
iv
(6) + 𝑧−5Φ

iv
(5) + 𝑧−4Φ

iv
(4) + 𝑧−3Φ

iv
(3)

+ 𝑧−2Φ
iv
(2) + 𝑧−1Φ

iv
(1) + 𝑧0Φ

iv
(0)

+ 𝑧1Φ
iv
(−1) + 𝑧2Φ

iv
(−2) + 𝑧3Φ

iv
(−3)

+ 𝑧4Φ
iv
(−4) + 𝑧5Φ

iv
(−5) + 𝑧6Φ

iv
(−6)

− 𝑎0ℎ
4
𝑧0Φ (0) = ℎ

4
𝑏0.

(44)

If Φiv
𝑖
= Φiv(𝑖), then

𝑧−6Φ
iv
6 + 𝑧−5Φ

iv
5 + 𝑧−4Φ

iv
4 + 𝑧−3Φ

iv
3 + 𝑧−2Φ

iv
2 + 𝑧−1Φ

iv
1

+ 𝑧0 (Φ
iv
0 − 𝑎0ℎ

4
) + 𝑧1Φ

iv
−1 + 𝑧2Φ

iv
−2 + 𝑧3Φ

iv
−3

+ 𝑧4Φ
iv
−4 + 𝑧5Φ

iv
−5 + 𝑧6Φ

iv
−6 = ℎ

4
𝑏0.

(45)

As we observe from Table 4, Φiv
−𝑖
= Φiv
𝑖
; we have

𝑧−6Φ
iv
−6 + 𝑧−5Φ

iv
−5 + 𝑧−4Φ

iv
−4 + 𝑧−3Φ

iv
−3 + 𝑧−2Φ

iv
−2

+ 𝑧−1Φ
iv
−1 + 𝑧0 (Φ

iv
0 − 𝑎0ℎ

4
) + 𝑧1Φ

iv
1 + 𝑧2Φ

iv
2

+ 𝑧3Φ
iv
3 + 𝑧4Φ

iv
4 + 𝑧5Φ

iv
5 + 𝑧6Φ

iv
6 + 𝑧7Φ

iv
7

+ 𝑧8Φ
iv
8 = ℎ

4
𝑏0.

(46)

ForΥ0 = Φ
iv
0 −𝑎0ℎ

4, we get (41).This completes the proof.

Theorem 6 (approximating collocation algorithm). For 𝑗 =
1, 2, 3, . . . , 𝑁, system (28) is equivalent to

𝑧−6Φ
𝑖V
−𝑗−6 + 𝑧−5Φ

𝑖V
−𝑗−5 + ⋅ ⋅ ⋅ + 𝑧0Φ

𝑖V
−𝑗

+ 𝑧1 (Φ
𝑖V
1−𝑗 − 𝑎𝑗ℎ

4
Φ1−𝑗) + 𝑧2 (Φ

𝑖V
2−𝑗 − 𝑎𝑗ℎ

4
Φ2−𝑗)

+ ⋅ ⋅ ⋅ + 𝑧𝑁 (Φ
𝑖V
𝑁−𝑗
− 𝑎𝑗ℎ

4
Φ𝑁−𝑗) + 𝑧𝑁+1Φ

𝑖V
𝑁+1−𝑗

+ ⋅ ⋅ ⋅ + 𝑧𝑁+6Φ
𝑖V
𝑁+6−𝑗 = ℎ

4
𝑏𝑗.

(47)
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Proof. By expanding (28), we get

𝑧−6Φ
iv
(
𝑥𝑗 − 𝑥−6

ℎ
)+ 𝑧−5Φ

iv
(
𝑥𝑗 − 𝑥−5

ℎ
)+ ⋅ ⋅ ⋅

+ 𝑧𝑁+5Φ
iv
(
𝑥𝑗 − 𝑥𝑁+5

ℎ
)+ 𝑧𝑁+6Φ

iv
(
𝑥𝑗 − 𝑥𝑁+6

ℎ
)

− 𝑎𝑗ℎ
4
{𝑧−8Φ(

𝑥𝑗 − 𝑥−8

ℎ
)+ 𝑧−7Φ(

𝑥𝑗 − 𝑥−7

ℎ
)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+5Φ(
𝑥𝑗 − 𝑥𝑁+5

ℎ
)

+ 𝑧𝑁+6Φ(
𝑥𝑗 − 𝑥𝑁+6

ℎ
)} = ℎ

4
𝑏𝑗.

(48)

For 𝑥𝑗 = 𝑗ℎ, 𝑗 = 1, 2, . . . , 𝑁, we get

𝑧−6Φ
iv
(𝑗 + 6) + 𝑧−5Φ

iv
(𝑗 + 5) + ⋅ ⋅ ⋅ + 𝑧𝑁+5Φ

iv
(𝑗

−𝑁− 5) + 𝑧𝑁+6Φ
iv
(𝑗 −𝑁− 6)

− 𝑎𝑗ℎ
4
{𝑧−6Φ(𝑗 + 6) + 𝑧−5Φ(𝑗 + 5) + ⋅ ⋅ ⋅

+ 𝑧𝑁+5Φ(𝑗 −𝑁− 5) + 𝑧𝑁+6Φ(𝑗 −𝑁− 6)}

= ℎ
4
𝑏𝑗.

(49)

This implies

𝑧−6 (Φ
iv
(𝑗 + 6) − 𝑎𝑗ℎ

4
Φ(𝑗 + 6))

+ 𝑧−5 (Φ
iv
(𝑗 + 5) − 𝑎𝑗ℎ

4
Φ(𝑗 + 5)) + ⋅ ⋅ ⋅

+ 𝑧𝑁+5 (Φ
iv
(𝑗 −𝑁− 5) − 𝑎𝑗ℎ

4
Φ(𝑗 −𝑁− 5))

+ 𝑧𝑁+6 (Φ
iv
(𝑗 −𝑁− 6) − 𝑎𝑗ℎ

4
Φ(𝑗 −𝑁− 6))

= ℎ
4
𝑏𝑗.

