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To reduce the computational complexity and rest on less prior knowledge, energy-based spectrum sensing under nonreconstruction
framework is studied. Compressed measurements are adopted directly to eliminate the effect of reconstruction error and high
computational complexity caused by reconstruction algorithm of compressive sensing. Firstly, we summarize the conventional
energy-based spectrum sensing methods. Next, the major effort is placed on obtaining the statistical characteristics of compressed
measurements and its corresponding squared form, such asmean, variance, and the probability density function. And then, energy-
based spectrum sensing under nonreconstruction framework is addressed and its performance is evaluated theoretically and
experimentally. Simulations for the different parameters are performed to verify the performance of the presented algorithm.
The theoretical analysis and simulation results reveal that the performance drops slightly less than that of conventional
energy-normalization method and reconstruction-based spectrum sensing algorithm, but its computational complexity decreases
remarkably, which is the first thing one should think about for practical applications. Accordingly, the presented method is
reasonable and effective for fast detection in most cognitive scenarios.

1. Introduction

Cognitive radio is an effective method to cope with spectral
unbalanced utilization and low spectral efficiency [1, 2], and
spectrum sensing is its basis and premise, which exploits
the conventional signal detection schemes to determine the
existence or absence of primary users in some radio spec-
trums. The most classical methods include energy detection,
cyclic-stationary detection, matched-filter detection, and
eigenvalue-based detection for single node and cooperative
detection for multiple nodes over the fading channel [3–
5]. In most cognitive scenarios, spectrum sensing requires
that detection algorithms possess less detection time or
lower computational complexity. In addition, most prior
information is hard to know for cognitive users generally,
especially for noncooperative communication and military
communication. Energy-based detection method fits with
these requirements of spectrum sensing, so it is widely
studied in practical application, such as 802.22 protocol.
Actually, the related work can be traced to [6] in 1965; more

researches have been in detail carried out over the past decade
because of emerging of cognitive radio.Many valuable results
are acquired for the various communication environments;
the corresponding performance of algorithms is justified,
such as detection probability, false-alarm probability, missed
probability, and ROC curve. Some factors affecting the
detection performance are discussed including signal fading
and SNR walls [7, 8].

However, wireless communications have experienced
tremendous developments in the past decades. Many com-
munication signals posses higher frequency and wider band-
width, which result in high sampling rate and computational
complexity for spectrum sensing. Compressive sensing (CS)
is considered as a theoretical tool to deal with these challenges
[9]. A considerable amount of research has been developed,
especially for wide-band spectrum sensing [10–12]. Up to
now, this topic is still extensively under investigation as well
in methodological aspects as in some specific applications.
According to CS theory, a sparse signal can be accom-
plished through the linear random projections; the sparsity
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of signal denotes the number of nonzero values in some
bases. Simply speaking, a high dimension sparse signal can
be projected into a low dimension vector by exploiting
incoherentmeasurementmatrix. At the same time, these pro-
jections can retain most information to precisely reconstruct
signal from low dimension vector with high probability.
Therefore, sampling rate is determined by sparsity of signal
but not bandwidth required by Shannon’s sampling theorem.
Compressive sensing ignoresmuchunnecessary information.
Thus, the number of compressed measurements is far less
than that of conventional Shannon’s sampling theorem,which
breaks through the bottleneck and restriction of Shannon’s
sampling theorem and makes high resolution sampling pos-
sible. Compared with conventional sampling theorem, sam-
pling and compression are performed simultaneously and
information but not signal itself is sampled for compressive
sensing; consequently it can decrease the sampling number
of signal and extract much more information of interest. It is
widely recognized that three aspects of topics for compressive
sensing should be researched; they are the sparse repre-
sentation, measurement matrix design, and signal recon-
struction algorithm; therefore reconstruction method is an
indispensable step for applications of compressive sensing.
In general, reconstruction of signal is to recover the signal
from less compressed measurements under the constraint
of minimum norm. According to definition of sparsity, the
condition is 0-norm restriction for reconstructing signal, but
this condition is too strict not to obtain much effective and
specific application algorithms. As a consequence, Candès
et al. proved that restriction condition can be changed to
1-norm if the measurement matrix satisfies the restricted
isometry property (RIP) [13].

