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The elastic properties of the boron-nitride nanotubes are studied based on an atomic simulation method that is called atomic-scale
finite element method. The Tersoff-Brenner potential is used to describe the interaction between boron and nitrogen atoms, and
the computational method is established in an atomic-scale scheme similar to the classical finite element method. Young’s modulus
is evaluated for the boron-nitride nanotubes, and their buckling behavior is analyzed. It is shown that the diameter has an obvious
influence on Young’s modulus of BNNTs, and the buckling is little related to the length of the nanotubes.

1. Introduction

Boron-nitride nanotubes (BNNTs) are a very promising one-
dimensional material and have a structural analogy to carbon
nanotubes [1–3]. Some research reports have shown that
BNNTs possess unique structural, mechanical, thermal, ele-
ctrical, and chemical properties. For example, Young’s modu-
lus of BNNTs is on the order of 1 TPa [4, 5].The thermal con-
ductivity along the nanotube is also very high. BNNTs have
always large band gaps regardless of the chirality and diam-
eter and are therefore semiconductors which are contrary
to carbon nanotubes. The atomic simulation methods are
important to the development of nanotechnology and to the
study of nanomaterials and nanosystems. Molecular dynam-
ics [6, 7] is a commonly used atomic-scale method, in which
the conjugate gradient method is used for the energy mini-
mization that consumes a large amount of computational
resources, and is only available for the very small size. The
atomic-scale finite element method (AFEM) is proposed by
Liu et al. [8, 9], and it can achieve a high computational effi-
ciency with the same accuracy as molecular dynamics. In the
present study, AFEM is used to obtain the stiffnessmatrix and
nonequilibrium force vector of the system, and the equilib-
rium state is determined with the nonlinear iteration.

In the field of theoretical research, only a few researches
have been reported about the tensile and compressive prop-
erties of BNNTs. Oh used the continuum lattice approach to
estimate elastic properties of BNNTs, in which the Tersoff-
Brenner potential was used to describe the interaction
between boron and nitrogen atoms, but some potential
parameters have been modified to fit the cohesive energy and
the bond length of boron nitride [10]. Song et al. employed an
atomic-based continuum theory to study Young’s modulus,
stress-strain curve, and nonlinear bifurcation in BNNTs [11].
They pointed out that the mechanical behavior of BNNTs
is virtually independent of the diameter and length of
BNNTs but has a strong dependence on chirality. Wei et al.
used classical molecular dynamics simulations to investigate
compressive and tensile behaviors of the carbon nanotubes
and boron-nitride nanotubes [12]. From the computational
analyses, they found that the chirality is the main factor
affecting the behavior of the nanotubes, and the nanotubes
in different materials but with the same chirality have similar
deformation patterns. Liao et al. investigated the deformation
behaviors of an (8, 8) boron-nitride nanotube under axial
tensile strains, in which Tersoff potential was employed with
the appropriate potential parameters [13]. According to their
results, the BNNT starts to fail at the failure strain of 26.7%
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Figure 1:The definitions for the basis unit vectors, chiral vector, and
chiral angle.

and the local elongation dominates the tensile failure of
the BNNT. In this paper, the widely used Tersoff-Brenner
potential is employed in the atomistic simulation, and a set of
potential parameters modified by Oh are used to investigate
the elastic properties of boron-nitride nanotubes [10]. AFEM
is used to obtain the equilibrium states.

2. Atomic-Scale Modeling Method

2.1. Boron-Nitride Nanotubes. An undeformed BNNT can
be visualized as a hollow cylinder that is formed by rolling
up a BN sheet into a cylindrical shape. It can be uniquely
characterized by a chiral vector Γ in terms of a set of two
integers (𝑛,𝑚) corresponding to BN sheet unit vectors a

1
and

a
2
(Figure 1):

Γ = 𝑛a
1
+ 𝑚a
2
. (1)

