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Multiphysics problems arise naturally in several engineering and medical applications which often require the solution to coupled
processes, which is still a challenging problem in computational sciences and engineering. Some examples include blood flow
through an arterial wall and magnetic targeted drug delivery systems. For these, geometric changes may lead to a transient phase
in which the structure, flow field, and electromagnetic field interact in a highly nonlinear fashion. In this paper, we consider
the computational modeling and simulation of a biomedical application, which concerns the fluid-structure-electromagnetic
interaction in themagnetic targeted drug delivery process. Our study indicates that the strongmagnetic fields, which aid in targeted
drug delivery, can impact not only fluid (blood) circulation but also the displacement of arterial walls. A major contribution of this
paper is modeling the interactions between these three components, which previously received little to no attention in the scientific
and engineering community.

1. Introduction

In the last decade, the rapid development of computational
science has provided new methodologies to solve complex
multiphysics applications involving fluid-structure interac-
tion to a variety of fields. These include solving applications
involving blood flow interactions with the arterial wall to
computational aeroelasticity of flexible wing micro-air vehi-
cles to magnetohydrodynamic of liquid-metal cooled nuclear
reactor to ferromagnetics with biological applications. In
these applications, the challenge is to understand and develop
algorithms that allow the structural deformation, the flow
field, and temperature variations to interact in a highly
nonlinear fashion.

Coupling these multiphysics with electromagnetic effects
makes the associated computational model too complex. Not
only is the nonlinearity in the geometry challenging but
in many of these applications the material is nonlinear as
well, which makes the problem even more complex. Direct

numerical solution of the highly nonlinear equations gov-
erning even the most simplified two-dimensional models of
such multiphysics interaction requires that all the unknown
fields, such as fluid velocity, pressure, the magnetic and the
electric field, the temperature field, and the domain shape, be
determined as part of the solution, since neither is known a
priori.

The past few decades, however, have seen significant
advances in the development of finite element and domain
decomposition methods. These have provided new algo-
rithms for solving such large scale multiphysics simulations.
There have been several methods that have been introduced
in this regard and their performance has been analyzed for
a variety of problems. One such technique is the mortar
finite element method which has been shown to be stable
mathematically and has been successfully applied to a variety
of applications and references therein. The basic idea is
to replace the strong continuity condition at the inter-
faces between the different subdomains modeling different
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multiphysics by a weaker one to solve the problem in a
coupled fashion. Such novel techniques provide hope for
us to develop new faster and efficient algorithms to solve
complexmultiphysics applications. A variety ofmethods have
been introduced including the level set methods [1], fictitious
domain methods [2, 3], nonconforming hp finite element
methods [4, 5], multilevel multigrid methods [6], and the
immersed boundary methods [7]. While these methods help
enhance our ability to understand complex processes, there
is still a great need for efficient computational methods that
cannot only help simulate physiologically realistic situations
qualitatively but also analyze and studymodeling of such pro-
cesses quantitatively. Such multiphysics applications involve
the interaction of various components, such as fluid with the
structure, electromagnetics with the fluid, or fluid-structure
interacting completely with electromagnetics.

1.1. Electromagnetic-Fluid Interaction. An important appli-
cation involving interaction of electromagnetics with fluid
which describes the behavior of electrically conducting fluid
is very complex under a magnetic field, since the additional
Lorentz force is caused by the interaction between velocity
field and electromagnetic field. Understanding such coupled
behavior not only helps us to create efficient algorithms but
also applies to a variety of magnetohydrodynamic (MHD)
applications. Due to its multidisciplinary applications, a solid
understanding of the MHD is required. In this regard, the
Hartmann flow has been studied extensively. The Hartmann
flow is the steady flow of an electrically conducting fluid
between two parallel walls, under the effect of a normal
magnetic and electric field. A thorough understanding of
such models for electromagnetic fluid interaction can help
us in developing new techniques for complex problems such
as magnetic drug targeting in cancer therapy. Such a model
would involve ferrohydrodynamics of blood that helps to
study external magnetic field and its interaction with blood
flow containing a magnetic carrier substance. The analytic
models would involve solving Maxwell’s equations in con-
junction with Navier-Stokes equations. While new models in
this area are just starting to evolve, these often consider the
structure to be fixed. There is a need to extend these models
to include fluid-structure interaction with electromagnetics,
which would be another focus of this work.