(50)

If Φiv
𝑗
= Φiv(𝑗), for 𝑗 = 1, 2, . . . , 𝑁, then

𝑧−6 (Φ
iv
𝑗+6 − 𝑎𝑗ℎ

4
Φ𝑗+6) + 𝑧−5 (Φ

iv
𝑗+5 − 𝑎𝑗ℎ

4
Φ𝑗+5) + ⋅ ⋅ ⋅

+ 𝑧𝑁+5 (Φ
iv
𝑗−𝑁−5 − 𝑎𝑗ℎ

4
Φ𝑗−𝑁−5)

+ 𝑧𝑁+6 (Φ
iv
𝑗−𝑁−6 − 𝑎𝑗ℎ

4
Φ𝑗−𝑁−6) = ℎ

4
𝑏𝑗.

(51)

As we observe from Table 4, Φiv
−𝑗
= Φ

iv
𝑗
, 𝑗 = 1, 2, . . . , 𝑁; then

the above equation can be written as

𝑧−6 (Φ
iv
−𝑗−6 − 𝑎𝑗ℎ

4
Φ−𝑗−6) + 𝑧−5 (Φ

iv
−𝑗−5 − 𝑎𝑗ℎ

4
Φ−𝑗−5)

+ ⋅ ⋅ ⋅ + 𝑧𝑁+5 (Φ
iv
𝑁+5−𝑗 − 𝑎𝑗ℎ

4
Φ𝑁+5−𝑗)

+ 𝑧𝑁+6 (Φ
iv
𝑁+6−𝑗 − 𝑎𝑗ℎ

4
Φ𝑁+6−𝑗) = ℎ

4
𝑏𝑗.

(52)

Since Φ󸀠(𝑥), Φ󸀠󸀠(𝑥), Φ󸀠󸀠󸀠(𝑥), and Φiv(𝑥) are zero outside the
interval [−6, 6], then, by Table 4, we get (47).

3.2. Boundary Conditions at End Points. We have two differ-
ent systems of (𝑁 + 1) equations defined by (22) and (28).
In order to get unique solution of these systems, we need
sixteen more conditions for system (22) and twelve more
conditions for system (28). Four conditions can be achieved
from boundary conditions given in (4) for both systems of
linear equations in which first order derivatives are involved
and remaining conditions are achieved by some extrapolation
method at the end points. First we find the approximation
of the first derivative by difference operators and after that
we define the extrapolation method at end points for both
systems of linear equations.

3.2.1. Approximation of Derivative Boundary Conditions. In
this section, we approximate the derivative boundary condi-
tions by difference operators. Since approximation order of
interpolating scheme (1) and approximating scheme (2) is ten
and four, respectively, sowe approximate derivative boundary
conditions at end points with approximation orders ten
and four for interpolating and approximating collocation
algorithms.

If we use interpolating collocation algorithm for the
solution of (3), then approximation of derivative conditions
at ends point is defined as

𝑍
󸀠

1 (0) = (
𝑁

2520
) {−7381𝑧0 + 25200𝑧1 − 56700𝑧2

+ 100800𝑧3 − 132300𝑧4 + 127008𝑧5 − 88200𝑧6

+ 43200𝑧7 − 14175𝑧8 + 28800𝑧9 − 252𝑧10}

+𝑂 (ℎ
10
) ,

(53)

𝑍
󸀠

1 (𝑁) = (
𝑁

2520
) {7381𝑧𝑁 − 25200𝑧𝑁−1

+ 56700𝑧𝑁−2 − 100800𝑧𝑁−3 + 132300𝑧𝑁−4

− 127008𝑧𝑁−5 + 88200𝑧𝑁−6 − 43200𝑧𝑁−7

+ 14175𝑧𝑁−8 − 28800𝑧𝑁−9 + 252𝑧𝑁−10} +𝑂 (ℎ
10
)

(54)

and if we use approximating collocation algorithm for the
solution of (3), then approximation of derivative conditions
at end points is defined as

𝑍
󸀠

2 (0) = (
𝑁

12
) {−25𝑧0 + 48𝑧1 − 36𝑧2 + 16𝑧3 − 3𝑧4}

+𝑂 (ℎ
4
) ,

(55)

𝑍
󸀠

2 (𝑁) = (
𝑁

12
)

⋅ {25𝑧𝑁 − 48𝑧𝑁−1 + 36𝑧𝑁−2 − 16𝑧𝑁−3 + 3𝑧𝑁−4}

+𝑂 (ℎ
4
) .

(56)

3.2.2. Adjustment of Boundary Conditions. Still we need
twelve and eight more conditions for systems (22) and (28),
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respectively, to get stable systems for the solution of (3). For
this we made some adjustment of boundary conditions for
systems (22) and (28), which are defined below.

Case 1. If we use interpolating collocation algorithm for the
approximate solution of (3), then we define six conditions
at left end points and six conditions at the right end points.
Since subdivision scheme (1) reproduces nine-degree (i.e.,
tenth order) polynomials, so we define boundary conditions
of order ten for solution of (22). For simplicity only left end
points 𝑧−7, 𝑧−6, 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2 are discussed and the values
of right end points 𝑧𝑁+2, 𝑧𝑁+3, 𝑧𝑁+4, 𝑧𝑁+5, 𝑧𝑁+6, 𝑧𝑁+7 can be
treated similarly.