Recently, compressive sensing is undergoing a great
progress; some new methods and theories are introduced,
such as adaptive compressed sensing [14], compressed sens-
ing of 2D sparse signal [15], and method of basis selection
[16]. More importantly, many advantages of compressive
sensing are discovered, which draw extensive attentions from
different academic communities. A considerable number
of research results are inspired for applications of vari-
ous research fields, such as video and image compression
[17], remote sensing image [18], communication and radar
[19], and signal processing [20]. Combined with increas-
ing requirements of cognitive radio, compressive sensing is
applied to spectrum sensing for resolving the high sampling
rate and computational complexity. But these works almost
exploit three aspects of compressive sensing; that is, firstly
the signal is compressed and sampled by the measurement
matrix, and then compressed measurements are recovered
by virtue of reconstruction algorithm; finally the recon-
structed signal is adopted to perform spectrum sensing.
As we all know, reconstruction algorithm possesses high
computational complexity. In addition, the error between
the reconstructed signal and the noncompressed signal also
will affect necessarily spectrum sensing performance; as a
consequence it is resistant to fast detection of spectrum
sensing. As far as spectrum sensing is concerned, it belongs
to inference problem; we only wonder whether the signal
exists anddonot care about precise information; therefore the

reconstruction of compressed measurements is not necessar-
ily performed. If we completely copy all steps of compressive
sensing to carry out spectrum sensing, the computational
resources for some practical applications will be dramatically
consumed. In other words, reconstruction-based spectrum
sensing does not exploit the advantages of compressive
sensing completely. Hence, it is considerablemethod to adopt
directly compressed measurements to deal with spectrum
sensing without resorting to a full-scale signal reconstruc-
tion. It needs to be explained that other aspects of the
presented method are the same as conventional compressive
sensing except for nonreconstruction of compressed mea-
surements. As a consequence, several standard assumptions
in compressive sensing are adopted in nonreconstruction
framework.

In literature [21], the idea of nonreconstruction was
presented firstly for spectrum sensing, and then related
works have been reported in this topic [22–26]. Most of
these methods learn from matched filter. In other words,
the correlation operation is implemented for the compressed
measurements and the known noncompressed signal; some
performances, such as detection probability and false-alarm
probability, are analyzed approximately in terms of RIP. As
we all know, RIP is a condition for the measurement matrix
to recover the signal under 1-norm constraint; however, it is
not necessary condition for spectrum sensing. In addition,
other restrictions are added to the measurement matrix. For
example, Gram matrix of the measurement matrix should be
unit matrix approximatively; these conditions hold impossi-
bly in most cases. Therefore, all these problems need to be
resolved for the applications of spectrum sensing. Except for
these works, the effect of measurement matrix on spectrum
sensing is analyzed in [27], and then Bayesian compressive
sensing approach is introduced to spectrum sensing in [28].

Although much effort is being spent on improving
the aforementioned weaknesses, the efficient and effective
method has yet to be developed.Works in analyzing statistical
characteristics, especially probability density function, are
lacking. Little research has been conducted in applying
energy-based detection to spectrum sensing under nonre-
construction framework.

According to principle of matched filter, the existing
methods require much prior knowledge of signal. But, in
fact, it is difficult to acquire some related prior informa-
tion; therefore these methods are not implemented correctly
in most cognitive radio environments. Consequently, we
concentrate on gathering directly signal energy from the
compressed measurements to infer whether the signal exists.
To the best of our knowledge, a little work on energy
detection under nonreconstruction framework has been
reported. More importantly, we will derive some statistical
characteristics of the compressed measurements, including
mean, variance, and probability density function, which are
relevant to general inference problem, such as signal detec-
tion, parameters identification, and feature extraction. Based
on these results, the statistical characteristics of the sum of
square of compressed measurements are derived by virtue of
central limit theorem. And then, quite a few performances
are compared with the conventional energy-based detection



Mathematical Problems in Engineering 3

method; we analyze the difference of the two algorithms and
simulate the performance.

