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In the development of large and complex equipment, a large-scale finite element analysis (FEA) with high efficiency is often strongly
required. This paper provides some progress on parallel solution of large-scale modal and vibration FE problems. Some predominant
algorithms for modal and vibration analysis are firstly reviewed and studied. Based on the newly developed JAUMIN framework,
the corresponding procedures are developed and integrated to form a parallel modal and vibration solution system; the details of
parallel implementation are given. Numerical experiments are carried out to evaluate the parallel scalability of our procedures, and
the results show that the maximum solution scale attains ninety million degrees of freedom (DOFs) and the maximum parallel
CPU processors attain 8192 with favorable computing efficiency.

1. Introduction

In many engineering applications such as aerospace, automo-
tive, and numerous other large equipment, the FE modal and
vibration analysis are important ways to characterize their
dynamic properties. However, the FE computing scale and
the efficiency of commercial software often become a bottle
to solve these complex problems. Therefore, developing large-
scale and high efficient FE procedures is strongly required.

Mathematically, modal analysis is treated as computing
a number of lower eigenpairs of the generalized eigenvalue
problems:

Kx = A\Mx, o

where K and M are stiffness and mass matrix, respectively.
For the FE problems of small DOFs (below one million, for
example), the equation can be easily solved via traditional
methods provided by commercial software, but for larger
scale cases, the commercial software is inaccessible. Both
algorithms and parallel computing techniques should be
therefore considered.

Modal analysis takes an important role in dynamic
computation, which is also the base of many other vibra-
tion analysis types [1, 2]. For large scale vibration analysis

problems, the mode superposition method [3] is usually a
feasible and effective way to obtain the dynamic response
of structures. We ourselves focus on the random vibration
analysis in this paper.

Considering the parallel implementation of these meth-
ods for modal and vibration analysis, the design of framework
is very important. Currently, many frameworks, such as
SIERRA [4], PHG [5], and JASMIN [6], have been success-
fully developed or are being actively developed. The basic
idea of these frameworks is providing common data struc-
tures, parallel strategies, and interface for various application
programs. Framework has been proven to be an effective
approach to develop parallel programs for different massive
computers.

Aimed at large scale parallel computation of modal and
vibration analysis, this paper gives some progress which
is based on our newly developed JAUMIN (J Adaptive
Unstructured Mesh application INfrastructure) framework.
The rest of the paper is organized as follows. Section 2 gives
a brief review of the eigenvalue algorithms and mode-based
random vibration theory. Section 3 introduces the parallel
implementation, including the data structures, the parallel
strategy, and programming interface of JAUMIN framework.



A representative example with different scales is given to
verify the parallel scalability of our application procedures
and JAUMIN framework in Section 4. Finally, the paper ends
with a brief conclusion in Section 5.

2. Algorithm and Theory for Modal and
Vibration Analysis

Since only a few lower eigenpairs are of interest for modal
analysis, subspace-based algorithms are usually the best
choice for large sparse eigenvalue problems. Subspace-based
methods are mainly based on matrix-vector multiplications
using the original sparse matrix so that the sparse matrix
storage and structures can be used to advantage [7]. When
modal analysis is finished, the mode superposition method
can be adopted to carry out the following vibration analysis.

2.1. A Brief Survey of Subspace-Based Methods for Modal
Analysis. Subspace-based methods differ from each other
in the ways the subspaces are generated. The dimension
of subspaces can be either fixed or variable. The classical
algorithms working with fixed dimensions mainly include
power method, Rayleigh quotient iteration, and subspace
iteration [7, 8].

A further class of subspace methods is the class of those
whose dimensions increase as the iteration proceeds. Usually
one starts with a subspace of dimension one and increases
the dimension at each iteration step. These methods are in
general more efficient than fixed-dimension ones and have
become the mainstream for large-scale eigenvalue problems.
This class mainly includes two subclasses, the Krylov-based
subspace methods and the Davidson-based subspace meth-
ods [7-9].

The Krylov subspace method can be traced back to the
Lanczos method [10] for symmetric matrices and the Arnoldi
method [11] for nonsymmetric matrices. Since Lanczos and
Arnoldi use subspaces of increasing dimension, storage
and computing time is increased during the algorithm. In
order to overcome this disadvantage, many restarted Lanczos
and Arnoldi methods have been developed. A significant
improvement of these methods appertains to Sorensen’s
implicitly restarted Arnoldi/Lanczos (IRA) method [12].
Later, Stewart [13] proposed the Krylov-Schur (K-S) method
by expanding Arnoldi decomposition to a general Krylov
decomposition. The implicitly restarted Arnoldi/Lanczos
method and the Krylov-Schur method are mathematically
equivalent, which are recognized as the most successful
algorithms in Krylov subspace methods.