The values 𝑧−7, 𝑧−6, 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2 can be determined by
the nonic polynomial 𝑞(𝑥) interpolating (𝑥𝑖, 𝑧𝑖), 2 ≤ 𝑖 ≤ 7.
Precisely, we have

𝑧−𝑖 = 𝑞 (−𝑥𝑖) , 𝑖 = 2, 3, 4, 5, 6, 7, (57)

where

𝑞 (𝑥𝑖) =

10
∑
𝑗=1
(
10
𝑗
) (−1)𝑗+1 𝑍1 (𝑥𝑖−𝑗) . (58)

Since by (17) 𝑍1(𝑥𝑖) = 𝑧𝑖 for 𝑖 = 2, 3, 4, 5, 6, 7, then, by
replacing 𝑥𝑖 by −𝑥𝑖, we have

𝑞 (−𝑥𝑖) =

10
∑
𝑗=1
(
10
𝑗
) (−1)𝑗+1 𝑧−𝑖+𝑗. (59)

Hence the following boundary conditions can be employed at
the left end:

10
∑
𝑗=0
(
10
𝑗
) (−1)𝑗 𝑧−𝑖+𝑗 = 0, 𝑖 = 7, 6, 5, 4, 3, 2. (60)

Similarly, for the right end, we can define 𝑧𝑖 = 𝑞(−𝑥𝑖), 𝑖 =
𝑁 + 2,𝑁 + 3,𝑁 + 4,𝑁 + 5,𝑁 + 6,𝑁 + 7, and

𝑞 (𝑥𝑖) =

10
∑
𝑗=1
(
10
𝑗
) (−1)𝑗+1 𝑧𝑖−𝑗. (61)

So we have the following boundary conditions at the right
end:

10
∑
𝑗=0
(
10
𝑗
) (−1)𝑗 𝑧𝑖−𝑗 = 0,

𝑖 = 𝑁 + 2, 𝑁 + 3, 𝑁 + 4, 𝑁 + 5, 𝑁 + 6, 𝑁 + 7.

(62)

Finally, we get the following new system of (𝑁 + 17) linear
equations with (𝑁 + 17) unknowns {𝑧𝑖}, in which 𝑁 + 1
equations are obtained from (29) and (35), four equations
from boundary conditions (19), and twelve from boundary
conditions (60) and (62).

Case 2. If we use approximating collocation algorithm (28)
for the solution of (3) then we need eight more conditions.
So in this case, we define four extra conditions at the left
end points and four conditions at the right end points by

some extrapolation method. Since the subdivision scheme
reproduces cubic (i.e., fourth order) polynomial, so we
define quartic polynomial for the adjustment of boundary
treatment. The values 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1 are determined by the
quartic polynomial 𝑝(𝑥) interpolating (𝑥𝑖, 𝑧𝑖). This polyno-
mial is defined as

𝑧−𝑖+1 = 𝑝 (−𝑥𝑖+1) , 𝑖 = 1, 2, 3, 4, (63)

where

𝑝 (𝑥𝑖+1) =
4
∑
𝑗=1
(
4
𝑗
) (−1)𝑗+1 𝑍2 (𝑥𝑖−𝑗+1) . (64)

Since by (23) 𝑍2(𝑥𝑖) = 𝑧𝑖 for 𝑖 = 1, 2, 3, 4, then, by replacing
𝑥𝑖 by −𝑥𝑖, we have

𝑝 (−𝑥𝑖+1) =
4
∑
𝑗=1
(
4
𝑗
) (−1)𝑗+1 𝑧−𝑖+𝑗+1. (65)

Hence the following boundary conditions can be employed at
the left end:

4
∑
𝑗=0
(
4
𝑗
) (−1)𝑗 𝑧−𝑖+𝑗+1 = 0, 𝑖 = 1, 2, 3, 4. (66)

Similarly, for the right end, we can define 𝑧𝑖+1 = 𝑝(𝑥𝑖+1), 𝑖 =
𝑁 + 1, 𝑁 + 2, 𝑁 + 3, 𝑁 + 4, and

𝑝 (𝑥𝑖+1) =
4
∑
𝑗=1
(
4
𝑗
) (−1)𝑗+1 𝑧𝑖−𝑗+1. (67)

So we have the following boundary conditions at the right
end:

4
∑
𝑗=0
(
4
𝑗
) (−1)𝑗 𝑧𝑖−𝑗+1 = 0,

𝑖 = 𝑁 + 1, 𝑁 + 2, 𝑁 + 3, 𝑁 + 4.

(68)

Finally, we get a following new system of (𝑁 + 13) linear
equations with (𝑁 + 13) unknowns {𝑧𝑖}, in which 𝑁 + 1
equations are obtained from (41) and (47), four equations
from boundary conditions (25), and eight from boundary
conditions (66) and (68).

3.3. Stable Systems of Linear Equations. In this section, we
present stable systems of linear equations for both interpo-
lating and approximating collocation algorithms.

3.3.1. Stable System for Interpolating Collocation Algorithm.
From (29) and (35), we get the following undetermined
system of (𝑁 + 1) equations with (𝑁 + 17) unknowns {𝑧𝑖}:

𝐴1Z1 = 𝐺1, (69)

where thematrices𝐴1,Z1, and𝐺1 of orders (𝑁+1)×(𝑁+17),
𝑁 + 17, and𝑁 + 1, respectively, are given by
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𝐴1 =

