
Research Article
Effect of Fluctuating Surface Heat and Mass Flux on Natural
Convection Flow along a Vertical Flat Plate

Sharmina Hussain,1 Nepal C. Roy,2 Md. Anwar Hossain,2 and Suvash C. Saha3

1Department of Mathematics & Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
2Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh
3School of Physics, Chemistry & Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia

Correspondence should be addressed to Suvash C. Saha; s c saha@yahoo.com

Received 15 August 2015; Accepted 28 October 2015

Academic Editor: Nader Karimi

Copyright © 2015 Sharmina Hussain et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An investigation has been carried on double diffusive effect on boundary layer flowdue to small amplitude oscillation in surface heat
and mass flux. Extensive parametric simulations were performed in order to elucidate the effects of some important parameters,
that is, Prandtl number, Schmidt number, and Buoyancy ratio parameter on flow field in conjunction with heat and mass transfer.
Asymptotic solutions for low and high frequencies are obtained for the conveniently transformed governing coupled equations.
Solutions are also obtained for wide ranged value of the frequency parameters. Comparisons between the asymptotic and wide
ranged values are made in terms of the amplitudes and phases of the shear stress, surface heat transfer, and surface mass transfer.
It has been found that the amplitudes and phase angles obtained from asymptotic solutions are found in good agreement with the
finite difference solutions obtained for wide ranged value of the frequency parameter.

1. Introduction

Heat and mass transfer are kinetic processes that may occur
in nature, studied separately or jointly. Studying them apart
is simpler; however, it is more efficient to consider them
jointly. Double diffusive convection creates a buoyancy force
so that fluid flow occurs and can be seen in many natural
and technological processes. Besides, heat and mass transfer
must be jointly considered in some cases like evaporative
cooling and ablation. Because of the coupling between the
fluid velocity field and the diffusive fields, flow becomesmore
complicated than the convective flow. Therefore, different
behavior may be expected and thus many investigators are
still interested in double diffusive flow.

The transport processes due to double diffusion occur
in both nature and many engineering applications. Some
very important examples of engineering applications include
chemical reactions in reactor chamber, chemical vapor depo-
sition of solid layers, combustion of atomized liquid fuels, and
dehydration operations in chemical and foundry plants.

An extensive literature survey on this topic has been
carried out by Ostrach [1], Huppert and Turner [2], Bejan
[3], Gebhart and Pera [4], and Mongruel et al. [5]. Important
information and a framework of this type of flow can also
be found in the works of these investigators. In their studies,
simultaneous heat and mass transfer in buoyancy induced
laminar boundary layer flow along a vertical plate have been
investigated substantially. Mongruel et al. [5] have proposed
a novel method to solve double diffusive boundary layer flow
over a vertical flat plate. They considered a vertical flat plate
which is immersed in a viscous fluid or in a fluid saturated
porous medium. They proposed the integral boundary layer
equations and scaling analysis approach.The study of laminar
boundary layer flow in presence of an oscillatory potential
flow with a steady mean component was first undertaken by
Lighthill [6]. He considered the effects of small fluctuations
in the free stream velocity on the skin friction and the heat
transfer for plates and cylinders by employing the Karman-
Pohlhausen approximate integral method. Later, Eshghy et al.
[7] and Nanda and Sharma [8] extended Lighthill’s theory for
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free convection flows. Muhuri and Maiti [9] investigated the
free convection flow and heat transfer along a semi-infinite
horizontal plate with small amplitude surface temperature
oscillation about a nonzero mean, with the same method
that has been mentioned. The problem of natural convection
flow with an oscillating surface heat flux has been studied
by Hossain et al. [10]. The effect of transverse magnetic field
on the same type of problem was imposed by Kelleher and
Yang [11] and more recently this was also premeditated by
Siddiqa et al. [12]. Combined heat and mass transfer above
a near-horizontal surface in a fluid saturated media were
also studied by Hossain et al. [13]. Less attention has been
given to the study of unsteady flow due to double diffusion.
Moreover, only the search of similarity solutions has attracted
much attention. This is because similarity formulation trans-
forms easily the transport equations into a set of ordinary
differential equations which can be solved numerically for
different values of the parameters involved. However, some
researchers, for example, Khair and Bejan [14] and Trevisan
and Bejan [15], set out a framework to solve nonsimilarity
solutions for depicting heat and mass transfer with great
success. Hossain and Mondal [16] investigated the effect of
mass transfer and free convection on the unsteadyMHDflow
past a vertical plate with constant suction. Later on, the same
problem considering variable suctionwas also investigated by
the same authors. Hussain et al. [17] investigated the steady
natural convection flow due to combined effects of thermal
and mass diffusion from a permeable vertical flat plate. This
study focused on the boundary layer regime promoted by the
combined events in the permeable surface when the surface
is at a nonuniform temperature and a nonuniform mass
diffusion but with a uniform rate of suction. Hossain et al.
[18] presented the results of unsteady natural convection flow
along vertical flat plate subjected to the oscillatory boundary
conditions on both surface temperature and species concen-
tration. It has been assumed that both the surface temperature
and species concentration have small amplitude temporal
oscillations with nonzero means. The mean temperature and
mean species concentration are assumed to vary as a power
of 𝑛 of the distance measured from the leading edge. Roy
and Hossain [19] studied the effects of conduction-radiation
on natural convection flow. In their work, the fluid has
been considered as incompressible and unsteady boundary
conditions were taken for both surface temperature and
mass concentration. Jaman and Hossain [20] presented the
results for the flow along a vertical cylinder with elliptic
cross section. Hussain [21, 22] focuses on the numerical
simulations and analysis of the flow pattern in a spacer-filled
flat channel. To find an optimal spacer design, it is essential
to determine the flow pattern and turbulence distribution
in a spacer-filled channel or spiral-wound module. With
the development of more powerful computing techniques,
such as computational fluid dynamics (CFD), it has become
possible to simulate flow in spacer-filled channels. The basic
spacer geometry ismodeled as a series of cylindrical filaments
partially obstructing the channel. Roy et al. [23] studied the
effects of oscillating free stream and surface temperature
on natural convection flow along a vertical wedge. In this
investigation, the effects of Richardson’s number and the

Prandtl number have been illustrated. Different numerical
techniques are employed to simulate the governing equations
and calculated results are compared. Adequate agreement
amongst all these calculated values can be noted from these
comparisons.

