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Based on the active control and the adaptive sliding mode controller, a new method of the combination of the active control and
the single adaptive sliding mode variable structure control is proposed to realize the dislocation synchronization of the three-
dimensional different complex value chaotic systems. The synchronization method is suitable not only for the same complex value
chaotic systems, but also for different complex value chaotic systems, so it expands the application of the single sliding mode
controller. For the states in the complex space of the driving system and response system, the synchronization for the complex state
of the two different chaotic systems is achieved according to the dislocation relationship, not in accordance with the corresponding
relationship.The complexity of complex value chaotic system and the diversity of dislocation synchronization increase the security
of the chaotic secure communication. This single adaptive sliding mode variable structure controller is simple, and it can enhance
the robustness of the system.Theoretical analysis and numerical simulation prove the feasibility and effectiveness of the controller
designed.

1. Introduction

Chaos is random and the chaotic communication has the
advantages of strong confidentiality, anti-interference, low
power, low cost, and so forth. Therefore, chaotic commu-
nication has great application in secure communication.
Since Pecora and Carroll put forward and achieve the syn-
chronization of the driving and response system, more and
more people began to research the chaotic synchronization.
Otherwise chaotic synchronization is the key technology
of application of chaotic system in secure communication
[1, 2]. Various new methods are put forward to realize
chaotic synchronization, such as complete synchronization
[3], lag synchronization [4], generalized synchronization
[5, 6], projective synchronization [7], and sliding mode
synchronization [8]. Recently, a new synchronizationmethod
is proposed, namely, the dislocation synchronization [9].The
dislocation synchronization methods attract much attention.
For example, Min and Wang [10] and Shao et al. [11]
realize the dislocation synchronization of the two chaotic

systems and the synchronization method is applied to secure
communication. Fang and Jiang [12] realize the dislocated
modified chaotic function projective synchronization and
apply it in secure communication. The synchronization for
the complex state of the two different chaotic systems is
achieved according to the dislocation relationship, not in
accordance with the corresponding relationship. Therefore,
synchronization scheme for two different chaotic systemswill
increase exponentially as the system state variables increase,
which improves the ability to resist crack and opens up a new
path for the application of chaotic encryption.

Since Fowler et al. [13] proposed the complex Lorenz
equation, complex system plays an important role in the field
of physics. At present, the complex system has been widely
applied to various physical phenomena, such as the detuning
of the laser system, the amplitude of the electromagnetic field,
and the thermal convection of liquid [14–16]. Sowe generalize
the chaotic system to the complex value space. The complex
values not only increase the information transmission, but
also improve the security of secure communication [17].
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Therefore complex values chaotic system synchronization is
widely applied. In recent years, its synchronization and char-
acteristics of the complex value chaotic system have attracted
a lot of attention, such as the research for the characteristics
and synchronization of time-delay complex Lorenz chaotic
system [18], the complex scaling factor modified projective
synchronization [19] between the real chaotic system and
the complex chaotic system, control and synchronization of
hyperchaotic complex Lorenz system [20], modified function
projective synchronization of different complex chaotic sys-
tem [21], and chaos in the fractional-order complex Lorenz
system and its synchronization [22]. P. Liu and S. T. Liu [23]
realize the adaptive hybrid synchronization of the complex
chaotic systems with unknown parameters and external
disturbance. In [24] the complex value chaotic system is
applied in the secure communication. Otherwise many other
synchronization methods have been applied to complex
chaotic system.

Sliding mode control has many attractive advantages,
such as fast response and good dynamic performance [25–
28]. Recently Huang and Qi [29] realize the synchronization
of the different dimensions chaotic systems based on the
sliding mode variable structure, but the controller needs
to design three sliding modes, so the controller is too
complicated and has high cost of control. Yu [30], Cao and
Zhang [31], and Aghababa [32] realize the synchronization
for a class of three-dimensional chaotic system with a single
adaptive controller, but the method is applied only to the
same chaotic system. In this paper, for the three-dimensional
complex value chaotic system, combined with the active
control and single adaptive sliding mode variable structure
control, a newmethod is put forward to realize the dislocation
synchronization of a class of three-dimensional different
chaotic value systems in the complex space. The controller
design is divided into two parts: one is the active control
and the other contains only a single driving variable adaptive
sliding mode variable structure controller. The design of the
single adaptive sliding mode variable structure controller
not only reduces the complexity of the controller, but also
enhances the robustness of the control system. It is significant
for the application of chaos synchronization. Finally, take
the three-dimensional complex Chen chaotic system and Lü
chaotic system as the example and simulate the dislocation
synchronization under this controller. The simulation results
show the effectiveness and the feasibility of the proposed
method.