(
(
(
(
(
(
(
(
(
(

(

𝜙
iv
−8 𝜙

iv
−7 𝜙

iv
−6 𝜙

iv
−5 𝜙

iv
−4 𝜙

iv
−3 𝜙

iv
−2 𝜙

iv
−1 𝑞0 𝜙

iv
1 𝜙

iv
2 𝜙

iv
3 𝜙

iv
4 𝜙

iv
5 𝜙

iv
6 𝜙

iv
7 𝜙

iv
8 ⋅ ⋅ ⋅ 0 0 0

0 𝜙iv
−8 𝜙

iv
−7 𝜙

iv
−6 𝜙

iv
−5 𝜙

iv
−4 𝜙

iv
−3 𝜙

iv
−2 𝜙

iv
−1 𝑞1 𝜙iv1 𝜙iv2 𝜙iv3 𝜙iv4 𝜙iv5 𝜙iv6 𝜙iv7 ⋅ ⋅ ⋅ 0 0 0

0 0 𝜙iv
−8 𝜙

iv
−7 𝜙

iv
−6 𝜙

iv
−5 𝜙

iv
−4 𝜙

iv
−3 𝜙

iv
−2 𝜙

iv
−1 𝑞2 𝜙iv1 𝜙iv2 𝜙iv3 𝜙iv4 𝜙iv5 𝜙iv6 ⋅ ⋅ ⋅ 0 0 0

0 0 0 𝜙iv
−8 𝜙

iv
−7 𝜙

iv
−6 𝜙

iv
−5 𝜙

iv
−4 𝜙

iv
−3 𝜙

iv
−2 𝜙

iv
−1 𝑞3 𝜙iv1 𝜙iv2 𝜙iv3 𝜙iv4 𝜙iv5 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜙󸀠󸀠󸀠7 𝜙󸀠󸀠󸀠8 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜙󸀠󸀠󸀠6 𝜙󸀠󸀠󸀠7 𝜙󸀠󸀠󸀠8

)
)
)
)
)
)
)
)
)
)

)

,
(70)

Z1 = (𝑧−8, 𝑧−7, 𝑧−6, 𝑧−5, 𝑧−4, . . . , 𝑧𝑁+8)
𝑇
, (71)

𝐺1 = (𝑏0ℎ
4
, 𝑏1ℎ

4
, 𝑏2ℎ

4
, 𝑏4ℎ

3
, . . . , 𝑏𝑁ℎ

4
)
𝑇

, (72)

where 𝜙iV
𝑗
= 𝜙iv(𝑗) and 𝑞𝑗 = 𝜙

iv
0 − 𝑎𝑗ℎ

4.
For obtaining the unique solution of (69), we made

some adjustment of boundary conditions in previous section
which is defined in (53), (54), (60), and (62). By using this
adjustment, we get the following system of (𝑁 + 17) linear
equations with (𝑁 + 17) unknowns {𝑧𝑖}, defined as

𝐷1Z1 = 𝑅1, (73)

where the coefficient matrix

𝐷1 = (𝐵
𝑇

0 , 𝐴
𝑇

1 , 𝐵
𝑇

1 )
𝑇

. (74)

𝐴1 is defined by (70); 𝐵0 and 𝐵1 are defined as

𝐵0

=

(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 0 0 0 0 7381𝑁
2520

25200𝑁
2520

−
56700𝑁
2520

100800𝑁
2520

−
132300𝑁
2520

127008𝑁
2520

−
88200𝑁
2520

43200𝑁
2520

−
14175𝑁
2520

2800𝑁
2520

−
252𝑁
2520

⋅ ⋅ ⋅ 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)

)

.
(75)

First six rows of 𝐵0 are obtained from (60), second last
row is obtained from (53), and last row is taken from

given boundary conditions 𝑍1(0) which is defined in (19)
and

𝐵1

=

(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 ⋅ ⋅ ⋅ 𝑁
10

−
10𝑁
9

45𝑁
8

−
120𝑁
7

35𝑁 −
252𝑁
5

105𝑁
2

−40𝑁 45𝑁
2

−10𝑁 7381𝑁
2520

0 0 0 0 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 1 −10 45 −120 −120 210 −252 210 −120 45 −10 1 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 1 −10 45 −120 210 −252 210 −120 45 −10 1 0

)
)
)
)
)
)
)
)
)
)
)
)
)

)

.
(76)
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First row of 𝐵1 is obtained from 𝑍1(𝑁) which is defined in
(19), second row is obtained from (54), and the last six rows
are obtained from (62) andZ1 which is defined in (71) and𝑅1
is defined as

𝑅1 = (0, 0, 0, 0, 0, 0, 𝛽, 𝛼, 𝐺
𝑇

1 , 𝛾, 𝜔, 0, 0, 0, 0, 0, 0)
𝑇

, (77)

where 𝐺1 is defined by (72).

3.3.2. Stable System for Approximating Collocation Algorithm.
From (41) and (47), we get the following undetermined
system of (𝑁 + 1) equations with (𝑁 + 13) unknowns {𝑧𝑖}:

𝐴2Z2 = 𝐺2, (78)

where thematrices𝐴2,Z2, and𝐺2 of orders (𝑁+1)×(𝑁+13),
𝑁 + 13, and𝑁 + 1, respectively, are given by

𝐴2 =

(
(
(
(
(
(
(
(

(

Φ
iv
−6 Φ

iv
−5 Φ

iv
−4 Φ

iv
−3 Φ

iv
−2 Φ

iv
−1 Υ0 Φiv

1 Φiv
2 Φiv

3 Φiv
4 Φiv

5 Φiv
6 ⋅ ⋅ ⋅ 0 0 0

0 Φiv
−6 Φ

iv
−5 Φ

iv
−4 Φ

iv
−3 Φ

iv
−2 Φ

iv
−1 Υ1 Φiv

1 Φiv
2 Φiv

3 Φiv
4 Φiv

5 ⋅ ⋅ ⋅ 0 0 0

0 0 0 Φiv
−6 Φ

iv
−5 Φ

iv
−4 Φ

iv
−3 Φ

iv
−2 Φ

iv
−1 Υ2 Φiv

1 Φiv
3 Φiv

4 ⋅ ⋅ ⋅ 0 0 0

0 0 0 0 Φiv
−6 Φ

iv
−5 Φ

iv
−4 Φ

iv
−3 Φ

iv
−2 Φ

iv
−1 Υ3 Φiv

2 Φiv
3 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Φ󸀠󸀠󸀠5 Φ󸀠󸀠󸀠6 0

0 0 0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Φ󸀠󸀠󸀠4 Φ󸀠󸀠󸀠5 Φ󸀠󸀠󸀠6

)
)
)
)
)
)
)
)

)

, (79)

Z2 = (𝑧−6, 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, . . . , 𝑧𝑁+6)
𝑇
, (80)