1.2. Proposed New Models. In this paper, we will develop
a computational infrastructure for solving coupled fluid-
structure interaction with electromagnetic and temperature
effects. The rest of the work is organized as follows. Section 2
presents the models, methods, and background required
to develop and solve the coupled multiphysics systems.
In Section 3, we consider the model of a blood vessel, a
permanent magnet, and surrounding tissue and air in two
dimensions. We will consider both a nonmoving structure
and a moving structure. The deformed structure provides a
new geometry, where the Navier-Stokes equations are solved
for the velocity andpressure fields in the bloodstream.Amag-
netic vector potential generated by the permanent magnet is
calculated, which in turn creates amagnetic volume force that
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Blood flow

Blood vessel wall

Blood vessel wall

System boundary

Figure 1: Electromagnetic fluid-structure interaction model.

impacts the flow in the blood vessel. The flow field changes
the displacement of the structure, and the problem is solved
once again for the new geometry. The proposed models
are validated against benchmark applications numerically.
Section 4 presents conclusion and a discussion of the results.
Future work on the proposed problems is also presented.

A magnetically targeted drug delivery system [8] is
based on magnetic particles under the action of an external
magnetic field. This is becoming an increasingly effective
approach in drug therapy. As this field has evolved in the
last decade, lots of scientific interest led to this inquiry into
efficient computational models that simulate this experimen-
tal process [9]. Our study indicates that the strong magnetic
fields which aid in targeted drug delivery can impact not only
fluid (blood) circulation but also the displacement of arterial
walls. Thus, it is important to have a model, which includes
the interactions between fluid, structure, and magnetic field
in order to study and optimize drug delivery.

In this section, we will present a model that describes
the interaction between these three components, which
previously received little to no attention in the scientific
community. To develop an electromagnetic fluid-structure
interaction, we incorporate the effects of the electromagnetic
field into a fluid-structure model. Gaining a thorough under-
standing of such a coupled model can help us to understand
the efficacy of magnetic nanoparticle-based drug delivery
for diseases such as cancer as has been proposed by various
researchers [10, 11].There is significant evidence that indicates
a need for more promising models which overcome current
limitations and improve magnetic targeting technique.

2. Mathematical Model and Governing
Equations

The model we consider is a blood vessel with a permanent
magnet near its surface, as illustrated in Figure 1. For sim-
plicity of presentation, we consider a computational model
that comprises three components. Let the computational
domain Ω ⊂ R2 be an open set with global system boundary
Γ. Let Ω be decomposed into the four disjoint open sets,
a fluid subdomain Ω

𝑓
denoted by blood flow, two solid
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subdomains Ω𝑖
𝑠
, 𝑖 = 1, 2 (blood vessel walls) with respective

boundaries Γ
𝑓
and Γ
𝑠
, and one electromagnetic domain Ω

𝑚

(permanent magnet). Let Γ𝑗
𝐼
, 𝑖 = 1, 2, 3, 4 be the interface

between the solid, fluid, and electromagnetic domains. The
structural domain consists of two symmetric arterial vessel
walls denoted by Ω1

𝑠
and Ω

2

𝑠
. The electromagnetic domain

consists of a permanentmagnet of dimensions 10 𝜇m×40 𝜇m
placed in free space. The arterial wall describes a structural
mechanism that interacts with the flow dynamics of blood
which in turn is impacted by a permanent magnet, which is
described next.

For this, we use Maxwell’s equation for the magnetostatic
case (the field quantities do not vary with time) that relates
themagnetic field intensityH and the electric current density
J [12]:

∇ ×H = J,

∇ ⋅ J = 0.
(1)

The constitutive relations between B and H depend on the
domain [12, 13]:

B =

{{

{{

{

𝜇
0
𝜇
𝑟,magH + Brem for the permanent magnet

𝜇
0
(H +M

𝑓𝑓
(H)) for the blood stream

𝜇
0
H for the tissue and air,

(2)

where 𝜇
0

is the magnetic permeability of vacuum
(V⋅s/(A⋅m)), 𝜇

𝑟,mag is the relative magnetic permeability of
the permanent magnet (dimensionless),Brem is the remanent
magnetic flux (A/m), andM

𝑓𝑓
is the magnetization vector in

the blood stream (A/m), which is a function of the magnetic
field,H. By defining a magnetic vector potential A such that

B = ∇ × A, with ∇ ⋅ A = 0, (3)

we get

∇ × (
1

𝜇
∇ × A −M) = J. (4)