In this present problem, double diffusive flow through
a vertical flat plate has been studied extensively. The most
important parameter that determines the relative strength of
the two buoyancy forces is the ratio parameter 𝑤, and, for
a positive 𝑤, the buoyancy forces are cooperating and drive
the flow in the same direction which is considered in this
present investigation. This parameter measures the relative
importance of solutal and thermal diffusion in causing the
density changes which drive the flow. It can be observed
that 𝑤 = 0 corresponds to no species diffusion and ∞ to
no thermal diffusion. Similar to any double diffusive study,
the governing equations of the flow field are simulated for
two different diffusive parameters, Pr and Sc. The values of
these two parameters depend on the nature of the fluid and
on the physical mechanisms governing the diffusion of the
heat and chemical species. As the most important fluids are
atmospheric air and water, the results are presented here for
Pr = 0.7 that represent the air at 20∘C at 1 atmosphere against
the transpiration parameter 𝜉 and Sc ranged from 0.1 to 1.6.
Another important parameter, 𝑛, has also been taken into
account widely. In this present study, numerical simulations
are carried out in detail and results are illustrated in both
figures and tabular forms.

2. Formulation of the Problem

A two-dimensional unsteady free convection flowof a viscous
incompressible fluid flow along a vertical flat plate in the
presence of a soluble species is considered in this present
study. It is assumed that both the surface heat flux and
surface species concentration flux exhibit small amplitude
oscillations in time about a steady nonzeromean temperature
and concentration. A semi-infinite vertical flat plate is placed
at 𝑦 = 0 in Cartesian coordinate system. And 𝑥 ≥ 0,
so that the distance from the leading edge along the plate
measuring 𝑥 and 𝑦 is measured in outward normal direction
from the plate. The ambient fluid temperature and species
concentration are taken as 𝑇

∞
and 𝐶

∞
. In the case where

the surface heat flux and mass flux are considered time
dependent, the governing equations of the flow are given by
the following sets of Navier-Stokes equations:
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where 𝑢 and V are the 𝑥 and 𝑦 components of velocity field,
respectively, 𝑔 is the gravitational acceleration, 𝛽

𝑇
and 𝛽

𝐶

are the volumetric expansion coefficients for temperature and
concentration, respectively, 𝛼 is the thermal diffusivity, and
𝐷 is the molecular diffusivity of the species concentration.
Moreover 𝜃 = 𝑇 − 𝑇

∞
and 𝜙 = 𝐶 − 𝐶

∞
are the differences

of temperature and species concentration between fluid and
ambient flow. Considered boundary conditions, under which
(1) are solved, are as follows:

𝑦 = 0 : 𝑢 (𝑥, 𝑦, 𝑡) = V (𝑥, 𝑦, 𝑡) = 0,

−𝜅
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𝑤
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𝑦 󳨀→ ∞ : 𝑢 (𝑥,∞, 𝑡) = V (𝑥,∞, 𝑡) = 0.

(2)

This set of boundary conditions suggests the form of the
solutions of (1) as

𝑢 = 𝑢
0
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1
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(3)

where 𝜔 represents the frequency of oscillation and 𝜀, which
is very very small positive number, measures the amplitude.
Considering these forms of solutions, the steady mean flow is
governed by the following set of equations:
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subject to the boundary conditions:
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The unsteady flow field is governed by the set of following dif-
ferential equations and corresponding boundary conditions
(9):
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To get the similarity equations the following transformations
are commenced:
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𝐶
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where𝜓
0
is the stream function which satisfies the continuity

equation (4) and 𝑞
0
and 𝑐
0
are the constants related to mean

surface heat flux and mass flux, respectively. By introducing
the above-mentioned set of transformations, the following
sets of equations along with the boundary conditions are
found for the steady flow:
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and the transformations for the nonsimilarity equations are
as follows:
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Equations for the unsteady flow field are as follows:
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Corresponding boundary conditions are
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Unsteady shear stress, surface temperature, and sur-
face concentration are the most important quantities which
should be taken into account to understand the flow field
clearly and to elucidate the effects of corresponding impor-
tant parameters on the flow pattern. These quantities can
be calculated from the solutions of (11), (12), and (13)–
(17). In this present study, these quantities are calculated
and presented in terms of amplitude and phase angels. The
following expressions are used to calculate the amplitude and
phase of regarding quantities:
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where (𝑓
𝑟
, 𝑓
𝑖
), (𝜃
𝑟
, 𝜃
𝑖
), and (𝜙

𝑟
, 𝜙
𝑖
) represent the real and

imaginary part of𝑓(𝜉, 𝜂), 𝜃(𝜉, 𝜂), and𝜙(𝜉, 𝜂), respectively.The
solutionmethodologies for different parts of the flow field are
discussed in brief in the following sections.

3. Solutions Methodologies

Three different techniques are used to solve the governing
equations of the flow field. The implicit finite difference
method of Keller [24] is put into operation for the entire
regime, extended series solution (ESS) for small 𝜉 which
corresponds to the region near the leading edge, and asymp-
totic solution (ASS) for large 𝜉, corresponding to the region
far from the leading edge. Comparisons amongst the results
simulated by these three different techniques are elucidated
in tabular form as well as by graphs. Excellent agreement
amongst the simulated results by different numerical tech-
niques ensured the validity of the model assumptions and
efficiency of the numerical techniques that are applied here.