𝐺2 = (𝑏0ℎ
4
, 𝑏1ℎ

4
, 𝑏2ℎ

4
, 𝑏4ℎ

3
, . . . , 𝑏𝑁ℎ

4
)
𝑇

, (81)

where Φiv
𝑗
= Φiv(𝑗) and Υ𝑗 = Φ

iv
0 − 𝑎𝑗ℎ

4.
In order to get the unique solution of system (78), we have

defined some extra conditions in (55), (56), (66), and (68). By
using these extra conditions we get the following system of
(𝑁 + 13) linear equations with (𝑁 + 13) unknowns {𝑧𝑖}:

𝐷2Z2 = 𝑅2, (82)

where the coefficient matrix

𝐷2 = (B
𝑇

0 , 𝐴
𝑇

2 ,B
𝑇

1 )
𝑇

. (83)

𝐴2 is defined by (79); B0 and B1 are defined as

B0 =

(
(
(
(
(
(

(

0 0 0 1 −4 6 −4 1 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0
0 0 0 0 1 −4 6 −4 1 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0
0 0 0 0 0 1 −4 6 −4 1 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0
0 0 0 0 0 0 1 −4 6 4 1 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 0 0 0 −251𝑁
12

48𝑁
12

−36𝑁
12

16𝑁
12

−3𝑁
12

0 0 0 0 ⋅ ⋅ ⋅ 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)

)

. (84)

First four rows of B0 are obtained from (66), second last row
is obtained from (55), and the last row is taken from the

given boundary conditions 𝑍2(0) which is defined in (25)
and

B1 =

(
(
(
(
(
(

(

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 ⋅ ⋅ ⋅ 0 0 3𝑁
12

−
16𝑁
12

36𝑁
12

−
48𝑁
12

25𝑁
12

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 1 −4 6 −4 1 0 0 0 0 0 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 0 1 −4 6 −4 1 0 0 0 0 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 0 0 1 −4 6 −4 1 0 0 0 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 0 0 0 1 −4 6 −4 1 0 0 0

)
)
)
)
)
)

)

. (85)
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First row of B1 is obtained from 𝑍2(𝑁) which is defined in
(25), second row is obtained from (56), and the last four rows
are obtained from (68);Z2 is defined in (80) and𝑅2 is defined
as

𝑅2 = (0, 0, 0, 0, 0, 0, 𝛽, 𝛼, 𝐺
𝑇

2 , 𝛾, 𝜔, 0, 0, 0, 0, 0, 0)
𝑇

, (86)

where 𝐺2 is defined by (81). Hence to obtain the approxi-
mate solution of the fourth order boundary value problem
(3) by interpolating and approximating collocation algo-
rithms we need to solve systems (73) and (82), respec-
tively.

3.4. Existence of the Solution. In this section, we discuss the
nonsingularity of the coefficient matrices 𝐷1 and 𝐷2 defined
in (74) and (83), respectively. We observe that the coefficient
matrices 𝐷1 and 𝐷2 are neither symmetric nor diagonally
dominant. However it can be shown that 𝐷1 and 𝐷2 are
nonsingular. Since 𝐷1 and 𝐷2 are band matrices with half
bandwidth 9 and 7, numerical complexities for solving the
linear systems using Gaussian elimination are about 81(𝑁 +
17) and 49(𝑁+ 13)multiplications, respectively. For large𝑁,
the matrices are almost symmetric except the first and last
eight rows and columns of𝐷1 and first and last four rows and
columns of𝐷2 due to the boundary conditions.Therefore we
first consider their symmetric part, that is, square symmetric
matrices 𝐸1 and 𝐸2 of orders𝑁 + 1 defined as

𝐸1 =

(
(
(
(
(
(
(

(

𝜙
iv
0 𝜙iv1 𝜙iv2 𝜙iv3 𝜙iv4 𝜙iv5 𝜙iv6 𝜙iv7 𝜙iv8 ⋅ ⋅ ⋅ 0 0 0 0

𝜙iv
−1 𝜙

iv
0 𝜙iv1 𝜙iv2 𝜙iv3 𝜙iv4 𝜙iv5 𝜙iv6 𝜙iv7 ⋅ ⋅ ⋅ 0 0 0 0

𝜙iv
−2 𝜙

iv
−1 𝜙

iv
0 𝜙iv1 𝜙iv2 𝜙iv3 𝜙iv4 𝜙iv5 𝜙iv6 ⋅ ⋅ ⋅ 0 0 0 0

𝜙iv
−3 𝜙

iv
−2 𝜙

iv
−1 𝜙

iv
0 𝜙iv1 𝜙iv2 𝜙iv3 𝜙iv4 𝜙iv5 ⋅ ⋅ ⋅ 0 0 0 0

0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 𝜙iv4 𝜙iv3 𝜙iv2 𝜙iv1

0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 𝜙iv3 𝜙iv2 𝜙iv1 𝜙iv0

)
)
)
)
)
)
)

)

,

𝐸2 =

(
(
(
(
(
(
(

(

Φ
iv
0 Φiv

1 Φiv
2 Φiv

3 Φiv
4 Φiv

5 Φiv
6 0 0 ⋅ ⋅ ⋅ 0 0 0 0

Φ
iv
−1 Φ

iv
0 Φ

iv
1 Φ

iv
2 Φ

iv
3 Φ

iv
4 Φ

iv
5 Φ

iv
6 0 ⋅ ⋅ ⋅ 0 0 0 0

Φiv
−2 Φ

iv
−1 Φ

iv
0 Φiv

1 Φiv
2 Φiv

3 Φiv
4 Φiv

5 Φiv
6 ⋅ ⋅ ⋅ 0 0 0 0

Φiv
−3 Φ

iv
−2 Φ

iv
−1 Φ

iv
0 Φiv

1 Φiv
2 Φiv

3 Φiv
4 Φiv

5 ⋅ ⋅ ⋅ 0 0 0 0

0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ Φiv
4 Φiv

3 Φiv
2 Φiv

1

0 0 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ Φiv
3 Φiv

2 Φiv
1 Φiv

0

)
)
)
)
)
)
)

)

.