Assuming no perpendicular currents, we can simplify to a 2D
problem and reduce this equation to

∇ × (
1

𝜇
0

∇ × A −M) = 0. (5)

This assumes that themagnetic vector potential has a nonzero
component only perpendicularly to the plane, which is
A = (0, 0, 𝐴

𝑧
). The induced magnetization M

𝑓𝑓
(𝑥, 𝑦) =

(𝑀
𝑓𝑓𝑥
,𝑀
𝑓𝑓𝑦
) is characterized by [14–17]

M
𝑥
= 𝛼 arctan(

𝛽

𝜇
0

𝜕𝐴
𝑧

𝜕𝑦
) ,

M
𝑦
= 𝛼 arctan(

𝛽

𝜇
0

𝜕𝐴
𝑧

𝜕𝑥
) .

(6)

To capture the magnetic fields of interest we can linearize
these expressions to obtain

M
𝑥
=
𝜒

𝜇
0

𝜕𝐴
𝑧

𝜕𝑦
, M

𝑦
=
𝜒

𝜇
0

𝜕𝐴
𝑧

𝜕𝑥
, (7)

where 𝜒 = 𝛼𝛽 is the magnetic susceptibility. This magnetic
field induces a body force on the fluid. With the assumption
that the magnetic nanoparticles in the fluid do not interact,
the magnetic force F = (𝐹

𝑥
, 𝐹
𝑦
) on the ferrofluid for relatively

weak fields is given by [16]

F = |M| ∇ |H| . (8)

Substituting (2) and (3) in (8) leads to the expression

𝐹
𝑥
= 𝑘
𝑓𝑓

𝜒

𝜇
0
𝜇2
𝑟

(
𝜕𝐴
𝑧

𝜕𝑥

𝜕
2
𝐴
𝑧

𝜕𝑥2
+
𝜕𝐴
𝑧

𝜕𝑦

𝜕
2
𝐴
𝑧

𝜕𝑥𝜕𝑦
) ,

𝐹
𝑦
= 𝑘
𝑓𝑓

𝜒

𝜇
0
𝜇2
𝑟

(
𝜕𝐴
𝑧

𝜕𝑥

𝜕
2
𝐴
𝑧

𝜕𝑥𝜕𝑦
+
𝜕𝐴
𝑧

𝜕𝑦

𝜕
2
𝐴
𝑧

𝜕𝑦2
) ,

(9)

where 𝑘
𝑓𝑓

is the fraction of the fluid which is ferrofluid. The
vector 𝐹

𝑓
= (𝐹
𝑥
, 𝐹
𝑦
) is the volume force, which is input for

the Navier-Stokes equations in the next subsection.

2.1. Modeling the Unsteady Blood Flow. We model the fluid
domain for the blood flow via the unsteady Navier-Stokes
equations for an incompressible, isothermal fluid flowwritten
in nonconservative form as

𝜌
𝑓

𝜕𝑢
𝑓

𝜕𝑡
+ 𝜌
𝑓
(𝑢
𝑓
⋅ ∇) 𝑢
𝑓
+ ∇𝑝 = ∇ ⋅ 𝜏

𝑓
+ 𝐹
𝑓
,

𝜌
𝑓
∇ ⋅ 𝑢
𝑓
= 0,

(10)

where 𝑢
𝑓
is the velocity, 𝜌

𝑓
is the density, 𝑝 is the pressure,

and 𝐹
𝑓

is the body forces. The viscous stress tensor is
𝜏(𝑢
𝑓
) = 2𝜂𝐷(𝑢

𝑓
), where 𝜂 is the dynamic viscosity and the

deformation tensor is

𝐷(𝑢
𝑓
) = 𝜇
𝑠
(

∇𝑢
𝑓
+ (∇𝑢

𝑓
)
𝑇

2
) . (11)

The fluid equations are subject to the boundary conditions:

𝑢
𝑓
= 𝑢wall, 𝑥 ∈ Γ

𝑗

𝐼
, 𝑗 = 2, 3

𝜏
𝑓
⋅ 𝑛 = 𝑡 ⋅ 𝑛, 𝑥 ∈ Γ

𝑁
,

𝑢
𝑓
=
𝜕𝑑
𝑠

𝜕𝑡
𝑥 ∈ Γ
𝑗

𝐼
, 𝑗 = 2, 3,

(12)

where 𝑡 = −𝑝𝐼 + 2𝐷 (𝑢
𝑓
) is the prescribed tractions on the

Neumann part of the boundary with 𝑛 being the outward
unit normal vector to the boundary surface of the fluid.
Conditions of displacement compatibility and force equilib-
rium along the structure-fluid interface are enforced. In order
to solve a fluid-structure interaction problem in a coupled
fashion we employ an arbitrary Lagrangian-Eulerian (ALE)
formulationwhere the characterizing velocity is no longer the
material velocity 𝑢