3.1. Extended Series Solutions (ESS). The results considering
finite number of terms are valid only for very small range
of frequencies. Since small values of 𝜉 correspond to small
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frequencies 𝜔 also, it can be predicted that the flow would be
adjusted quasi-statically to the fluctuating rate of both heat
and mass transfer in the boundary layer. For small values of 𝜉
which corresponds to near the leading edge, the functions 𝑓,
𝑔, and ℎ are expanded in power of 𝜉 as given below:

𝑓 (𝜉, 𝜂) = ∑

𝑛=0

(2𝑖𝜉)
𝑚

𝑓
𝑚
(𝜂) ,

𝑔 (𝜉, 𝜂) = ∑

𝑛=0

(2𝑖𝜉)
𝑚

𝑔
𝑚
(𝜂) ,

ℎ (𝜉, 𝜂) = ∑

𝑛=0

(2𝑖𝜉)
𝑚

ℎ
𝑚
(𝜂) .

(19)

Introducing the above-mentioned series in (13)–(16) and
equating the terms of similar powers of 𝜉 to zero, the
following sets of equations can be obtained:

𝑓
󸀠󸀠󸀠

0

+

(𝑛 + 4)

5

𝐹𝑓
󸀠󸀠

0

−

(4𝑛 + 6)

5

𝐹
󸀠

𝑓
󸀠

0

+

(𝑛 + 4)

5

𝐹
󸀠󸀠

𝑓
0

+ (1 − 𝑤) 𝜃
0
+ 𝑤𝜙
0
= 0,

1

Pr
𝜃
󸀠󸀠

0

+

(𝑛 + 4)

5

𝐹𝜃
󸀠

0

−

(4𝑛 + 1)

5

𝜃
0
𝐹
󸀠

−

4𝑛 + 1

5

Θ𝑓
󸀠

0

+

𝑛 + 4

5

Θ
󸀠

𝑓
0
= 0,

1

Sc
𝜙
󸀠󸀠

0

+

(𝑛 + 4)

5

𝐹𝜙
󸀠

0

−

(4𝑛 + 1)

5

𝜙
0
𝐹
󸀠

−

4𝑛 + 1

5

Φ𝑓
󸀠

0

+

𝑛 + 4

5

Φ
󸀠

𝑓
0
= 0,

𝑓
󸀠󸀠󸀠

𝑚

+

𝑛 + 4

5

𝐹𝑓
󸀠󸀠

𝑚

+ (

2𝑚 (𝑛 − 1)

5

−

4𝑛 + 6

5

)𝐹
󸀠

𝑓
󸀠

𝑚

+ (

𝑛 + 4

5

−

2𝑚 (𝑛 − 1)

5

) 𝐹
󸀠󸀠

𝑓
𝑚
+ 𝜃
𝑚
=

1

2

𝑓
󸀠

𝑚−1

,

1

Pr
𝜃
󸀠󸀠

𝑚

+

𝑛 + 4

5

𝐹𝜃
󸀠

𝑚

+ (

2𝑚 (𝑛 − 1)

5

−

4𝑛 + 1

5

)𝐹
󸀠

𝜃
𝑚

−

4𝑛 + 1

5

Θ𝑓
󸀠

𝑚

+ (

𝑛 + 4

5

−

2𝑚 (𝑛 − 1)

5

) 𝜃
󸀠

𝑓
𝑚
=

1

2

𝜃
𝑚−1

,

1

Sc
𝜙
󸀠󸀠

𝑚

+

𝑛 + 4

5

𝐹𝜙
󸀠

𝑚

+ (

2𝑚 (𝑛 − 1)

5

−

4𝑛 + 1

5

)𝐹
󸀠

𝜙
𝑚

−

4𝑛 + 1

5

Φ𝑓
󸀠

𝑚

+ (

𝑛 + 4

5

−

2𝑚 (𝑛 − 1)

5

) 𝜑
󸀠

𝑓
𝑚
=

1

2

𝜙
𝑚−1

,

(20)

where𝑚 = 1, 2, 3, . . . and the respective boundary conditions
are

𝑓
0
(0) = 𝑓

󸀠

0

(0) = 0,

𝜃
󸀠

0

= −1,

𝑓
󸀠

0

(∞) = 𝜃
0
(∞) = 0,

𝑓
𝑚
(0) = 𝑓

󸀠

𝑚

(0) = 𝜃
𝑚
(0) = 0,

𝑓
󸀠

𝑚

(∞) = 𝜃
𝑚
(∞) = 0,

(21)

where primes denote the derivatives with respect to 𝜂 as
convention. In the above, 𝑓

0
, 𝑔
0
, and ℎ

0
are the well-known

free convection similarity solutions for steady flow field and
the functions𝑓

𝑚
, 𝑔
𝑚
, and ℎ

𝑚
are the higher order corrections

to the flow due to the effect of the transpiration of fluid
through the surface of the plate. Moreover it can be observed
that the equations are linear but coupled. Thus it can be
assumed that the solutions can be calculated by pairwise
sequential solution. Here, pair of equations are integrated
using implicit Runge-Kutta-Butcher [25] initial value solver
together with Nachtsheim and Swigert [26] iteration scheme.
In this investigation, 8 pairs of equations are considered and
solved numerically. Simulated results are compared with the
results that are obtained by finite difference method and nice
agreement was found amongst these three types of results.

3.2. Asymptotic Solution for Large 𝜉. To study the flow pattern
far from the leading edge, that is, when the values of 𝜉 are
large, the asymptotic solutions are carried out. From the
results obtained by Keller-Box method it is shown that for
larger values of 𝜉 the unsteady response is confined to a thin
layer adjacent to the surface. Thus as frequency approaches
towards infinity, the solutions tend to be independent of
the distance measured downstream from the leading edge,
similar to the shearwave solution in the corresponding forced
flow problem.This suggested once again another set of series
expansion utilizing the limiting solutions as the zeroth-order
approximation:

𝑌 = 𝜉
1/2

𝜂,

𝜑 (𝜉, 𝑌) = 𝜉
3/2

𝑓 (𝜉, 𝜂) ,

𝜃 (𝜉, 𝑌) = 𝜃 (𝜉, 𝜂) ,

𝜙 (𝜉, 𝑌) = 𝜙 (𝜉, 𝜂) .