(87)

So 𝐸1 and 𝐸2 are symmetric matrices obtained from 𝐷1
and 𝐷2, respectively. It can be shown that 𝐸1 and 𝐸2 are
nonsingular when 𝑁 increase. The nonsingularity of the
matrices 𝐸1 and 𝐸2 is shown in Table 5 by finding their
determinants. The matrices 𝐸1 and 𝐸2 remain nonsingular
for 𝑁 ⩽ 500 and 𝑁 ⩽ 100, respectively. For large 𝑁 the
determinants of the matrices may or may not be equal to
zero. The nonsingularity of the matrices 𝐷1 and 𝐷2 has been
checked by finding their eigenvalues for 𝑁 ⩽ 500 and for
𝑁 ⩽ 100, respectively. Since the eigenvalues for both the
matrices are nonzero, then by [17] matrices 𝐷1 and 𝐷2 are
nonsingular. However the matrices 𝐷1 for 𝑁 ⩾ 500 and 𝐷2
for 𝑁 ⩾ 100 may or may not be nonsingular. Therefore we
claim that systems of (73) and (82) are stable.

3.5. Error Estimation. In this section, we discuss the approx-
imation properties of the interpolating and approximating
collocation algorithms. Since schemes (1) and (2) reproduce
polynomial curves of degree nine and three, so by [10]
schemes have approximation orders ten and four, respec-
tively. Here we present our main results for error estimation.

Proof of these results is similar to the proof of Proposition
[12, 14].

Proposition 7. Suppose the exact solution 𝑦(𝑥) ∈ 𝐶4[0, 1]
and {𝑧𝑖} are obtained by (73); then absolute error by interpo-
lating collocation algorithm is

󵄩󵄩󵄩󵄩err1 (𝑥)
󵄩󵄩󵄩󵄩∞ =

󵄩󵄩󵄩󵄩󵄩
𝑍
(𝑙)

1 (𝑥) − 𝑦
(𝑙)
(𝑥)
󵄩󵄩󵄩󵄩󵄩∞
= 𝑂 (ℎ

3−𝑙
) ,

𝑙 = 0, 1, 2, 3,
(88)

where 𝑙 denotes the order of derivative.

Proposition 8. Suppose the exact solution 𝑦(𝑥) ∈ 𝐶4[0, 1]
and {𝑧𝑖} are obtained by (82); then absolute error by approx-
imating collocation algorithm is

󵄩󵄩󵄩󵄩err2 (𝑥)
󵄩󵄩󵄩󵄩∞ =

󵄩󵄩󵄩󵄩󵄩
𝑍
(𝑙)

2 (𝑥) − 𝑦
(𝑙)
(𝑥)
󵄩󵄩󵄩󵄩󵄩∞
= 𝑂 (ℎ

3−𝑙
) ,

𝑙 = 0, 1, 2, 3.
(89)
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Table 5: Determinants of the matrices.

𝑁 𝐸1 𝐸2

10 −8667/56 1.11401292 × 103

50 −177183 3.2517495 × 102

100 −552709050 0.753776508473953
200 −5.033491472 × 1036 ⋅ ⋅ ⋅

300 −4.477989536 × 1071 ⋅ ⋅ ⋅

400 3987757210720454 ⋅ ⋅ ⋅

500 3987757210720454 ⋅ ⋅ ⋅

4. Numerical Examples and Comparison

In this section, the interpolating and approximating collo-
cation algorithms described in Section 3 are tested on the
problems given below. Absolute errors between exact and
approximate solutions are also calculated. For the sake of
comparisons, we also tabulated the results in this section.
Graphical illustrations of solutions are presented.

4.1. Numerical Examples. Here we find the numerical solu-
tions of some of the boundary value problems arising in the
mathematicalmodeling of viscoelastic and inelastic flows and
so forth.

Example 1. Consider the fourth order linear boundary value
problem

𝑦
iv
(𝑥) + 𝑥𝑦 = − (8+ 7𝑥+𝑥3) 𝑒𝑥, 0 < 𝑥 < 1, (90)

subject to the boundary conditions

𝑦 (0) = 𝑦 (1) = 0,

𝑦
󸀠
(0) = 1,

𝑦
󸀠
(1) = − 𝑒.

(91)

By comparing the above problemwith (3), we have 𝑎(𝑥) = −𝑥
and 𝑏(𝑥) = −(8+ 7𝑥+ 𝑥3)𝑒𝑥. The exact solution for the above
problem is 𝑦 = 𝑥(1 − 𝑥)𝑒𝑥.

Here we present the numerical solution of the above
problem by interpolating and approximating collocation
algorithms.

Solution by Interpolating Collocation Algorithm. In this
method, by solving the system of linear equations (73) at
𝑁 = 10, we obtain the approximate solution (17) of (90)
where {𝑧𝑖}, −8 ≤ 𝑖 ≤ 18, are

{−0.736798818, − 0.643536669, − 0.554623724,

− 0.467529093, − 0.379799398, − 0.289680649,

− 0.196215973, − 0.099344276, 0.0000,

0.0997855, 0.196780435, 0.286445566,

0.362823930, 0.4184258296, 0.444109480,

0.428957387, 0.360149377, 0.222833881,

0.000, − 0.327646133, − 0.781795936,

− 1.386637856, − 2.168934169, − 3.158065904,

− 4.386034900, − 5.887410047, − 7.698656102} .
(92)

Solution by Approximating Collocation Algorithm. In this
method, we solve the system of linear equations (82) at 𝑁 =
10 and get solution (23) of (90) where 𝑧𝑖, −6 ≤ 𝑖 ≤ 16, are

{240576495.97007, 346838.29496, 518.9347067,

− 0.27530396, − 0.192116155, − 0.098802082,

0.0000, 0.099651832, 0.195515154,

0.282951708, 0.357323235, 0.412290577,

0.439106327, 0.426338357, 0.359800241,

0.223138586, 0, − 0.325968911,

− 0.771121538, − 1.351811276, 759.3687002,

508693.855464, 352843031.1188856} .