2. Dislocation Synchronization of Different
Complex Value Chaotic Systems Based on
Adaptive Sliding Mode Control

2.1. The Synchronization Problem. The driving system is a
three-dimensional complex chaotic system as follows:

�̇� = 𝑓 (𝑥) , (1)

where 𝑥
𝑛
(𝑛 = 1, 2, 3) is the state variable in complex space,

and the complex state variables 𝑥
𝑛
can be written as 𝑥

𝑛
=

𝑥

𝑅

𝑛
+𝑗𝑥

𝐼

𝑛
, where𝑅 is the real part of complex, 𝐼 is the imaginary

part, and 𝑓(𝑥) is a 3 × 1 matrix of complex nonlinear
function.

The response system is a three-dimensional complex
chaotic system:

̇𝑦 = 𝑔 (𝑦) + 𝑢, (2)

where 𝑦
𝑛
(𝑛 = 1, 2, 3) is the state variable in complex space,

and the complex state variables 𝑦
𝑛
can be written as 𝑦

𝑛
= 𝑦

𝑅

𝑛
+

𝑗𝑦

𝐼

𝑛
. 𝑔(𝑦) is a 3 × 1matrix of complex nonlinear function, and

𝑢 is a controller designed, where 𝑢
𝑛
= 𝑢

𝑅

𝑛
+ 𝑗𝑢

𝐼

𝑛
.

According to the definition of the dislocation synchro-
nization, there are 3! − 1 dislocation synchronization meth-
ods for two different three-dimensional chaotic systems.
Moreover, for two different chaotic systems, synchronization
schemewill increase exponentially as the numbers of the state
variables. Because the diversity of dislocation synchroniza-
tion and the selection of the synchronization scheme were
not known before, the dislocation synchronization enhances
the ability to resist crack, which opens up a new path for the
application of chaotic encryption.

The definition of the dislocation synchronization error is

𝑒

𝑛
(𝑡) = 𝑦

𝑚
(𝑡) − 𝑥

𝑛
(𝑡) (𝑚, 𝑛 = 1, 2, 3) , (3)

where at least one pair meets 𝑚 ̸= 𝑛, 𝑒
𝑛
(𝑡) = 𝑒
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𝑛
(𝑡) + 𝑗𝑒

𝐼

𝑛
(𝑡),

and in this paper the purpose is to design the controller of 𝑢,
when 𝑡 → ∞, 𝑒
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(𝑡) → 0; that is,
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If (4) holds,
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(5)

where 𝑦𝑅
0
, 𝑥𝑅
0
are the real parts and 𝑦𝐼

0
, 𝑥𝐼
0
are the imaginary

parts of complex initial values of state variable for the systems
(1) and (2), respectively.

2.2. Controller Design. According to the definition of the dis-
location synchronization error, the error dynamic system is

̇𝑒

𝑛
= ̇𝑦

𝑚
− �̇�

𝑛
= 𝑔

𝑚
(𝑦) − 𝑓

𝑛
(𝑥) + 𝑢
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= ℎ

𝑛
(𝑒) + 𝐹

𝑛
(𝑥, 𝑦) + 𝑢

𝑚
𝑚, 𝑛 = 1, 2, 3,

(6)

where at least one pair meets𝑚 ̸= 𝑛, ℎ(𝑒) is the error function
matrix, and 𝐹(𝑥, 𝑦) is the function of the complex variables
𝑥, 𝑦. The controller 𝑢 is divided into two parts: 𝑢

Ι
and 𝑢

ΙΙ
.

Then let the active controller 𝑢
𝑚Ι
= −𝐹

𝑛
(𝑥, 𝑦), and the

synchronization error dynamic system is

̇𝑒 = ℎ (𝑒) + 𝑢

ΙΙ
. (7)

The definition of complex variable integral sliding mode
surface is

𝑠

𝑛
= 𝑠

𝑅
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+ 𝑗𝑠

𝐼

𝑛
= 𝑒
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0
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𝑛
(𝜏) 𝑑𝜏 (𝑛 = 1, 2, 3) ,

(8)

where 𝑑 is a positive real number.
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The adaptive sliding mode variable structure controller
𝑢

𝑖ΙΙ
for the complex chaotic system is as shown in

𝑢

𝑛ΙΙ
= 𝑢
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𝑛ΙΙ
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where ̇𝑘
𝑛
= 𝜌(∑

3
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|))|𝑠

𝑛
| (𝜌 is a constant and greater

than zero).
In order to make the complex chaotic systems (1) and

(2) achieve a single adaptive sliding mode variable structure
control, we can make any one of the sliding mode controllers
work and the other two sliding mode controllers zero. Then
let
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(10)

So the two hypotheses below must be satisfied.