(22)

Introducing these transformations, (14)–(16) take the form

𝜕
3

𝜑

𝜕𝑌
3

+

𝑛 + 4

5

𝐹𝜉
−1/2

𝜕
2

𝜑

𝜕𝑌
2

− 𝑖

𝜕𝜑

𝜕𝑌

−

6𝑛 + 4

5

𝐹
󸀠

𝜉
−1
𝜕𝜑

𝜕𝑌

+

4𝑛 + 1

5

𝐹
󸀠󸀠

𝜉
−3/2

𝜑 + (1 − 𝑤) 𝜃 + 𝑤𝜙

=

2 (1 − 𝑛)

5

[𝐹
󸀠

(

𝜕
2

𝜑

𝜕𝑌𝜕𝜉

+

𝑌

2𝜉

𝜕
2

𝜑

𝜕𝑌
2

)

− 𝐹
󸀠󸀠

𝜉
−1/2

(

𝜕𝜑

𝜕𝜉

+

𝑌

2𝜉

𝜕𝜑

𝜕𝑌

)] ,

(23)
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1

Pr
𝜕
2

𝜃

𝜕𝑌
2

+

𝑛 + 4

5

𝐹𝜉
−1/2

𝜕𝜃

𝜕𝑌

− 𝑖𝜃 −

4𝑛 + 1

5

𝐹
󸀠

𝜉
−1

𝜃

−

4𝑛 + 1

5

Θ𝜉
−2
𝜕𝜑

𝜕𝑌

+

4𝑛 + 1

5

Θ
󸀠

𝜉
−5/2

𝜑

=

2 (1 − 𝑛)

5

[𝐹
󸀠

(

𝜕𝜃

𝜕𝜉

+

𝑌

2𝜉

𝜕𝜃

𝜕𝑌

)

− Θ
󸀠

𝜉
−3/2

(

𝜕𝜑

𝜕𝜉

+

𝑌

2𝜉

𝜕𝜑

𝜕𝑌

)] ,

(24)

1

Sc
𝜕
2

𝜙

𝜕𝑌
2

+

𝑛 + 4

5

𝐹𝜉
−1/2

𝜕𝜙

𝜕𝑌

− 𝑖𝜙 −

4𝑛 + 1

5

𝐹
󸀠

𝜉
−1

𝜙

−

4𝑛 + 1

5

Φ𝜉
−2
𝜕𝜑

𝜕𝑌

+

4𝑛 + 1

5

𝜙
󸀠

𝜉
−5/2

𝜑

=

2 (1 − 𝑛)

5

[𝐹
󸀠

(

𝜕𝜙

𝜕𝜉

+

𝑌

2𝜉

𝜕𝜙

𝜕𝑌

)

− Φ
󸀠

𝜉
−3/2

(

𝜕𝜑

𝜕𝜉

+

𝑌

2𝜉

𝜕𝜑

𝜕𝑌

)] ,

(25)

respectively. We can express the functions 𝐹, Θ, and Φ with
fine accuracy as power series. This is because the above
equations represent the region which is confined to a thin
layer adjacent to the surface. Here, the following series
representations are used:

𝐹 = 𝑎
2
𝜂
2

+ ⋅ ⋅ ⋅ , (26)

Θ = 𝑏 − 𝜂 + ⋅ ⋅ ⋅ , (27)

Φ = 𝑐 − 𝜂 + ⋅ ⋅ ⋅ , (28)

where

𝑎
2
=

1

2

𝐹
󸀠󸀠

(0) ,

𝑏 = Θ (0) = −1,

𝑐 = Φ (0) = −1.

(29)

Implementing those above expansions, solutions of (14)–(16)
can be found in the form of

𝜑 (𝜉, 𝑌) = ∑

𝑛=0

𝜉
−𝑚/2

𝑓
𝑚

(𝑌) ,

𝜃 (𝜉, 𝑌) = ∑

𝑛=0

𝜉
−𝑚/2

𝜃
𝑚
(𝑌) ,

𝜙 (𝜉, 𝑌) = ∑

𝑛=0

𝜉
−𝑚/2

𝜙
𝑚

(𝑌) .

(30)

After substituting (33) into (14)–(16) and collecting similar
powers of 𝜉, the following equations can be obtained:

𝑓

󸀠󸀠󸀠

0

− 𝑖𝑓

󸀠

0

= − (1 − 𝑤) 𝜃
0
− 𝑤𝜙
0

, (31)

𝑓

󸀠󸀠󸀠

1

− 𝑖𝑓

󸀠

1

= − (1 − 𝑤) 𝜃
1
− 𝑤𝜙
1

, (32)

𝑓

󸀠󸀠󸀠

2

− 𝑖𝑓

󸀠

2

= − (1 − 𝑤) 𝜃
2
− 𝑤𝜙
2

, (33)

𝑓

󸀠󸀠󸀠

3

− 𝑖𝑓

󸀠

3

= −

3𝑛 + 2

5

𝑎
2
𝑌
2

𝑓

󸀠󸀠

0

+

2 (7𝑛 + 3)

5

𝑎
2
𝑌𝑓

󸀠

0

−

2 (4𝑛 + 1)

5

𝑎
2
𝑓
0

− (1 − 𝑤) 𝜃
3

− 𝑤𝜙
3

,

(34)

1

Pr
𝜃

󸀠󸀠

0

− 𝑖𝜃
0
= 0, (35)

1

Pr
𝜃

󸀠󸀠

1

− 𝑖𝜃
1
= 0, (36)

1

Pr
𝜃

󸀠󸀠

2

− 𝑖𝜃
2
= 0, (37)

1

Pr
𝜃

󸀠󸀠

3

− 𝑖𝜃
3
= −

3𝑛 + 2

5

𝑎
2
𝑌
2

Θ

󸀠

0

+

8𝑛 + 2

5

𝑎
2
𝑌Θ
0
, (38)