Instead of using Krylov subspace, the Davidson-based
methods increase subspace dimension with a Newton iter-
ation step or an approximate Newton iteration step. Based
on the standard Davidson method [14], some generalized
Davidson methods [7, 9, 15] were presented by using different
preconditioning. In 1996, Sleijpen and Van der Vorst [16]
presented a Jacobi-Davidson (J-D) algorithm, which speeded
up the development of Davidson-based methods. So far, the
Jacobi-Davidson method has been extended to various eigen-
value problems. For more about subspace-based methods in
modal analysis, we refer to [17].
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2.2. Some Discussion on Subspace-Based Methods. For the
Krylov subspace methods, such as IRA and K-S, a spectral
transformation is needed to get faster convergence to lower
eigenpairs. With a Shift-Invert spectral transformation, (1)
will become

X, (2)

1
K-oM _1MX =

where o denotes a user-defined shift value. Due to the
spectral transformation, the solution of a linear system with
the form (K — oM)y = Mz is needed in each subspace
iteration [17]. The coefficient matrix K — oM is usually ill-
conditioned or even nearly singular because of the shift value
0. Thus an iterative solution to (2) becomes difficult [7, 9];
instead a direct method is often recommended. The direct
matrix decomposition (such as LU or Cholesky) of K — oM
brings both merits and shortcomings. Firstly, the matrix
decomposition gives a fast computation of modal analysis
with fewer subspace iterative steps. Secondly, the maximum
matrix scale that can be decomposed is limited (about ten
million DOFs [17]), and the matrix factorization needs a
vast demand of memory storage and parallel communication,
which results in a relatively poor parallel scalability.

For the Davidson-based methods, especially for the J-
D method, the corresponding solution of modal analysis
becomes an inner-outer iteration. The inner iteration, which
is the kernel of J-D method, becomes the iterative solving of
a “correction equation”:

(1- Mugu) (K- M) (1 - waiM) £ = 1 (3)

where 8, and u, denote the Ritz value and Ritz vector, respec-
tively, t is an orthogonal component vector to be solved,
# denotes conjugate transpose, and r; is the corresponding
residual vector; that is, r, = (K — 6,M)u,. Thus, the vector
t in (3) is adopted to expand the search subspace (i.e., outer
iteration).

Using inner-outer iterations, the J-D method takes lower
memory storage since no matrix decomposition like Krylov
space methods is carried out. Furthermore, the main math-
ematical operations in J-D are matrix-vector multiplications
and vector inner products, which maintain the sparse charac-
teristics of original matrices and greatly reduce the demand
of parallel communication.

2.3. Mode-Based Random Vibration Theory. Once the
required eigenpairs for modal analysis are obtained, various
following vibration analyses can be carried out using mode
superposition method. Here we ourselves focus on the
random vibration analysis of single-point support motion;
other kinds of vibration analysis will be carried out in future
step by step.

The dynamic equation of random vibration analysis for
support excitation via FE method can be described as

Mx, + Cx, + Kx, = -Mdii, (4)

where C denotes damping matrix, x, denotes the relative
displacement against support motion, d is a direction vec-
tor composed by the direction cosine between the motion
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direction and the three coordinate axes for each node, and
u is the displacement value of support motion. Thus, the real
displacement x can be expressed as

x =X, +du. (5)

Using the mode superposition method [3], (4) can be
decoupled by the m eigenpairs (w;,¢;) obtained by modal
analysis (the eigenvectors are normalized with M), which
yields

i+ 20Em + winy = —yit (i=1,2,...,m), (6

where #; is the ith modal displacement, &; is the ith modal
damping ratio, and y; is the ith modal participation factor
with the definition y; = ¢iTMd. Modal participation factors
are indicators of the possible contributions of particular
modes towards the stochastic response of the structure,
and the corresponding computation concerns operations
of matrix-vector multiplications and vector inner products,
which can be implemented with parallel data structures.