This tube is denoted as an (𝑛,𝑚) tube with its diameter given
by

𝐷 =
√3

𝜋
𝑎B–N√𝑛

2 + 𝑚𝑛 + 𝑚2, (2)

where 𝑎B–N is the bond length in the BN sheet.The tubes with
𝑛 = 𝑚 are commonly referred to as armchair tubes and those
with 𝑚 = 0 as zigzag tubes. Other tubes are called chiral
tubes in general with the chiral angle 𝜃 which is defined as
that between the vector Γ and the zigzag direction a

1
:

𝜃 = tan−1 [ 3𝑚

2𝑛 + 𝑚
] , (3)

where 𝜃 ranges from 0∘ for zigzag (𝑚 = 0) to 30∘ for armchair
(𝑚 = 𝑛) tubes (𝑛 ≥ 𝑚 is used for convention). Shown in
Figure 2 are Zigzag and armchair BNNTs.

2.2. The Atomic-Scale Finite Element. The present research
adopts AFEM that was proposed by Liu et al. [8, 9].The basic
idea is to divide nanotubes into finite number of elements,
and each element is characterized by a set of discrete atoms.
The positions of all atoms are determined by minimizing the
energy in the system.

For a system of𝑁 atoms, the energy stored in the atomic
bond can be denoted by the function of each atom coordinate:

𝑈
𝑡
= 𝑈
𝑡
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑁

∑
𝑖<𝑗

𝑉
𝐵
(𝑥
𝑗
− 𝑥
𝑖
) . (4)

Tersoff-Brenner potential [14, 15] is a multibody potential
and can better describe the interaction between C, B, H,
and N atoms. In the present study, Tersoff-Brenner potential
𝑉
𝐵
(𝑟
𝑖𝑗
) is used to describe the interaction between the boron

and nitrogen atoms:

𝑉
𝐵
(𝑟
𝑖𝑗
) = 𝑉
𝑅
(𝑟
𝑖𝑗
) − 𝐵
𝑖𝑗
𝑉
𝐴
(𝑟
𝑖𝑗
) , (5)

where𝑉
𝑅
and𝑉
𝐴
are the repulsive pair potential and attractive

pair potential; 𝑟
𝑖𝑗
is the distance from atom 𝑖 to atom 𝑗; 𝐵

𝑖𝑗

is the bond order function. The sets of potential parameters
modified by Oh [10] are used which are listed in Table 1.

The total energy is thus evaluated as

𝐸
𝑡
(𝑥) = 𝑈

𝑡
(𝑥) −

𝑁

∑
𝑖=1

𝐹
𝑖
⋅ 𝑥
𝑖
, (6)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇,𝐹
𝑖
is the external force exerted on

atom 𝑖. The state of minimal energy corresponds to

𝜕𝐸
𝑡

𝜕𝑥
= 0. (7)

Giving Taylor expansion of 𝐸
𝑡
(𝑥) and substituting it into (7)

yield the following equation:

𝐾Δ𝑢 = 𝑃, (8)

where Δ𝑢 is displacement increment and 𝐾 and 𝑃 are, res-
pectively, the stiffness matrix and nonequilibrium force vec-
tor given by

𝐾 =
𝜕
2𝐸
𝑡

𝜕𝑥𝜕𝑥
=

𝜕
2𝑈
𝑡

𝜕𝑥𝜕𝑥
, 𝑃 = −

𝜕𝐸
𝑡

𝜕𝑥
= 𝐹 −

𝜕𝑈
𝑡

𝜕𝑥
. (9)

Newton iterationmethod can be used to solve the present
problem. It is much faster than the widely used conjugate gra-
dient method because the first and second order derivatives
were used. Materials may display softening behavior when
they were under axial compression. For problems involving
material softening, 𝐾 is nonpositive definite and 𝐾 may be
replaced by 𝐾∗ = 𝐾 + 𝐼𝛼 to ensure the convergence, where 𝐼
is the identitymatrix and𝛼 is a positive number slightly larger
than the absolute value of the minimum negative eigenvalue
of the stiffness matrix [16, 17].