1

Sc
𝜙

󸀠󸀠

0

− 𝑖𝜙
0

= 0, (39)

1

Sc
𝜙

󸀠󸀠

1

− 𝑖𝜙
1

= 0, (40)

1

Sc
𝜙

󸀠󸀠

2

− 𝑖𝜙
2

= 0, (41)

1

Sc
𝜙

󸀠󸀠

3

− 𝑖𝜙
3

= −

3𝑛 + 2

5

𝑎
2
𝑌
2

Φ

󸀠

0

+

8𝑛 + 2

5

𝑎
2
𝑌Φ
0
. (42)

In these equations, primes denote the differentiation with
respect to 𝑌, and the associated boundary conditions are

𝑓
𝑚

(0) = 𝑓

󸀠

𝑚

(0) = 𝑓

󸀠

𝑚

(∞) = 0, 𝑚 = 0, 1, 2, 3, 4, . . . ,

𝜃

󸀠

0

(0) = −1,

𝜃
𝑚
(0) = 𝜃

𝑚
(∞) = 0, 𝑚 = 0, 1, 2, 3, 4, . . . ,

𝜙

󸀠

0

(0) = −1,

𝜙
𝑚

(0) = 𝜙
𝑚

(∞) = 0, 𝑚 = 0, 1, 2, 3, 4, . . . .

(43)

The solutions of (31)–(42) subject to the boundary conditions
(43) give the following expressions for shear stress, surface
temperature, and species concentration, respectively:

𝑓
󸀠󸀠

(𝜉, 0)

= −𝑖(

𝑎𝑛1

√Pr (1 + √Pr)
+

𝑎𝑛2

√Sc (1 + √Sc)
) 𝜉
−1/2

+ 2 (𝐶
12
+ 𝐶
22
+ 𝐶
32
)
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− 2√𝑖 (𝐶
13
+ √Pr𝐶

23
+ √Sc𝐶

33
) + 𝑖Pr𝐶

24

+ 𝑖Sc𝐶
34
𝜉
−5/2

+ 𝑂 (𝜉
−7/2

) ,

𝜃 (𝜉, 0)

=

1

√𝑖Pr
𝜉
−1/2

+

(11𝑛 + 4) 𝑎
2

20Pr
𝜉
−5/2

+ 𝑂 (𝜉
−7/2

) ,

𝜙 (𝜉, 0)

=

1

√𝑖Sc
𝜉
−1/2

+

(11𝑛 + 4) 𝑎
2

20Sc
𝜉
−5/2

+ 𝑂 (𝜉
−7/2

) ,

(44)

where

𝐴 =

(1 − 𝑤)

Pr (1 − Pr)
,

𝐵 =

𝑤

Sc (1 − Sc)
,

𝐶
3
=

(1 − 𝑤)√Pr
Pr (1 − Pr)

−

𝑤√Sc
Sc (1 − Sc)

,

𝐴
1
= −

(3𝑛 + 2) 𝑎
2

√Pr
30√𝑖

,

𝐵
1
=

(11𝑛 + 4) 𝑎
2
𝑖

20

,

𝐶
1
=

(11𝑛 + 4) 𝑎
2

√𝑖

20√Pr
,

𝐴
2
= −

(3𝑛 + 2) 𝑎
2

√Sc
30√𝑖

,

𝐵
2
=

(11𝑛 + 4) 𝑎
2
𝑖

20

,

𝐶
2
=

(11𝑛 + 4) 𝑎
2

√𝑖

20√Sc
,

𝑃
1
= −

(3𝑛 + 2) 𝑎
2

5

,

𝑃
2
= −

2 (7𝑛 + 3) 𝑎
2

5

,

𝑃
3
= −

2 (4𝑛 + 1) 𝑎
2

5

,

𝐶
11
=

𝑃
1
𝐶
3

6

,

𝐶
12
=

1

4√𝑖

𝑃
2
𝐶
3
+ 18𝐶

11
,

𝐶
13
=

1

2𝑖

𝑃
3
𝐶
3
+ 6√𝑖𝐶

12
− 6𝐶
11
,

𝐶
21
= −

(1 − 𝑤) (3𝑛 + 2) 𝑎
2

30 (1 − Pr)
,

𝐶
22
= −

(1 − 𝑤) 𝑎
2
𝐾
1

20√𝑖Pr (1 − Pr)2
,

𝐶
23
= −

(1 − 𝑤) 𝑎
2
𝐾
2

20𝑖Pr (1 − Pr)3
,

𝐶
31
= −

𝑤 (3𝑛 + 2) 𝑎
2

30 (1 − Sc)
,

𝐶
32
= −

𝑤𝑎
2
𝐾
11

20√𝑖Sc (1 − Sc)2
,

𝐶
33
= −

𝑤𝑎
2
𝐾
22

20𝑖Sc (1 − Sc)3
,

𝐾
1
= 4 (3𝑛 + 2) + (1 − Pr) (11𝑛 + 4)

+ 2 (3𝑛 + 2) (1 − 3Pr) ,

𝐾
2
= 8 (1 − Pr) (7𝑛 + 3) + (11𝑛 + 4) (1 − Pr)2

+ 4 (1 − 3Pr) 𝐾
1
+ 12Pr (1 − Pr) (3𝑛 + 2) ,

𝐾
11
= 4 (3𝑛 + 2) + (1 − Sc) (11𝑛 + 4)

+ 2 (3𝑛 + 2) (1 − 3Sc) ,

𝐾
22
= 8 (1 − Sc) (7𝑛 + 3) + (11𝑛 + 4) (1 − Sc)2

+ 4 (1 − 3Sc) 𝐾
1
+ 12Sc (1 − Sc) (3𝑛 + 2) .

(45)

The above expressions are valid only for Pr ̸= 1 and Sc ̸= 1.
If it is necessary to calculate the values for Pr = 1 and Sc = 1
then the limiting values as Pr → ∞ and Sc → ∞ should be
calculated.