Hypothesis 1. The complex functions ℎ
1
(𝑒

1
, 𝑒

2
, 𝑒

3
) and

ℎ

3
(𝑒

1
, 𝑒

2
, 𝑒

3
) in system (10) are smooth and continuous

in the 𝑒
2
= 0 field. For all 𝑒

1
, 𝑒

3
about 𝑒

1
= 0, 𝑒

3
= 0 in

the subsystem ℎ

1
(𝑒

1
, 0, 𝑒

3
) and ℎ

3
(𝑒

1
, 0, 𝑒

3
) are uniform

exponential stability.

Hypothesis 2. The system (10) is the error system, so the
positive large enough𝑀 exists:
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So the sliding mode surface is designed as 𝑠
2
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2
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2
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surface, the following conditions need to be satisfied:
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From (12)

̇𝑒

2
= −𝑑𝑒

2
. (13)

Since 𝑑 > 0, (13) is asymptotically stable; namely,

lim
𝑡→∞

𝑒

2
→ 0. (14)

From Hypothesis 1, lim
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𝑒
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0; namely,

lim
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Theorem 1. Under the control of the active controller 𝑢
Ι

and a single adaptive sliding mode controller 𝑢
ΙΙ
, the error

system (10) which starts from the arbitrary initial value can
be lim

𝑡→∞
𝑒

𝑛
→ 0 (𝑛 = 1, 2, 3). So the dislocation

synchronization of different complex value chaotic systems will
be achieved.
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Then the time derivative of the 𝑉(𝑡) is

̇

𝑉 (𝑡) =

3

∑

𝑛=1

(𝑠

𝑅

𝑛
̇𝑠

𝑅

𝑛
+ 𝑠

𝐼

𝑛
̇𝑠

𝐼

𝑛
)

+

1

𝜌

3

∑

𝑛=1

((𝑘

𝑅

𝑛
− 𝑘

∗
)

̇

𝑘

𝑅

𝑛
+ (𝑘

𝐼

𝑛
− 𝑘

∗
)

̇

𝑘

𝐼

𝑛
)

= 𝑠

𝑅

2
( ̇𝑒

𝑅

2
+ 𝑑𝑒

𝑅

2
) + 𝑠

𝐼

2
( ̇𝑒

𝐼

2
+ 𝑑𝑒

𝐼

2
)

+ (𝑘

𝑅

2
− 𝑘

∗
)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝑅

2











+ (𝑘

𝐼

2
− 𝑘

∗
)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝐼

2











= 𝑠

𝑅

2
(ℎ

𝑅

2
(𝑒

1
, 𝑒

2
, 𝑒

3
)

− 𝑘

𝑅

2
(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











)) sign (𝑠𝑅
2
) + 𝑑𝑒

𝑅

2
)

+ 𝑠

𝐼

2
(ℎ

𝐼

2
(𝑒

1
, 𝑒

2
, 𝑒

3
)

− 𝑘

𝐼

2
(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











)) sign (𝑠𝐼
2
) + 𝑑𝑒

𝐼

2
)

+ (𝑘

𝑅

2
− 𝑘

∗
)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝑅

2











+ (𝑘

𝐼

2
− 𝑘

∗
)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝐼

2











≤ 𝑀(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝑅

2











+ 𝑑











𝑒

𝑅

2





















𝑠

𝑅

2











− 𝑘

∗
(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝑅

2











+ 𝑀(

3

∑

𝑛=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝐼

2











+ 𝑑











𝑒

𝐼

2





















𝑠

𝐼

2













4 Mathematical Problems in Engineering

− 𝑘

∗
(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝐼

2











≤ − (𝑘

∗
−𝑀)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝑅

2











− (𝑘

∗
−𝑀)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝐼

2











+ 𝑑(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝑅

2











+ 𝑑(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝐼

2











= − (𝑘

∗
−𝑀 − 𝑑)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝑅

2











− (𝑘

∗
−𝑀 − 𝑑)(

3

∑

𝑖=1

(











𝑒

𝑅

𝑖











+











𝑒

𝐼

𝑖











))











𝑠

𝐼

2











≤ 0.

(16)

Based on the Lyapunov theory, the error in the system
(10) starts from any initial condition, which satisfies the
reaching condition of sliding mode, and (15) holds on the
sliding surface. Therefore, the error system (10) can stabilize
to equilibrium point ultimately based on Lyapunov stability
theory. So, under the control of the active controller and a
single adaptive slidingmode variable structure controller, the
dislocation synchronization of the different complex chaotic
systems is achieved.

For the error system of complex chaotic systems (1) and
(2), since |𝑒
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2, the simulation results
are shown in Figure 3.

3. Numerical Simulation Analysis

The complex value chaotic system in secure communication
not only increases the content of the transmission informa-
tion, but also improves the communication complexity. So
it is important to the security of the secret communication.
In order to verify effectiveness of the designed controller,
two different complex chaotic systems are selected to be
simulated.