(93)

Example 2. Consider the following fourth order linear
boundary value problem,

𝑦
iv
(𝑥) = (𝑥

4
+ 14𝑥3 + 49𝑥2 + 32𝑥− 12) 𝑒𝑥

0 ≤ 𝑥 ≤ 1
(94)

with

𝑦 (0) = 𝑦 (1) = 𝑦󸀠 (0) = 𝑦󸀠 (1) , (95)

corresponds to the bending of a thin beam clamped at both
ends. The unique solution of (94) is

𝑦 (𝑥) = 𝑥
2
(1−𝑥)2 𝑒𝑥. (96)

Solution by Interpolating Collocation Algorithm. By using this
method, we solve system (73) at𝑁 = 10 and get solution (17)
of (94) where {𝑧𝑖}, −8 ≤ 𝑖 ≤ 18, are

{−1.292188418, 0.538942241, 0.376822099,

0.254979738, 0.157378182, 0.084436111,

0.035355124, 0.008209932, 0, 0.006713642,

0.023450361, 0.044645810, 0.064445941,

0.077282873, 0.078714604, 0.066604028,

0.042729735, 0.014941769, 0, 0.027260994,

0.143411251, 0.418480429, 0.953407669,

1.889477424, 3.419988190, 5.826254985,

6.993262174} .

(97)
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Solution by Approximating Collocation Algorithm. In this
method, by solving system of linear equations (82) at𝑁 = 10,
we obtain the approximate solution (23) of (94) where {𝑧𝑖},
−6 ≤ 𝑖 ≤ 16, are

{1.711850528× 1011, − 2.46996092× 108,

3.5607957013× 105, − 5.335463543× 105,

0.06034270857, 0.013560666, 0,

0.010510642930557, 0.035942526106682,

0.067145581105052, 0.094969739502347,

0.110264932875244, 0.107216514892050,

0.086571522615334, 0.056424246024606,

0.024868975122817, 0, 0.01008838960215368,

0.002698096580563341, − 3.898592698× 103,

2.597091086× 106, − 1.801597056× 109,

1.2486272867× 1012} .

(98)

Example 3. Consider the boundary value problem

𝑦
(iv)
−𝑦 = − 4 (2𝑥 cos (𝑥) + 3 sin (𝑥)) (99)

with boundary conditions

𝑦 (0) = 0,

𝑦 (1) = 0,

𝑦
󸀠
(0) = − 1,

𝑦
󸀠
(1) = 2 sin (1) .

(100)

The exact solution of this problem is 𝑦 = (𝑥2 − 1)sin(𝑥).

Solution by Interpolating Collocation Algorithm. Here, we
solve system (73) at𝑁 = 10 and get solution (17) of (99)where
{𝑧𝑖}, −8 ≤ 𝑖 ≤ 18, are

{0.0600152940, 0.18160335240, 0.25833493990,

0.29216208360, 0.2870204837, 0.1824477485,

0.09700293, 0.000000000, − 0.1001836945,

− 0.1951709144, − 0.2768975252,

− 0.3379193763, − 0.3717065517,

− 0.372918743, − 0.3376558661, − 0.26367852,

− 0.1505934691, 0.000000000, 0.1844062122,

0.3967742453, 0.6290856272, 0.87118909250,

1.11088175850, 1.33403484280,

1.52476071733, 1.6661398769} .

(101)

Solution by Approximating Collocation Algorithm. By solving
system of linear equations (82) at 𝑁 = 10, we obtain the
approximate solution (23) of (99) where {𝑧𝑖}, −6 ≤ 𝑖 ≤ 16,
are

{115585876195.8271, 166975210.2723412,

240725.36249556, 360.797052040,

0.1912504195, 0.0989171622, 0.000000,

− 0.0988737231, − 0.1910766633,

− 0.2699814765, − 0.328960819,

− 0.361387346, − 0.3620271786,

− 0.3276693903, − 0.2568529513,

− 0.1481168313, 0.00000, 0.1889585727,

0.4202199172, 648.2401207, 432617.012,

300071307.86, 207719711144.92} .

(102)

4.2. Comparison. The numerical results of Examples 1, 2, and
3 by interpolating and approximating collocation algorithms
are presented inTables 6, 7, and 8, respectively.Themaximum
absolute errors in the solution of Examples 1, 2, and 3
obtained by interpolating and approximating collocation
algorithms are given in Table 9. Graphical representation
of these results is shown in Figures 1, 2, and 3. In these
figures solid curve represents the exact solutions, dashed
lines represent approximate solutions obtained by (73), and
dotted lines represent the approximate solutions obtained by
(82). Following is the comparison of the numerical solutions
obtained by proposed algorithms and other approaches of
this type of boundary value problems:

(i) From the above results we see that approximating
schemes based collocation algorithms give better
results than interpolating schemes based collocation
algorithms.

(ii) Example 1 is also solved by [15]. He solved this
problemby second order finite differencemethod and
obtained the maximum absolute errors at different
step sizes ℎ. We observe that the maximum absolute
error at the step size ℎ = 1/10 by the proposed
approximating collocation algorithm is better than
the maximum absolute error obtained by [15] at step
size ℎ = 1/16. The comparison of proposed methods
with second order finite difference method of [15] at
difference step sizes is shown in Table 10.

(iii) Example 2 is also solved by [18] by quintic spline
based collocation methods. We observe that order of
error approximation obtained by [18] and proposed
approximating collocation algorithm is the same.

5. Conclusion

In this paper, we have presented interpolating and approx-
imating collocation algorithms based on interpolating and
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Table 6: Numerical results of Example 1.