4. Results and Discussions

Since natural convection flowdue to combined effects of ther-
mal andmass diffusion is very important in practical point of
view, an extensive investigation for this type of model flow
field has been carried out through numerical simulations.
In view of the fact that Hossain et al. (1998) also examined
this type of flow field only for thermal diffusion, in this
present investigation, similar types of results, discussed by
Hossain et al. (1998), are produced first. Then the model has
been extended to study the flow field with both thermal and
mass diffusion. All the model assumptions are kept similar to
Hossain et al. (1998). Both the steady and fluctuating parts of
the problem are analyzed by the Keller-Box method for the
entire frequency regime. The fluctuating part of the problem
is investigated by three different methodologies. Results are
presented in amplitude and phase angles forms for variation
of different parameters in both tabular and graphical forms.
The forgoing formulations may be analyzed to indicate the
nature of the interaction of the various contributions to
buoyancy. These may aid or oppose one another and be of
different magnitudes characterized by the value of 𝑤. When
the thermal and solutal effects are opposed, the value of 𝑤
is negative in order to ensure that the flow is in positive 𝑥
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Table 1: Values of shear stress, surface temperature, and surface
concentration for the steady flow field for variation of different
parameters while Pr = 0.7.

Shear stress Surface temperature Surface concentration
𝑤

0.0000 0.56578 0.33272 0.59525
0.2500 0.50978 0.31013 0.54862
0.7500 0.46897 0.29386 0.51562
1.000 0.41226 0.27140 0.47100

𝑛

0.0000 0.44347 0.38467 0.72034
0.2500 0.40040 0.35692 0.66014
0.7500 0.36891 0.33708 0.61773
1.000 0.32501 0.30994 0.56078

Sc
0.1000 0.56920 0.26926 0.68102
0.6000 0.37955 0.33184 0.35711
1.1000 0.34202 0.35068 0.28454
1.6000 0.32396 0.35963 0.24756

direction. The relative physical extent 𝜂 of the two effects
in convection region is governed by the magnitudes of the
Prandtl number and Schmidt number and their relative
values. Here, discussions are restricted for favorable case
only (𝑤 is positive) for the fluids with Prandtl number
Pr = 0.9–0.25. Here, the values of Prandtl numbers are
chosen to represent the fluid as air and liquid which are
currently used as coolant in nuclear engineering. Although
the diffusing chemical species of most common interest in air
has Schmidt numbers in the range from0.1 to 10.0, the present
investigation considered a range from 0.1 to 1.60.

Some values of shear stress, surface temperature, and
surface concentration for the steady flow field are listed in
Table 1. During the simulations, the value of Prandtl number,
Pr, is chosen as constant value 0.7, representing air, and
all other parameters are varied. It can be observed from
Table 1 that the values of shear stress, surface temperature,
and surface concentration decrease as the values of 𝑤, 𝑛, and
Sc become higher.

Tables 2 and 3 show the comparison of the results
obtained by Keller-Box method and perturbation method
for local surface temperature and local mass concentration,
respectively. For these simulations, the values of the param-
eters 𝑤, 𝑛,Pr, and Sc are taken as 0.5, 0.5, 0.7, and 0.22,
respectively, and the quantities represented against 𝜉 ranging
from0.00 to 70.00.The required quantities for the small value
of 𝜉 (0.0–0.9) are obtained from extended series solution
method and for the higher values of 𝜉 (1.0–70.0) the respective
quantities are taken from the results by asymptotic series
solution method. For both amplitude and phase angels of
the respective quantities, nice agreement is found amongst
the results calculated by different methodologies. Here also
plodding decrement of amplitude of shear stress, surface
temperature and surface concentration, and increment of
phase angels of the respective quantities along with the
increment of the values of 𝜉 can be observed.

Table 2: Comparison of the values of amplitude and phase angels
of the local surface temperature, obtained by perturbation methods
and finite difference method, while Pr = 0.7, Sc = 0.22, 𝑤 = 0.5, and
𝑛 = 0.5.

𝜉

𝐴
𝑇

𝜙
𝑇

Keller Series and
asymp. Keller Series and

asymp.
0.0000 1.4273 1.427381 0.00000 0.000001

0.1002 1.42469 1.426271 2.99340 2.685141

0.2013 1.41650 1.422921 5.99132 5.378701

0.3045 1.40272 1.408771 8.99521 7.088261

0.4108 1.38327 1.388641 12.00221 9.819451

0.5024 1.36270 1.369901 14.50581 8.398081

0.5975 1.33815 1.337281 17.00177 9.816361

0.6967 1.30965 1.313371 19.48248 11.244101

0.8009 1.27723 1.296491 21.93677 12.849961

0.9105 1.24099 1.254151 24.34766 14.084621

1.0028 1.20936 1.236162 26.22925 15.456002

1.5095 1.03562 2.038022 34.05537 19.72702

1.6019 1.00658 1.882702 35.04818 20.77392

1.6984 0.97772 1.745402 35.96272 21.81132

1.7991 0.94923 1.62352 36.79935 22.83642

1.9043 0.92130 1.51492 37.56064 23.84642

2.0143 0.89404 1.41762 38.25065 24.83842

5.0216 0.54424 0.60232 43.57451 37.99552

6.0502 0.49349 0.54282 43.94037 39.27372

7.0417 0.45604 0.45202 44.16434 40.33922

8.0555 0.42544 0.42812 44.32133 41.22012

9.0596 0.40053 0.42192 44.43331 42.71832

10.0179 0.38044 0.39792 44.51393 42.15422

20.2113 0.26657 0.27082 44.83141 43.97302

30.1619 0.21795 0.21982 44.90746 44.43202

40.0461 0.18905 0.18852 44.93943 44.63662

50.5732 0.16818 0.16032 44.95727 44.73042

60.7511 0.15342 0.15392 44.96755 44.80002

70.5839 0.14232 0.14272 44.97404 44.840202
1Standing for series solution; 2standing for asymptotic solution.