For (6), the corresponding modal power spectral density
(PSD) S,h_,]]_ (w) can be given as

Sy @) = vy H @ H} @85, @, (@)
where
1
H; (w) = w? —w? +i (2gwaw;)’ @

and S;;(w) denotes PSD of acceleration, which is the input
load on the base. Equation (7) builds the relationship between
modal PSD and input PSD.

Applying the mode combination in mode superposition
method, we get the PSD of x, for the kth DOF as

2

Y viacH; ()| Sy (@), 9)
i=1

ererk (w) =

where m is the modal orders for combination and ¢;; denotes
the value of the kth DOF in the ith modal shape ¢,.

Considering relationship between the relative displace-
ment and the absolute displacement in (5), we deduce the
expression of PSD of x for the kth DOF as

Sxkxk (w) = ererk ((U)

S (@)
Re

2d;
+w_2kZYi¢ikHi (w)
i-1

2
+ - Sy (@)
w

ZYi¢ikHi (w)
i=1

(10)

2
2d, &

+w_2k ZYi‘/’ikHi (w)
i=1

Re

d2
+—’;> S (@),
w

where d;. denotes the value of the kth DOF in direction vector
d. Equation (10) gives the relationship between response PSD
of the kth freedom and the input PSD of base motion.

Equation (10) is a perfect expression. Firstly, the imple-
mentation of (10) mainly becomes computing a component
or subclass:

ZYi‘/’ikHi (w), (11)
in1

which physically represents the transfer function between
output relative displacement and input base acceleration; sec-
ondly, the response of the kth DOF is absolutely independent
of others. Thus, the PSD computation of each DOF in (10) is a
natural parallel pattern, without any parallel communication
occurring. In other words, the parallel communication for
random vibration analysis only occurs at the stage of com-
puting modal participation factors.

3. Parallel Implementation in
JAUMIN Framework

The algorithm and theory mentioned in Section 2 are the
kernel to realize the modal and vibration analysis of large
engineering structures. The parallel implementation of modal
analysis mainly depends on the eigenvalue solver package
SLEPc [18] integrated in JAUMIN [19] framework, and
the parallel implementation codes of random vibration are
developed by ourselves.

3.1. JAUMIN Framework. JAUMIN is a parallel computing
framework which has been developed by China Academy
of Engineering Physics since 2011. JAUMIN framework
supports the large scale parallel simulations on adaptive
unstructured meshes using massively parallel processing
(MPP) machines for the FEA of engineering structures; it
is a complement to the formerly developed JASMIN [6]
framework, which aims at structured mesh applications in
fluid mechanics.

The software architecture of JAUMIN is based on multi-
layered, modularized, and object-oriented design thoughts,
mainly being written with C++ and MPI, including about
12 thousand of lines so far. JAUMIN can be installed on
personal computer, cluster, and MPP machines with a UNIX
or LINUX system. The architecture of JAUMIN framework
can be described in Figure 1.

In JAUMIN framework, the bottom layer is high per-
formance computation supporting layer, which encapsulates
geometry, mesh, and field data structures, providing parallel
communication, load balancing, adaptive mesh refinement,
and basic mathematical operations; the middle layer is
numerical general layer, which provides fast solvers, mature
numerical methods and time integrators, and so forth. The
top layer provides programming interfaces for different
applications.

3.2. Data Structures and Parallel Communications. The ele-
ment types in JAUMIN framework include most of polygons
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FIGURE 2: A two-level partitioning strategy in JAUMIN framework.

for two-dimensions and most of polyhedrons for three-
dimensions, such as triangle, quadrangle, tetrahedron, pyra-
mid, and hexahedron. Furthermore, hybrid meshes are also
supported in JAUMIN.

Considering parallel computing environment, JAUMIN
adopts a two-level partitioning strategy to partition the FEM,
shown as in Figure 2. Firstly, the FEM is partitioned into
submeshes considering load balance; each CPU processor is
assigned with a submesh. Secondly, each submesh is again
partitioned into a group of smaller submeshes, named as
“patch.” Instead of element, patch is the basic object for mem-
ory management and numerical computation in JAUMIN,
which make it easier to implement MPI + OpenMP hybrid
parallel programming and computing. On the other hand,
the hierarchical data structure can be well matched with the
predominant multicore computer architectures. The first level
(PO, P1 in Figure 2) is partitioned and the corresponding

information is sent to each CPU processor; and the second
level (i.e., patch) is portioned based on the first level and
corresponding information can be sent to the inner cores of
each CPU processor if necessary. Each patch includes some
basic information such as patch geometry, patch topology,
and patch data, which constitutes the core data structures of
the framework.