The structure of the paper is as follows. Conventional
energy-based detection schemes are summarized in Sec-
tion 2. A nonreconstruction energy-based detection algo-
rithm is presented in Section 3; we provide the system model
of algorithm and derive statistical characteristics and the
probability density function and so on. Section 4 affords
detailed simulation experiments and analysis to prove the
presented algorithm and some researched results.We end the
paper with a discussion and some conclusions.

2. Related Research Results of Conventional
Energy-Based Detection Algorithm

For the convenience of describing the problem, a binary
hypothesis test for the presence or absence of a signal in
Gaussian noise channel can be obtained [6]:

𝑦 (𝑡) = 𝑛 (𝑡) 𝐻
0

𝑦 (𝑡) = 𝑠 (𝑡) + 𝑛 (𝑡) 𝐻
1
.

(1)

Because we only process the signal in a confined time
interval 0 ≤ 𝑡 ≤ 𝑇 in practical cases, therefore the signal
energy in this time interval is

𝐸
𝑇𝑦
= ∫

𝑇

0

𝑦
2
(𝑡) 𝑑𝑡. (2)

Correspondingly, the analog signal power is defined as

𝑃
𝑦
=
1

𝑇
∫

𝑇

0

𝑦
2
(𝑡) 𝑑𝑡. (3)

2.1.The Relationship of Sampled Signal Energy andContinuous
Signal Energy under the Sampling Theorem Framework. At
present, what we process is the digital signal in most cases;
Shannon’s sampling theorem bridge the two types of signals.
It is supposed that the digital signal is denoted as 𝑦(𝑚𝑇

𝑠
);

here 𝑇
𝑠
is the sampling period satisfying Shannon’s sampling

theorem. In the following, we will discuss the relationship
of energy about the continuous signal and the digital signal.
Assumed that we process the low-pass signal, its bandwidth
is Δ𝑓 Hz; the used filter is an ideal filter with the bandwidth
of Δ𝑓Hz and amplitude 𝑇

𝑠
. It is expressed in the form

𝐻(𝑓) =
{

{

{

𝑇
𝑠
,
𝑓
 ≤ Δ𝑓,

0,
𝑓
 > Δ𝑓.

(4)

The corresponding system impulse response is

ℎ (𝑡) = 2𝑇
𝑠
Δ𝑓 sin 𝑐 (2𝜋Δ𝑓𝑡) . (5)

The sampling signal can be described by

𝑦
𝑠 (𝑡) =

∞

∑

𝑚=−∞

𝑦 (𝑚𝑇
𝑠
) 𝛿 (𝑡 − 𝑚𝑇

𝑠
) . (6)

Here, 𝛿 is an impulse function. Therefore the continuous
signal is expressed by terms of impulse response and the
sampling signal in the form

𝑦 (𝑡) = ℎ (𝑡) ∗ 𝑦𝑠 (𝑡)

= 2𝑇
𝑠
Δ𝑓

+∞

∑

𝑚=−∞

𝑦 (𝑚𝑇
𝑠
) sin 𝑐 [2Δ𝑓 (𝑡 − 𝑚𝑇

𝑠
)] .

(7)

The corresponding energy is defined as

𝐸
𝑦
= ∫

∞

−∞

𝑦
2
(𝑡) 𝑑𝑡 = ∫

∞

−∞

{2𝑇
𝑠
Δ𝑓

+∞

∑

𝑚=−∞

𝑦 (𝑚𝑇
𝑠
)

⋅ sin 𝑐 [2Δ𝑓 (𝑡 − 𝑚𝑇
𝑠
)]}

2

𝑑𝑡.

(8)

According to property of sin 𝑐 function, we have

∫

+∞

−∞

sin 𝑐 (2Δ𝑓𝑡 − 2𝑖Δ𝑓𝑇
𝑠
) sin 𝑐 (2Δ𝑓𝑡 − 2𝑘Δ𝑓𝑇

𝑠
) 𝑑𝑡

=
{

{

{

1

2Δ𝑓
, 𝑖 = 𝑘,

0, 𝑖 ̸= 𝑘.