𝑥
𝑖

Analytic solution 𝑌
Approximate solution
𝑍1 by interpolating
collocation algorithm

Approximate solution
𝑍2 by approximating
collocation algorithm

‖err1(𝑥𝑖)‖∞ ‖err2(𝑥𝑖)‖∞

0.0 0 0 0 0 0
0.1 0.09946538 0.0997855152 0.0996518317 0.00032013 0.00018645
0.2 0.19542444 0.1967804015 0.1955151540 0.00135596 0.00009071
0.3 0.28347035 0.2864455108 0.2829517080 0.00297516 0.00051864
0.4 0.35803793 0.3628238578 0.3573232345 0.00478593 0.00071469
0.5 0.41218032 0.4184257512 0.4122905765 0.00624543 0.00011025
0.6 0.43730851 0.4441094075 0.4391063274 0.00680090 0.00179781
0.7 0.42288807 0.4289573314 0.4263383569 0.00606926 0.00345029
0.8 0.35608655 0.3601493430 0.3598002408 0.00406279 0.00371369
0.9 0.22136428 0.2228338692 0.2231385861 0.00146959 0.00177431
1.0 0 0 0 0 0

Table 7: Numerical results of Example 2.

𝑥𝑖 Analytic solution 𝑌
Approximate solution
𝑍1 by interpolating
collocation algorithm

Approximate solution
𝑍2 by approximating
collocation algorithm

‖err1(𝑥𝑖)‖∞
󵄩󵄩󵄩󵄩err2 (𝑥𝑖)

󵄩󵄩󵄩󵄩∞

0.0 0 0 0 0 0
0.1 0.008951884 0.006713642 0.010510643 0.002238243 0.001558758
0.2 0.0312679106 0.023450361 0.035942526 0.007817550 0.004674615
0.3 0.059528773 0.044645810 0.067145581 0.0148829636 0.007616808
0.4 0.085929102 0.064445941 0.094969740 0.021483162 0.009040637
0.5 0.103045079 0.077282873 0.110264933 0.025762206 0.007219853
0.6 0.104954043 0.078714604 0.107216515 0.026239439 0.002262472
0.7 0.088806494 0.066604028 0.086571523 0.022202467 0.002234972
0.8 0.056973848 0.042729735 0.056424256 0.014244112 0.000549602
0.9 0.019922785 0.014941769 0.024868975 0.004981016 0.0049461810
1.0 0 0 0 0 0

Table 8: Numerical results of Example 3.

𝑥𝑖 Analytic solution 𝑌
Approximate solution
𝑍1 by interpolating
collocation algorithm

Approximate solution
𝑍2 by approximating
collocation algorithm

‖err1(𝑥𝑖)‖∞ ‖err2(𝑥𝑖)‖∞

0.0 0 0 0 0 0

0.1 −0.09883508 −0.10018369 −0.098873723 0.0013486 0.000038641

0.2 −0.19072256 −0.19517091 −0.1910766633 0.0044484 0.00035411

0.3 −0.26892339 −0.27689752 −0.2699814765 0.0079741 0.001058

0.4 −0.32711141 −0.33791938 −0.328960819 0.010808 0.0018494

0.5 −0.35956915 −0.37170655 −0.361387346 0.012137 0.0018182

0.6 −0.36137118 −0.37291874 −0.3620271786 0.011548 0.00065600

0.7 −0.32855102 −0.33765587 −0.3276693903 0.0091048 0.00088163

0.8 −0.25824819 −0.26367852 −0.2568529513 0.0054303 0.0013952

0.9 −0.14883211 −0.15059347 −0.1481168313 0.0017614 0.00071528

1.0 0 0 0 0 0
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Table 9: Maximum absolute errors of Examples 1, 2, and 3.

Example

Max. absolute
errors by

interpolating
collocation
algorithm

Max. absolute
errors by

approximating
collocation
algorithm

1 6.8010 × 10−3 3.7137 × 10−3

2 2.6239 × 10−2 0.9041 × 10−2

3 1.2137 × 10−2 0.18494 × 10−2

Exact solution (90)
Approximate solution by (73)
Approximate solution by (82)

0

0.4

0.3

0.2

0.1

0

0.2 0.4 0.6 0.8 1

Figure 1: Comparison between exact and approximate solutions of
Example 1 obtained by interpolating and approximating collocation
algorithms.

Exact solution of (94)
Approximate solution by (73)
Approximate solution by (82)

0

0.4

0.3

0.2

0.1

0

0.2 0.4 0.6 0.8 1

Figure 2: Comparison between exact and approximate solutions of
Example 2 obtained by interpolating and approximating collocation
algorithms.

approximating subdivision schemes for the solution of linear
fourth order boundary value problems. The proposed algo-
rithms have been applied on different linear fourth order
boundary value problems. Results show that the approximat-
ing collocation algorithm gives better results comparative to
interpolating collocation algorithm. We have also observed
that the accuracy of the solution can be improved by choosing
different subdivision schemes with the proper adjustment of
boundary conditions.

Approximating subdivision scheme based collocation
algorithm gives better results comparative to second order
finite difference method. However, approximating subdivi-
sion scheme based collocation algorithm and quintic spline

Table 10: Comparison of Example 1 with different methods.

ℎ

Max. absolute
errors by

interpolating
collocation
algorithm

Max. absolute
errors by

approximating
collocation
algorithm

Second order finite
difference method

[15]

1
4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8.50 × 10−2

1
8 ⋅ ⋅ ⋅ 1.4098 × 10−2 2.09 × 10−2

1
10 6.8010 × 10−3 3.7137 × 10−3 ⋅ ⋅ ⋅

1
16 6.7469 × 103 4.4572 × 10−3 5.27 × 10−3

−0.3

−0.2

−0.1

0

Exact solution of (99)
Approximate solution by (73)
Approximate solution by (82)

0 0.2 0.4 0.6 0.8 1

Figure 3: Comparison between exact and approximate solutions of
Example 3 obtained by interpolating and approximating collocation
algorithms.

based collocation algorithm have the same order of approxi-
mation.
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