The effects of Prandtl number Pr and the exponent
parameter 𝑛 on the shear stress are presented in Figures 1
and 2. All the graphs for depicting the amplitudes and phase
angels of shear stress are drawn for the results obtained from
numerical simulations byKeller-Boxmethod, extended series
solution method, and asymptotic series solution method. All
the figures clearly show that results obtained for the entire
regime are significantly close to the results that are calculated
for the region near and far from the leading edge.

For different values of Pr, while all other parameters are
kept constant (𝑤 = 0.5, 𝑛 = 0.5, and Sc = 0.6), remarkable
increase can be seen in amplitudes of the shear stress due to
the increment of the Prandtl number, Pr. The phase angels
are zero under quasi-steady conditions and decrease mono-
tonically towards the asymptotic values −90∘ as 𝜉 → ∞.
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Table 3: Comparison of the values of amplitude and phase angels of
the local surface concentration, obtained by perturbation method
and finite difference method, while Pr = 0.7, Sc = 0.22, 𝑤 = 0.5, and
𝑛 = 0.5.

𝜉

𝐴
𝑐

𝜙
𝑐

Keller Series and
asymp. Keller Series and

asymp.
0.0000 1.53621 1.536201 0.00000 0.000001

0.1002 1.53298 1.534841 3.02864 3.423131

0.2013 1.52326 1.534841 6.04759 5.009831

0.3045 1.50730 1.524221 9.04992 5.133721

0.4108 1.48535 1.515291 12.03249 6.834171

0.5024 1.46265 1.505611 14.50248 8.339421

0.5975 1.43599 1.496151 16.95796 9.792561

0.6967 1.40540 1.486541 19.39603 10.857991

0.8009 1.37088 1.476761 21.80920 11.003621

0.9105 1.33244 1.471211 24.18315 12.873761

1.0995 1.26326 1.469222 27.84154 13.638632

1.6984 1.05333 1.96362 35.72082 20.89942

1.7991 1.02297 1.82292 36.56183 21.92202

1.9043 0.99316 1.69772 37.32884 22.93342

2.0143 0.96403 1.58572 38.02563 23.93072

2.0904 0.94505 1.58572 38.45352 24.91132

2.2089 0.91727 1.39482 39.04424 25.87262

4.0219 0.66171 0.79962 42.83438 34.69902

5.0216 0.58795 0.65772 43.48498 37.51342

6.0502 0.53315 0.59142 43.86996 38.86722

7.0417 0.49270 0.53522 44.10680 40.00012

8.0555 0.45964 0.48672 44.27340 40.93972

9.0596 0.43272 0.47202 44.39253 41.47222

10.0179 0.41102 0.43152 44.47848 41.93872

20.2113 0.28796 0.29292 44.81842 43.89232

30.1619 0.23543 0.23762 44.90023 44.38702

40.0461 0.20421 0.20372 44.93467 44.60772

50.5732 0.18167 0.18402 44.95390 44.70892

60.7511 0.16572 0.16632 44.96498 44.78402

70.5839 0.15373 0.15412 44.97199 44.82742
1Standing for series solution; 2standing for asymptotic solution.

From Figure 2, it can be observed that the amplitudes of the
shear stress are decreased while the exponents of the surface
heat and mass flux are increased. But the values of phase
angels of shear stress are increased as the values of exponent
increase. For much higher values of 𝜉, that is, far from the
leading edge, there is almost no change in values of amplitude
for variation of 𝑛 and the corresponding values tend to zero
for all values of 𝑛.

The effects of Prandtl number, Pr, on the amplitudes
and phase angels of the surface temperature are illustrated
in Figure 3. For these simulations, the values of 𝑤 and 𝑛

are taken as 0.5 and the value of Sc is chosen as 0.6. In
these figures also, results are presented for three different
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Figure 1: (a) Amplitude and (b) phase angles, of shear stress for
different values of Pr, while Sc = 0.6, 𝑤 = 0.5, and 𝑛 = 0.5.

methodologies, as described in the previous sections. For the
very low frequency region, that is, for the very small values
of 𝜉, the results obtained by extended series solution method
are very much close to the solutions that are obtained from
Keller-Box method. Far from the leading edge, that is, for the
large values of 𝜉, we can see very nice agreement between
the results obtained from the asymptotic solutions andKeller-
Box solutions. It can also be seen from these figures that the
values of amplitudes of surface temperature decrease as the
values of Pr increase. The values of phase angels for surface
temperature increase for the decrement of the values of Pr.
The values of phase angles tend towards the value of −45∘ as
the value of 𝜉 → ∞.
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Figure 2: (a) Amplitude and (b) phase angels, of shear stress for different values of 𝑛, while Pr = 0.7, Sc = 0.6, and 𝑤 = 0.5.
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Figure 3: (a) Amplitude and (b) phase angles, of surface temperature for different values of Pr, while Sc = 0.6, 𝑤 = 0.5, and 𝑛 = 0.5.

In Figure 4, the effect of exponent parameter 𝑛 on the
surface temperature is presented. Similar to shear stress, here
also the values of amplitude of surface temperature become
little smaller as the values of 𝑛 become higher and far from
the leading edge; that is, for the large values of 𝜉, these changes
become ignorable for the variation of 𝑛 and tend toward the
value of zero. For the phase angels, as expected, the opposite
behavior is observed; that is, very small increment of the
quantities is achieved because of small decrement of values
of 𝑛.

Similar types of behavior can be observed for the surface
mass concentration for different values of Schmidt number,
Sc, in Figure 5. During the simulation, to predict the effects
of Schmidt numbers on both the surface mass concentration
and shear stress, the value of Prandtl number is taken as
0.7 and the values of 𝑤 and 𝑛 are chosen as 0.5. We can
monitor the increment of the values of amplitude of surface
species concentration as the values of Sc are decreased while
the values of phase angels increased in small amount. As
the values of 𝜉 get higher, the value of the phase angles of
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Figure 4: (a) Amplitude and (b) phase angles of surface temperature for different values of 𝑛, while Pr = 0.7, Sc = 0.6, and 𝑤 = 0.5.
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Figure 5: (a) Amplitude and (b) phase angles of surface concentration for different values of Sc, while Pr = 0.7, 𝑤 = 0.5, and 𝑛 = 0.5.

the surface mass concentration reached the asymptotic value
of −45∘.