𝑓
, but a grid velocity 𝑢̂

𝑓
. This allows us to

replace the material velocity 𝑢
𝑓
in (10) with the convective
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velocity 𝑐 = 𝑢
𝑓
− 𝑢̂
𝑓
[5]. The weak variational formulation of

the fluid problem then becomes

∫
Ω𝑓

𝜏
𝑓
⋅ ∇𝜙 𝑑Ω

𝑓

= ∫
Ω𝑓

𝐹 ⋅ 𝜙 𝑑Ω
𝑓
+ ∫
Γ𝑓

𝑡 ⋅ 𝜙 𝑑Γ

+ ∫
Ω𝑓

𝜌
𝑓

𝜕𝑢

𝜕𝑡
⋅ 𝜙 𝑑Ω

𝑓
+ ∫
Ω𝑓

𝜌
𝑓
(𝑐 ⋅ ∇) 𝑢

𝑓
⋅ 𝜙 𝑑Ω

𝑓
,

∫
Ω𝑓

𝑞∇ ⋅ 𝑢 𝑑Ω
𝑓
= 0.

(13)

2.2. Modeling the Structure Equations. The structural
domains for the blood vessel walls consist of the arterial
vessel walls denoted by Ω1

𝑠
, Ω2
𝑠
. They are modeled via the

following equation:

𝜌
𝑠

𝜕
2
𝑑
𝑠

𝜕𝑡2
= ∇ ⋅ 𝜏

𝑠
+ 𝐹
𝑠
, (14)

where 𝑑
𝑠
is the structure displacement, 𝜌

𝑠
is the structure

density, 𝜏
𝑠
is the solid stress tensor, and 𝜕2𝑑

𝑠
/𝜕𝑡
2 is the local

acceleration of the structure.This is solvedwith the boundary
conditions:

𝑑
𝑠
= 𝑑
𝐷

𝑠
𝑥 ∈ Γ
𝐷

𝑆
,

𝜏
𝑠
⋅ 𝑛
𝑠
= 𝑡
𝑠

𝑥 ∈ Γ
𝑁

𝑆
,

𝜏
𝑠
⋅ 𝑛
𝑠
= −𝜏 ⋅ 𝑛 + 𝑡

𝐼

𝑆
𝑥 ∈ Γ
𝑗

𝐼
𝑗 = 2, 3.

(15)

Here Γ𝐷
𝑆

and Γ
𝑁

𝑆
are the respective parts of the structural

boundary where the Dirichlet and Neumann boundary
conditions are prescribed. Also, 𝑡

𝑆
are the applied tractions

on Γ
𝑁

𝑆
and 𝑡

𝐼

𝑆
are the externally applied tractions to the

interface boundaries Γ𝑗
𝐼
, 𝑗 = 1, 2, 3, 4. The unit outward

normal vector to the boundary surface of the structure is
𝑛
𝑠
. The stresses are computed using the constitutive relation

described next. Equations (15) enforce the equilibrium of
the traction between the fluid and the structure on the
respective fluid-structure interfaces. The total strain tensor
for a typical geometrically nonlinearmodel iswritten in terms
of displacement gradients:

𝜀 =
1

2
(∇𝑑
𝑠
+ ∇𝑑
𝑇

𝑠
+ ∇𝑑
𝑠
∇𝑑
𝑇

𝑠
) . (16)

For small deformations, the last term on the right hand side
is omitted to obtain a geometrically linear model. Since the
objective of this section is to investigate the influence of
electromagnetic effects on fluid-structure interactionmodels,
we will consider a geometrically linear model combined with
a linear constitutive law. The solid stress tensor 𝜏

𝑠
is given in

terms of the second Piola-Kirchoff stress 𝑆:

𝜏
𝑠
= (𝑆 ⋅ (𝐼 + ∇𝑑

𝑠
)) . (17)
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Figure 2: Domain and points of interest.