According to the data structures in JAMIN framework,
the parallel communication module is designed with two
kinds of communication modes: one is the data transferring
among the first levels, which can be implemented by MPI;
the other is the data transferring among the patches for
each level, which can be implemented by OpenMP. In our
implementation of mode and vibration analysis, only MPI is
used for the parallel communication among levels, and the
patch data are used only to form the distributing FE matrices
for each level.
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3.3. Interface Service and Parallel Implementation for Dynamic
Applications. Besides the basic data structures and par-
allel communication, the JAUMIN frame provides some
interfaces to pre/postprocessing and the individual solvers.
Using the preprocessing interface, the FEM of engineering
structures is read to the JAUMIN framework. Currently, we
build the FEM of engineering structures via a self-developed
procedure, named as SuperMesh, which can implement the
FE meshing and support adaptive refinement.

Based on the FEM information, a two-level domain
decomposition mentioned above is implemented in JAUMIN
framework to partition the FEM into some smaller sub-
domains. The information of each subdomain is delivered
to different processors for FE discretization and numerical
integral, until forming the distributing matrices K and M.

Another important interface in JAUMIN framework is
the solver interface for different applications. As far as FEA is
concerned, JAUMIN provides interfaces to linear/nonlinear
static analysis, modal analysis, harmonic response analysis,
random vibration response analysis, and some kinds of shock
response analysis currently. We ourselves focus on the modal
and vibration analysis in this paper.

The implementation of modal analysis mainly depends on
an important software package, that is, SLEPc [18], the Scal-
able Library for Eigenvalue Problem Computations, which is
taken as a third solver library. SLEPc provides a collection
of eigensolvers, including Krylov-Schur, Jacobi-Davidson,
Arnoldi/Lanczos, and some other subspace methods. Most of
the parallel implementations in SLEPc are vector operations,
the matrix-vector product and linear equation solvers, which
are supported by another numerical toolbox PETSc [20]. The
JAUMIN framework generates parallel distributing stiffness
matrix K and mass matrix M and makes them as the input
for SLEPc to finish the parallel solution of modal analysis.
The JAUMIN framework is responsible for the calling and
managing of these software packages.

The codes for mode-based random vibration analysis
are developed by ourselves using the corresponding theory
shown in (4)~(11), which can be treated as a postcomputing
process of modal analysis. A crucial step in random vibration
is calculating the modal participation factors, which requires
matrix-vector products and vector operations with the JAU-
MIN parallel data structures. Another parallel process in
random vibration analysis lies in the computation of PSD for
different nodes. As mentioned in Section 2.3, this process is
anatural parallel one without any communication. Each pro-
cessor is responsible for the corresponding computing nodes
that locate in it. Besides the PSD of relative displacement
and absolute displacement as shown in (9) and (10), PSD of

velocity (denoted by S, ;. ) and that of acceleration (denoted
as Sy, ;) can also be calculated by relationships:
Set, =W Se > Spx = @S, . (12)
k*k k*k k*k k*k

which have been implemented in our codes.

We want to emphasize that the vibration analysis in this
paper is limited to the type of single-point support random
excitations. The case of singe-point nodal load excitation is
similar to the calculation of PSD of relative displacement in

S5:(f)

FIGURE 3: FEM of target ball.

(9), where the input PSD S,;,(w) on the right side is replaced
with the PSD of force S (W), and the response PSD Sy, (@)
on the left side is replaced with S, , (w) since no relative
displacement occurs. In this case, the implementation of
singe-point nodal load excitation is easier than single-point
support excitations. For the implementations of some other
cases such as multipoint excitation calculations [21, 22] are
being developed in JAUMIN framework.

4. Numerical Experiments

Many simple engineering examples have been adopted
to validate the rightness of our programs, and some of
them were compared with commercial software ANSYS or
MSC.Nastran, in which the same computing results are
obtained. Here we give a representative example in engineer-
ing structures to evaluate the rightness and parallel scalability
of the modal and vibration analysis in JAUMIN framework.
The computations were carried out on a supercomputer,
which include thousands of blade computing nodes, each
of them with twelve Intel processors and 48 GB of shared
memory.