4.1. Effects of Different Parameters on Transient Shear Stress,
Transient Surface Temperature, and Transient Surface Concen-
tration. In this section, the effects of some parameters such
as Schmidt number Sc, amplitude of thermal and mass flux 𝜀,
buoyancy ratio parameter𝑤, and the flux exponent parameter
𝑛 on the transient shear stress, transient surface temperature,
and transient surface concentration are discussed at 𝜉 = 1.00.
All these results are presented here for a fixedPrandtl number,
Pr, which is taken once again as 0.70. The definitions for

transient shear stress, 𝜏, transient surface temperature, 𝜃
𝑤
,

and transient surface concentration, 𝜙
𝑤
, have been used as

follows:

𝜏 = 𝜏
𝑠
+ 𝜀𝐴
𝑢
cos (𝜔𝑡 + 𝜙

𝑢
) ,

𝜃
𝑤
= 𝜃
𝑠
+ 𝜀𝐴
𝑡
cos (𝜔𝑡 + 𝜙

𝑡
) ,

𝜙
𝑤
= 𝜙
𝑠
+ 𝜀𝐴
𝑐
cos (𝜔𝑡 + 𝜙

𝑐
) ,

(46)

where 𝜏
𝑠
is the steady mean shear stress, 𝜃

𝑠
is the steady sur-

face temperature, and 𝜙
𝑠
is the steady surface concentration,

respectively.The values of 𝜏
𝑠
, 𝜃
𝑠
, and𝜙

𝑠
are calculated first and
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Figure 6: Transient shear stress at 𝜉 = 1.0 for different (a) 𝜀, while Pr = 0.7, Sc = 0.6, 𝑤 = 0.5, and 𝑛 = 0.5, (b) 𝑛, while Pr = 0.7, Sc = 0.6,
and 𝑤 = 0.0, (c) Sc, while Pr = 0.7, 𝑤 = 0.5, and 𝑛 = 0.5, and (d) 𝑤, while Pr = 0.7, 𝑛 = 0.5, and Sc = 0.6.

then the required quantities are obtained accordingly from
the simulations by using the implicit finite difference method
together with the Keller-Box for the entire regime.

From Figures 6(a), 7(a), and 8(a), it can be seen that the
increase in the values of amplitude of oscillation of surface
temperature and surface concentration caused increment in
the oscillation of transient skin friction, transient surface
temperature, and transient surface concentration, respec-
tively. The oscillations with different values of amplitude
and phase with regular periodic maxima and minima are
visualized in Figures 6(b), 7(b), and 8(b) for the heat and
mass flux exponent parameter 𝑛. The oscillations patterns of
the transient skin friction, surface temperature, and surface
concentration are similar. From Figures 6(c), 7(c), and 8(c),
it can be seen that the oscillations of the amplitude of
transient shear stress, transient surface temperature, and

transient surface concentration decrease as the values of Sc
increase. For each value of Sc, these oscillations attain a
maximum and a minimum value periodically. For buoyancy
ratio parameter 𝑤, a periodic oscillation for transient skin
friction, transient surface temperature, and transient surface
concentration is shown. For the variation of the values of
𝑤, no significant changes occurred for the corresponding
maximum and minimum values of the oscillations.

5. Conclusion

The purpose of this study is to investigate the velocity flow
field in terms of local shear stress. Local heat and mass
transfer resulting from buoyancy forces which arise from
a combination of temperature and species concentration
effects of comparable magnitude are also studied rigorously.
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Figure 7: Transient surface temperature at 𝜉 = 1.0 for different (a) 𝜀, while Pr = 0.7, Sc = 0.6, 𝑤 = 0.5, and 𝑛 = 0.5, (b) 𝑛, while Pr = 0.7,
Sc = 0.6, and 𝑤 = 0.0, (c) 𝑤, while Pr = 0.7, Sc = 0.6, and 𝑛 = 0.5, and (d) 𝑤, while Pr = 0.7, 𝑛 = 0.5, and Sc = 0.6.

A linearized theory has been utilized and detailed numerical
calculations are carried out for wide ranges of parameters.
The important findings of this study can be summarised as
follows.

(i) Exceptive agreement amongst all the results calcu-
lated by different numerical methods established the
validity of the simulations as well as the assumptions
of the mathematical model that are made for the
respective flow field.

(ii) From the analysis of hydrodynamics heat and mass
transfer, a complex correlation can be observed
among the flow pattern, wall shear stress, and mass
transfer enhancement along the flow channel being
dependent on the different parameters.

(iii) From the observations of the simulated results it can
be concluded that the amplitude of the shear stress,
local heat transfer, and local mass transfer decreased
as the frequency increases despite the consequences of
the Prandtl number, Schmidt number, and the surface
heat and mass flux exponent.

(iv) The phase angles for both heat and mass transfer
decrease towards the asymptotic value −45∘, while the
respective quantity for shear stress reaches the value
of −90∘ in a decreasing manner.

(v) The heat and mass flux exponent parameter 𝑛 has no
significant effects on both amplitude and phase angels
as the values of 𝜉 become very large.
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Figure 8: Transient surface concentration at 𝜉 = 1.0 for different (a) 𝜀, while Pr = 0.7, Sc = 0.6, 𝑤 = 0.5, and 𝑛 = 0.5, (b) 𝑛, while Pr = 0.7,
Sc = 0.6, and 𝑤 = 0.0, (c) Sc, while Pr = 0.7, 𝑤 = 0.5, and 𝑛 = 0.5, and (d) 𝑤, while Pr = 0.7, 𝑛 = 0.5, and Sc = 0.6.
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