2.3. The Simulation Process. The above method has been
written as a Fortran code for BNNTs, in which the following
steps are used to compute the elastic properties of BNNTs and
determine their buckling deformation.

Step 1. First, construct the initial configuration of BNNTs
with uniform bond length using a separate program; store the
coordinates and each piece of bond information in an array.
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Figure 2: The atomic structure of the zigzag and armchair BNNTs.

Table 1: Potential parameters.

Parameter 𝐷
(𝑒) (eV) 𝑆 𝛽 𝑅

(𝑒)
𝑅
(1) (Å) 𝑅

(2) (Å) 𝛿 𝑎
0

𝑐
0

𝑑
0

6.36 1.0769 22.0 0.133 1.9 2.1 0.382 2.0813 330 3.5

Step 2. Using the coordinate and bond number of arrays, find
the first and second neighbor atoms information and store
them in an array.

Step 3. Call a separate program to make the system back to
the equilibrium coordinates for given initial coordinates and
boundary conditions of BNNTs.

Step 4. Apply displacement field to equilibrium coordinates.
This process adopts the constant displacement values at each
load step.

Step 5. Store the potential of BNNTs against applied displace-
ment filed. Using the polynomial curve fitting, fit data for
equation of potential in terms of displacement filed (strain).

Step 6. Calculate Young’smodulus using equations in Section
3.1.

Boundary conditions in Step 3 are to restrain one side
of BNNTs and make the other side free until the system
returns to the equilibrium configuration. During the process
of axial tensile or compression, one end of the BNNT is
completely fixed, and the tensile or compression is achieved
by incrementally imposing an axialmovement at another end.
The length of the tube is changed by 0.01 nm per loading step
until material appears buckling.

3. Results and Discussions

3.1. Young’s Modulus. In continuum mechanics, the consti-
tutive response between the load and deformation is estab-
lished prior to solving a specific problem. If the material is
homogeneous and isotropic, the material can be represented
by two independent constants, namely, Young’s modulus 𝑌
and Poisson’s ratio ]. For a material undergoing a uniaxial
deformation, 𝑌 is defined as

𝑌 =
2 (𝑉
𝛿
− 𝑉
0
)

𝑉ol

𝐿2

𝛿2
=
𝑘𝐿2

𝑉ol
, 𝑘 =

2 (𝑉
𝛿
− 𝑉
0
)

𝛿2
, (10)
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Figure 3: Stress-strain curve of an (8, 0) BNNT.

where 𝑉ol is the volume, 𝐿 is the initial nanotube length,
and 𝑉

0
and 𝑉

𝛿
are the equilibrium (minimised) potentials

corresponding to the initial and deformed equilibrium con-
figurations, respectively. 𝛿 is the length change in BNNTs, and
𝑘 is the stiffness of the BNNT, as 𝛿 → 0 𝑘 → 𝑘

0
.

The thickness is often taken as 0.34 nm [11–13, 18] in the
evaluation of 𝑉ol. 𝑉𝛿 can be expressed as

𝑉
𝛿
= 𝑎
1
+ 𝑎
2
𝛿 + 𝑎
3
𝛿
2
+ 𝑎
4
𝛿
3
. (11)

The stiffness constant 𝑘
0
is then obtained as

𝑘
0
= lim
𝛿→0

𝜕2𝑉
𝛿

𝜕𝛿2
= 2𝑎
3
. (12)

Deformation behavior of an (8, 0) BNNT under axial
tensile strains is first investigated in this paper. It has 23
hexagonal cells along the axis, and its initial length and radius
are 5.037 nm and 0.326 nm, respectively. Figure 3 shows the
stress-strain curve. Plot of equilibrium potential energy ver-
sus the length change is displayed in Figure 4.

The potential equation (11) is obtained from Figure 4
using polynomial curve fitting. Replace 𝑘

0
with 2𝑎

3
= 745.8.

Substituting (12) into (10), the obtained 𝑌 is 863.85GPa.
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Figure 4: Potential versus the length change of an (8, 0) BNNT for
axial tensile/compressive deformation.
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Figure 5: Young’s moduli versus tube radius for (𝑛, 0) and (𝑛, 𝑛)

BNNTs.