(9)

Substituting (9) into (8), the energy is computed by

𝐸
𝑦
= ∫

∞

−∞

{2𝑇
𝑠
Δ𝑓

+∞

∑

𝑚=−∞

𝑦 (𝑚𝑇
𝑠
)

⋅ sin 𝑐 [2Δ𝑓 (𝑡 − 𝑚𝑇
𝑠
)]}

2

𝑑𝑡 = (2𝑇
𝑠
Δ𝑓)
2

⋅

+∞

∑

𝑚=−∞

𝑦
2
(𝑚𝑇
𝑠
) ∫

∞

−∞

{sin 𝑐 [2Δ𝑓 (𝑡 − 𝑚𝑇
𝑠
)]}
2
𝑑𝑡

=
(2𝑇
𝑠
Δ𝑓)
2

2Δ𝑓

+∞

∑

𝑚=−∞

𝑦
2
(𝑚𝑇
𝑠
)

= 2𝑇
2

𝑠
Δ𝑓

+∞

∑

𝑚=−∞

𝑦
2
(𝑚𝑇
𝑠
) .

(10)

As mentioned before, it is virtually impossible to exploit
the entire signals in domain (−∞,∞); we only process the
signal in the time interval 0 ≤ 𝑡 ≤ 𝑇, and the corresponding
number of sampling signal is 𝑁 = 𝑇/𝑇

𝑠
. The accumulative

energy in the time interval 0 ≤ 𝑡 ≤ 𝑇 is

𝐸
𝑦
= 2𝑇
2

𝑠
Δ𝑓

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
) . (11)

The corresponding power is expressed as

𝑃
𝑦
=
𝐸
𝑦

𝑇
=
2𝑇
𝑠
Δ𝑓

𝑁

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
) . (12)
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For convenience, but without loss of generality, we take
Nyquist frequency as sampling frequency; that is, 𝑓

𝑠
= 2Δ𝑓;

(11) and (12) can be simplified to

𝐸
𝑦
= 𝑇
𝑠

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
) =

1

2Δ𝑓

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
) ,

𝑃
𝑦
=
𝐸
𝑦

𝑇
=
1

𝑁

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
) ,

(13)

where 𝑁 = 𝑇/𝑇
𝑠
= 𝑇𝑓
𝑠
= 2𝑇Δ𝑓. The binary hypothesis test

for digital signal under the condition of Shannon’s sampling
theorem is

𝑦 (𝑚𝑇
𝑠
) = 𝑛 (𝑚𝑇

𝑠
) 𝐻

0

𝑦 (𝑚𝑇
𝑠
) = 𝑠 (𝑚𝑇

𝑠
) + 𝑛 (𝑚𝑇

𝑠
) 𝐻

1
.

(14)

For the present, energy and power or their varieties
are adopted as test statistic for spectrum sensing; main
methods consist of energy normalization-based and power-
based schemes. In the case of energy normalization-based
method, noise energy is normalized to make the noise fit
with standard Gaussian distribution; therefore the chi-square
distribution can be exploited to analyze the performances,
such as detection probability and false-alarm probability. As
far as power-based algorithm is concerned, signal power is
exploited to detect whether the signal exists by terms of
Gaussian distribution.

2.2. EnergyNormalization-Based SpectrumSensingAlgorithm.
For the binary test hypothesis (14), the energy is computed by

𝐸
𝑦
=

1

2Δ𝑓

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
)

=

{{{{{{

{{{{{{

{

1

2Δ𝑓

𝑁−1

∑

𝑚=0

[𝑠 (𝑚𝑇
𝑠
) + 𝑛 (𝑚𝑇

𝑠
)]
2

𝐻
1

1

2Δ𝑓

𝑁−1

∑

𝑚=0

𝑛
2
(𝑚𝑇
𝑠
) 𝐻

0
.