For the linear material model, we employ the following
constitute law relating the stress tensor to the strain tensor:

𝑆 = 𝑆
0
+ 𝐶 : 𝜀, (18)

where 𝐶 is the 4th order elasticity tensor and “:” stands for
the double-dot tensor product. 𝑆

0
and 𝜀
0
are initial stresses

and strains, respectively. The weak variational form of the
structural equations then becomes the following: find the
structure displacement 𝑢

𝑠
such that

∫
Ω𝑓

𝜏
𝑠
⋅ 𝜀
𝑠
𝑑Ω
𝑠

= ∫
Ω𝑓

𝐹
𝑠
⋅ 𝜙
𝑠
𝑑Ω
𝑠
+ ∫
Γ
𝑁
𝑆

𝑡
𝑠
⋅ 𝜙
𝑠
𝑑Γ

− ∫
Ω𝑓

𝜌
𝑠

𝜕
2
𝑑
𝑠

𝜕𝑡2
⋅ 𝜙
𝑠
𝑑Ω
𝑠
− ∫
Γ𝐼

(𝑡
𝐼

𝑆
− 𝜏
𝑓
⋅ 𝑛) ⋅ 𝜙

𝑠
𝑑Γ.

(19)

3. Numerical Results

In this section, we present the numerical results for the
electromagnetic-fluid-structure interaction model problem
presented in this section. To understand the effects of the
coupling between electromagnetic field and fluid-structure
interaction models better, we first consider the interaction
with a rigid structure, which is often employed in the
most research problems that are only interested in study-
ing the electromagnetic-fluid interaction.The computational
domain (see Figure 2) represents a blood vessel that is 300
micrometers long and 100 micrometers in diameter, with
walls 20micrometers in thickness. All the results presented
are for three magnetic fields: 0T (no magnetic field), 0.5T,
and 1T. The structure model we consider is linear (MLGL),
which was introduced in Section 2.

3.1. Coupled Interaction with Rigid Structure. Figures 3(a),
4(a), and 5(a) illustrate the influence of the magnetic field
on the interaction. These figures show the surface von Mises
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Figure 3: Surface von Mises stress with streamlines of spatial velocity field and magnetic field for Brem = 0T at 𝑡 = 0.215. Time = 0.215,
surface: von Mises stress (N/m2), surface: velocity magnitude (m/s), and streamline: velocity field (spatial).
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Figure 4: Surface von Mises stress with streamlines of spatial velocity field and magnetic field for Brem = 0.5T at 𝑡 = 0.215. Time =
0.215, surface: von Mises stress (N/m2), surface: velocity magnitude (m/s), contour: magnetic vector potential, 𝑧 component (Wb/m), and
streamline: velocity field (spatial).

stress along with streamlines of spatial velocity field and the
𝑧-component of the magnetic vector potential. While there
is no significant impact of increasing the magnetic field on
the velocity profile in each of the graphs in Figures 3(a), 4(a),
and 5(a), the impact on the magnetic vector potential is as

expected. As it can be seen, the 𝑧-component of the magnetic
potential doubles when magnetic field doubles.

Figures 6(a), 7(a), and 8(a) compare the effect of varying
the magnetic field on the surface pressure. Unlike the impact
on the velocity profile, these figures suggest that the surface
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Figure 6: Pressure for Brem = 0T shown at 𝑡 = 4. Time = 4; surface: pressure (Pa).

pressure is impacted by increasing the magnetic field and the
doubling effect is also seen as expected.

3.2. Coupled Interaction with Moving Structure. Next, we
consider the benchmark problem presented with the struc-
ture moving. For this, we employ the ALE formulation for
the fluid-structure interaction as described in Section 2. We
notice from Figures 3(b), 4(b), and 5(b) that, at 𝑡 = 0.215

(when the fluid velocity has maximum value), the structure
and the flow pattern are not very much impacted by the mag-
net. For the maximum studied magnetic field of 1T, the arte-
rial wall is slightly bent towards the magnet. For even larger
magnetic fields not shown in the picture (the order of mag-
netic field of 5T), the magnet intersects with the arterial wall.

Even though we have not seen a big difference in
structural deformation and fluid flow for our study case, the
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Figure 7: Pressure for Brem = 0.5T shown at 𝑡 = 4. Time = 4; surface: pressure (Pa).
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Figure 8: Pressure for Brem = 1T shown at 𝑡 = 4. Time = 4; surface: pressure (Pa).

fluid pressure is entirely different between two considered
magnetic fields (see Figures 6(b), 7(b), and 8(b)). If forBrem =

0T the pressure is completely symmetric with respect to
the 𝑥-axis, the pressure around the magnet increases when
magnetization is 0.5T and becomes more than double the
maximum pressure in the rest of the fluid when Brem = 1T.