The engineering example is the target ball structure of
a laser equipment, whose FEM is shown in Figure 3. The
model is meshed with tetrahedron elements, and the node
displacements at the bottom of the model are fixed as a
boundary constraint. The initial DOFs of the model are about
1.1 million, and an adaptive mesh refinement technique is
adopted to increase the numbers of DOFs. After the first
refinement, the DOFs attain 12, 214, 455, and after the second
refinement, the DOFs attain 91, 207, 359.

As there are a large number of similar pipes in the
structures, there exist numerous dense modes in the modal
analysis, which obviously enhances the difficulty of numerical
computation. Here, the J-D method is adopted for modal
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TABLE 1: Parallel performance of modal and vibration analysis for 12, 214, 455 DOFs.

Processors 64 128 256 512 1024 2048 4096 6144 8192
Time (s) 79166 47875 32014 16613 9524 5646 3992 3014 2708
% Efficiency 100 82.7 61.8 59.6 52.0 43.8 310 274 22.8
2.0
151
S
=
10
g
a
e
o
0.5
(a) ANSYS
0'0 n 1 n 1 n 1 n 1 n
0 10 20 30 40 50
Frequency (Hz)

FIGURE 4: PSD of base acceleration.

analysis; the lowest 100 eigenpairs are desired for modal and
random vibration analysis. For random vibration analysis, an
acceleration excitation of base motion in the X direction is
adopted, with the corresponding PSD shown in Figure 4.

4.1. Analysis and Validation of the Initial Model. For the initial
meshes (1.1 million DOFs) of the model, the modal and
vibration analysis are also carried out by ANSYS to validate
the rightness of our programs. The results show that the
100 orders of eigenpairs calculated in JAUMIN framework
are coincident with that in ANSYS; the largest relative error
for eigenvalues is below 0.05%, and the modal shapes are
identical. Figure 5 gives a comparison of the first-order modal
shape calculated in ANSYS and JAUMIN.

Furthermore, using the results of modal analysis, the
following mode-based random vibration analysis is also
carried out and compared with ANSYS. Figure 6 gives the
comparison of PSD of displacement in the X direction of
the apogee. We can see from Figure 6 that the two curves
are absolutely coincident in the range of analysis frequencies,
which validates the rightness of both modal and vibration
analysis from another point of view.

4.2. Testing on Parallel Scalability. Based on the initial FEM,
the target ball is refined twice to increase the mesh density.
As mentioned above, the total DOFs attain 12, 214, 455 after
the first refinement (Case 1) and attain 91, 207, 359 after
the second refinement (Case 2). For these two scales, the
traditional commercial software is incapable of action.

i

FIGURE 5: The comparison of the first-order modal shape.

(b) JAUMIN

TABLE 2: Parallel performance of modal and vibration analysis for
91, 207, 359 DOFs.

Processors 4096 6144 8192
Time (s) 32316 23945 18867
% Efficiency 100 90.0 85.6

The modal and random vibration analyses are carried out
for Cases 1 and 2 with a maximum number of processors
of 8192. Since the modal analysis is included in the random
vibration analysis, we count the total computing time for
random vibration analysis. Tables 1 and 2 gave the parallel
computing time and efficiency with different numbers of
processors for Cases 1 and 2.

From Tables 1 and 2 we can find that the parallel
computing time continuously decreases as the increase of
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FIGURE 6: Comparison of PSD between ANSYS and JAUMIN framework.

processors, without computing inflexion, emerges. Based on
the JAUMIN framework, our application programs behave
a favorable parallel scalability. Furthermore, we believe that
solving such a modal and vibration analysis problem near 100
million of DOFs is very challenging so far.

5. Conclusions

In this paper, we introduce some progress for the large-scale
modal and vibration analysis based on the JAUMIN frame-
work. The predominant algorithms and theory for modal and
vibration analysis are firstly reviewed and deduced. A detailed
introduction of JAUMIN framework is given and, based on
which, an integrated parallel computing system for modal
and vibration analysis is presented.

The numerical experiments via a typical engineering
structure validate the rightness and scalability of our proce-
dures for large-scale modal and vibration analysis. In virtue
of the developed parallel solving system, we have elevated
the computing scale of modal and vibration analysis to a
new level with favorable parallel performance. Moreover, our
procedures of the modal and vibration analysis fit most elastic
structures coming from various engineering realms.
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