(15)

To normalize the noise energy, 𝑍 = 𝐸
𝑦
/(𝑁
0
/2) is used as

test statistic; the corresponding binary test hypothesis is

𝑍 =
𝐸
𝑦

𝑁
0
/2
=

1

𝑁
0
Δ𝑓

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
)

=

{{{{{{

{{{{{{

{

1

𝑁
0
Δ𝑓

𝑁−1

∑

𝑚=0

[𝑠 (𝑚𝑇
𝑠
) + 𝑛 (𝑚𝑇

𝑠
)]
2

𝐻
1

1

𝑁
0
Δ𝑓

𝑁−1

∑

𝑚=0

𝑛
2
(𝑚𝑇
𝑠
) 𝐻

0
.

(16)

For the noise with mean 0 and variance 𝜎2
𝑛
, the double-

sideband power spectral density is𝑁
0
/2 W/Hz; therefore the

noise power is expressed by

𝑃 = 𝑅
𝑋 (0) = 𝐸 [𝑛

2
(𝑡)] = 𝜎

2

𝑛
=
1

2𝜋
∫

𝜋

−𝜋

𝑆
𝑛 (𝜔) 𝑑𝜔

=
𝑁
0

2
⋅ 2Δ𝑓 = 𝑁

0
⋅ Δ𝑓.

(17)

The binary test hypothesis is transformed to

𝑍 =

{{{{{{

{{{{{{

{

𝑁−1

∑

𝑚=0

[
𝑠 (𝑚𝑇

𝑠
)

𝜎
𝑛

+
𝑛 (𝑚𝑇

𝑠
)

𝜎
𝑛

]

2

𝐻
1

𝑁−1

∑

𝑚=0

[
𝑛 (𝑚𝑇

𝑠
)

𝜎
𝑛

]

2

𝐻
0
.

(18)

Hence, 𝑛(𝑚𝑇
𝑠
)/𝜎
𝑛
fits with the standard Gaussian distri-

bution. Let 𝑎(𝑚) = 𝑠(𝑚𝑇
𝑠
)/𝜎
𝑛
, 𝑏(𝑚) = 𝑛(𝑚𝑇

𝑠
)/𝜎
𝑛
. Then (18)

reduces to

𝑍 =

{{{{{{

{{{{{{

{

𝑁−1

∑

𝑚=0

[𝑎 (𝑚) + 𝑏 (𝑚)]
2

𝐻
1

𝑁−1

∑

𝑚=0

[𝑏 (𝑚)]
2

𝐻
0
.

(19)

Because 𝑏(𝑚) = 𝑛(𝑚𝑇
𝑠
)/𝜎
𝑛
is a standard Gaussian distri-

bution,𝑍
𝑛
= ∑
𝑁−1

𝑚=0
[𝑏(𝑚)]

2 is a central chi-square distribution
with degree of freedom𝑁, and 𝑍

𝑠𝑛
= ∑
𝑁−1

𝑚=0
[𝑎(𝑚) + 𝑏(𝑚)]

2 is
a noncentral chi-square distribution with degree of freedom
𝑁. They can be denoted as 𝑍

𝑛
∼ 𝜒
2

𝑁
, 𝑍
𝑠𝑛
∼ 𝜒
2

𝑁
(2𝛾); here

𝛾 = ∑
𝑁−1

𝑚=0
𝑎
2
(𝑚) = ∑

𝑁−1

𝑚=0
(𝑠
2
(𝑚𝑇
𝑠
)/𝜎
2

𝑛
) = ∑

𝑁−1

𝑚=0
𝑠
2
(𝑚𝑇
𝑠
)/𝜎
2

𝑛
; it

is the ratio of signal energy to noise power, that is, SNR. If the
noise power is fixed, 𝛾will become bigger with the increasing
of the number of signal𝑁.

According to the probability density function of chi-
square distribution, for a specific threshold 𝜆, the detection
probability and false-alarm probability for the Gaussian
channel model are

𝑃
𝑑
= 𝑃 (𝑍 > 𝜆 | 𝐻

1
) = 𝑄

𝑁/2
(√2𝛾,√𝜆) ,

𝑃
𝑓
= 𝑃 (𝑍 > 𝜆 | 𝐻

0
) =

Γ (𝑁/2, 𝜆/2)

Γ (𝑁/2)
.