Another experiment we perform is to measure the veloc-
ity profile and displacement of two specific points. From
Figures 9 and 10, we notice that, as expected, the velocity
and pressure decrease at the center and increase around the

boundaries when the structure is moving, mainly because
of the dilatation of the structure. While the pressure in
the center is not affected much by the presence or absence
of magnetic field, near the magnet the pressure is steadily
increasing with the time.

For the measured displacement, we notice in Figure 11
that the wall towards the magnet is getting closer to the
magnet because of the increasing pressure, while the other
wall is virtually unaffected by the presence of the magnetic
field.
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Figure 9: Velocity for a center and edge point inside the fluid.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

t (s)

Pr
es

su
re

 (P
a)

Moving mesh, B = 0T
Moving mesh, B = 0.5 T

Nonmoving mesh, B = 0T
Nonmoving mesh, B = 0.5 T

(a) Pressure profile for coordinates (150, 50)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

t (s)

Pr
es

su
re

 (P
a)

Moving mesh, B = 0T
Moving mesh, B = 0.5 T

Nonmoving mesh, B = 0T
Nonmoving mesh, B = 0.5 T

(b) Pressure profile for coordinates (150, 95)

Figure 10: Pressure for a center and edge point inside the fluid.

4. Conclusion

In this work, we presented the computational modeling
and simulation of coupled multiphysics applications. These
included a variety of processes such as fluid dynamics,
structural mechanics, and electromagnetic interaction that
impacted the behavior of the physical system in a coupled
way. Specifically, this work considered the research question
of “how does incorporating electromagnetic field into fluid-
structure interaction models influence the fluid flow and
structural deformation?” In answering this question, this

work led to the development of a two-dimensional multi-
physics problem involving electromagnetics coupled with
fluid-structure interaction.

In order to answer this research question, we first pre-
sented the mathematical background and simulation of the
interaction between fluid, structure, and magnetic field. The
motivation of this came from researchingmodels for targeted
drug delivery for delivering drugs in human body, to increase
the concentration of the drug in the target area. For example,
the chemotherapy drug dosage is limited by the negative
impact on the drugs on the healthy cells. By delivering the
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Figure 11: 𝑦-displacement of two points.

drugs with high accuracy and maximum concentration to
specific areas of the body, it is possible to increase local dosage
of the drug on the tumor, with lower concentration in the
rest of the body. The drug effectiveness is increased while the
side effects are reduced. Other examples of the applications
of magnetic drug targeting are treatment of cardiovascular
conditions, such as stenosis and thrombosis. Thus, it is
important to model not only the blood circulation but also
the deformation of the blood vessel, in order to improve
the accuracy which is the focus of the second problem in
this thesis. In particular, it is important to have an accurate
model of the interaction between the three components for
optimizing the shape, size, and magnetic power, in order
to deliver the drugs efficiently in the desired place and
minimize the side effects. Our results from this work clearly
indicate the importance of the magnetic field to be coupled
with a fluid-structure interaction model. More importantly,
the results suggest the importance of using moving walls
versus nonmoving walls in this coupled electromagnetic
fluid-structure interaction.

While this work provided a lot of insight into the impor-
tance of electromagnetic effects in fluid-structure interaction,
there is scope to enhance this work by considering effects
of non-Newtonian rheological properties incorporated along
with the extension to materially and geometrically nonlinear
models. In the last two decades, collagenous soft tissues
have been found to exhibit viscoelastic behavior, which
includes time-dependent creep and stress relaxation, rate-
dependence, and hysteresis in a loading cycle. As suggested
in [18], this hysteresis is less sensitive than the stiffness to
the loading rate, and this phenomenon is generally found in
soft tissues and elastomers [18]. One of the future directions
would be to extend the structural mechanics module to
incorporate viscoelasticity and then study the influence of
this on our models. The computational models in this

work included two-dimensional models for simplicity, but
our models can be naturally extended to three dimensions.
With increasing the size of the problem comes the need
for more computational resources. There is intensive work
that is evolving in the area of domain decomposition that
helps to address how to solve coupled multiphysics problems
efficiently. So as the problem dimension becomes bigger, one
must also resort to domain decomposition type approaches
which can then open up more venues on parallelization of
the algorithms that have been developed.
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