Thedriving system is a complexChen chaotic system [33]:
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where 𝑎 = 35, 𝑏 = 3, and 𝑐 = 28. And 𝑥
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is the real variable. The

upper score is the conjugate variable.
The response system is a complex Lü chaotic system [33]:

̇𝑦

1
= 𝛼 (𝑦

2
− 𝑦

1
) + 𝑢

1
,

̇𝑦

2
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3
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2
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1
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2
)
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3
+ 𝑢

3
,

(18)

where𝛼 = 29, 𝛽 = 21, and 𝛾 = 2. And𝑦
1
= 𝑦

𝑅

1
+𝑗𝑦

𝐼

1
and 𝑦

2
=

𝑦

𝑅

2
+ 𝑗𝑦

𝐼

2
are complex variable, and 𝑦

3
is the real variable. The

upper score is the conjugate variable.
In this paper, one of the dislocation synchronization

schemes is chosen, and the other schemes can be analyzed by
similar methods. The definition of dislocation synchroniza-
tion error is

𝑒

1
= 𝑦

2
− 𝑥

1
,

𝑒

2
= 𝑦

1
− 𝑥
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(19)

Then (17) and (18) can be simplified:
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(20)

The active controller is designed as follows:

𝑢

2Ι
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(21)

And the single adaptive sliding mode variable structure
controller is

𝑢

2ΙΙ
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(22)

Let the adaptive rate ̇𝑘
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error system is
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If 𝑒
2
= 0, the error of the system (23) will be
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1
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1
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1
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1
) .

(24)

Because the eigenvalues of the coefficient matrix for the
system (24) are all negative, the errors 𝑒

1
, 𝑒

3
will both satisfy

Hypothesis 1. Then, when 𝑒
2
= 0, 𝑒

1
and 𝑒

3
are uniform

exponential stability, respectively.
Let the initial state of the system (1) be (𝑥

1
(0),

𝑥

2
(0), 𝑥

3
(0)) = (−3−2𝑗, −1−5𝑗, −4), let the initial state of the

system (2) be (𝑦
1
(0), 𝑦

2
(0), 𝑦

3
(0)) = (−2 − 3𝑗, 1 + 2𝑗, 12), the

parameter 𝑑 = 3, and 𝜌 = 2.Then the synchronization results
between the systems (17) and (18) are shown in Figure 1.

For the sliding surface designed for the complex chaotic
system, based on |𝑠

2
| =

√

|𝑠

𝑅

2
|

2

+ |𝑠

𝐼

2
|

2, we can get the
simulation result under the control of the sliding mode
controller. The results are shown in Figure 2.

From Figures 1, 2, and 3, the dislocation synchronization
errors of the complex Chen chaotic system and complex
Lü chaotic system under the controller proposed tend to
zero asymptotically; namely, the dislocation synchronization
of two different complex value chaotic systems is realized.
It shows the effectiveness of the synchronization controller
based on the active control and the single adaptive sliding
mode variable. Compare Figures 1 and 3 to Figures 3 and
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4 in [34]; the proposed controller in this paper has faster
synchronization and better performance.

Then the external disturbance is considered. Let the
parameter of the system (17) be 𝑎 = 35 + 0.5 sin(𝑡) and let the
other initial conditions be the same. The simulation results
are shown in Figure 4.

From Figure 4, for the three-dimensional complex value
chaotic system with parameter disturbance, the designed
controller has the better performance. It shows that the
proposed controller enhances the robustness and has better
effectiveness.

4. Conclusion

This paper studies the dislocation synchronization of three-
dimensional different complex value chaotic systems. A new
method of synchronization controller based on active control

and adaptive sliding mode variable structure control is pro-
posed. Synchronization controller contains two parts. One is
the active controller and the other part only contains a driving
variable adaptive sliding mode variable structure controller.
The single sliding mode controller expands the application
of the chaotic system synchronization, which is suitable not
only for the same complex value chaotic systems, but also
for different complex value chaotic systems. Moreover this
method simplifies the controller design and enhances the
robustness of the system. It has important theory significance
and practical value. For the complex state of the driving
system and response system, the synchronization for the
complex state of the two different chaotic systems is achieved
according to the dislocation relationship, not in accordance
with the corresponding relationship. Complexity of the com-
plex chaotic system and diversity of the dislocation synchro-
nization scheme make the chaotic secure communication
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more secure. Finally take the complex Chen chaotic system
and complex Lü chaotic system as an example; the simulation
results show that the designed controller in this paper is
feasible and effective. Since the complex value chaotic system
is the generalization of the chaotic system, the controller
proposed in this paper is applied not only in complex value
chaotic system, but also in real chaotic systems.
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