Using the above steps, armchair (𝑛, 𝑛) and zigzag (𝑛, 0)

BNNTs are also simulated. Figure 5 shows the variation of the
axial Young’s moduli with the tube radius. It can be seen that
Young’s moduli of both armchair and zigzag BNNTs increase
with increasing tube diameter, and this trend becomes much
obvious for small radii zigzag tubes. With an increasing tube
radius, the axial Young’s moduli tend to the same constant.
Employing an atomistic-based continuum theory, Song et al.
[11] obtained the normalized Young’s modulus of BNNT for
the armchair (𝑛, 𝑛) and zigzag (𝑛, 0) BNNTs with the varying
tube diameter, and they compared their results with tight
binding [4] and ab initio calculation [5]. The present results
agree well with those from [4, 5, 10, 11].

3.2. Axial Buckling of BNNTs. AFEM is also applied to pre-
sent a complete numerical simulation of buckling behavior.
At each loading step, the stable state is solved with Newton’s
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Figure 6: Buckling deformation.

method, and then the further compressive displacement is
used. The penalty function method [19–21] is used to enforce
the essential boundary condition. When BNNTs appear
buckling,𝐾 is nonpositive definite.The iterative convergence
is achieved to replace 𝐾 with 𝐾

∗ = 𝐾 + 𝐼𝛼, where 𝐼 is the
identity matrix and 𝛼 is a positive number larger than the
minimum negative eigenvalue of the stiffness matrix.

The buckling deformation of an (8, 0) BNNT is shown
in Figure 6 and it is very similar to the single-wall car-
bon nanotube studied by some researchers. The molecular
dynamic method is the most popular atomic simulation
method, in which the conjugate gradient method is used to
achieve the energyminimization.The presentmethod has the
same accuracy with the molecular dynamic method because
they both are atomic-scale methods. The conjugate gradient
method is an order-𝑁2 method, and its computational cost
is very huge. In the present AFEM, Newton iteration method
is applied to obtain the equilibrium state, in which the first
and second order derivatives are used and 3–5 iterative steps
can achieve a good convergence.The computation is far faster
thanmolecular dynamicmethod. Liew et al. showed thatMD
simulation of the buckling behavior of a (10, 10) SWCNT
containing 2,000 atoms required 36 hours in a single CPU of
SGI origin 2000, whereas the computation for a four-walled
MWCNT containing 15,097 atoms took four months [2, 6].
The computational time inAFEMscales linearlywith number
of atoms and the numbers of iteration steps is approximately
independent of the atomnumber, which implies thatAFEM is
an order-𝑁method and is very effective for the nanostructure
with a larger number of atoms.

Our results are in good agreement with Wei et al. who
have used classical molecular dynamics simulations to inves-
tigate compressive behaviors of the boron-nitride nanotubes
[12]. In order to investigate the relationship between the
bulking and length of single-walled boron-nitride nanotubes,
some (𝑛, 0) BNNTs were simulated. Figure 7 shows the
buckling strain versus length for several zigzag BNNTs. It is
observed that the curve is nearly flat so that the nanotube
length has little influence on buckling.

4. Conclusions

This paper has used AFEM to study the elastic properties of
boron-nitride nanotubes based on interatomic potentials for
boron and nitrogen atoms. It is shown that Young’s moduli
of both armchair and zigzag BNNTs closely related to tube
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Figure 7: The buckling strain versus the length for several zigzag
boron-nitride nanotubes.

diameter, especially for small radii zigzag tubes. When radius
exceeds 1 nm, Young’s moduli tend to the same constant. For
zigzag BNNTs, the buckling strain is virtually independent
of the nanotube length, and its average strain is 12%. This is
consistent with the conclusions that the mechanical behavior
of BNNTs is independent of the diameter and length of
BNNTs by some researchers. AFEM is an efficient and accu-
rate computation method and it is also readily applicable for
solving many physics related optimization problems.
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