(20)

Here, Γ(⋅) is the gamma function, 𝑄
𝑢
(𝑎, 𝑥) is the gener-

alized Marcum’s 𝑄 function, and Γ(𝑎, 𝑥) is the incomplete
gamma function, which are, respectively, defined as

𝑄
𝑢 (𝑎, 𝑥) =

1

𝑎𝑢−1
∫

∞

𝑥

𝑡
𝑢
𝑒
−(𝑎
2
+𝑡
2
)/2
𝐼
𝑢−1 (𝑎𝑡) 𝑑𝑡,

Γ (𝑎, 𝑥) = ∫

+∞

𝑥

𝑡
𝑎−1
𝑒
−𝑡
𝑑𝑡.

(21)
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2.3. Power-Based Spectrum Sensing Algorithm. According to
(14), the power-based binary test hypothesis can be expressed
as

𝑍 =
1

𝑁

𝑁−1

∑

𝑚=0

𝑦
2
(𝑚𝑇
𝑠
)

=

{{{{{{

{{{{{{

{

1

𝑁

𝑁−1

∑

𝑚=0

[𝑠 (𝑚𝑇
𝑠
) + 𝑛 (𝑚𝑇

𝑠
)]
2

𝐻
1

1

𝑁

𝑁−1

∑

𝑚=0

𝑛
2
(𝑚𝑇
𝑠
) 𝐻

0
.

(22)

Generally, the number of signals is big enough; therefore
test statistic can bemodeled as a randomGaussian variable by
virtue of central limit theorem. The corresponding detection
probability and false-alarm probability, respectively, are

𝑃
𝑑
= 𝑃 (𝑍 > 𝜆 | 𝐻

1
) =

1

2
erfc[

𝜆 − (𝑃
𝑠
+ 𝜎
2

𝑛
)

2/√𝑁 (𝑃
𝑠
+ 𝜎2
𝑛
)
] ,

𝑃
𝑓
= 𝑃 (𝑍 > 𝜆 | 𝐻

0
) =

1

2
erfc(

𝜆 − 𝜎
2

𝑛

2/√𝑁𝜎2
𝑛

) .

(23)

Here, 𝑃
𝑠
= ∑
𝑁−1

𝑚=0
𝑠
2
(𝑚)/𝑁; erfc(⋅) is a complementary

error function, which is defined as

erfc (𝑥) = 2

√𝜋
∫

∞

𝑥

𝑒
−𝑡
2

𝑑𝑡. (24)

3. A Nonreconstruction Energy
Detection Algorithm

3.1.The SystemModel of Energy-Based SpectrumSensing under
Nonreconstruction Framework. Suppose that the sparsity of
signal is 𝐾, and the length of signal is 𝑁, the measurement
matrix Φ ∈ 𝑅

𝑀×𝑁
(𝑀 ≪ 𝑁). If the signal s is sparse,

then y = Φs; each entry of y is the inner product of the
row of matrix Φ and s; here y ∈ 𝑅

𝑀 are the compressed
measurements. If the signal s itself is not sparse, s should be
firstly represented in a basis sparsely; that is, s = Ψ𝛼, where
𝛼 is the sparse representation of 𝑁-dimension vector and Ψ
is a 𝑁 × 𝑁 matrix consisting of the sparse basis; then the
compressed measurements are obtained by

y = Φs = ΦΨ𝛼 = Θ𝛼. (25)

If the signal is sampled in terms of compressive sensing,
the corresponding binary test hypothesis of spectrum sensing
is written as

y = Φn 𝐻
0

y = Φ [s + n] 𝐻
1
,

(26)

where y is a vector of compressed measurements with the
length of 𝑀 and s and n are noncompressed signal vector
and noise vector with the length of 𝑁, respectively. Besides,

entries of noise vector n are i.i.d random Gaussian variables.
Entries in y can be expressed by

𝑌
𝑘
=

𝑁

∑

𝑖=1

𝜙
𝑘𝑖
𝑛 (𝑖) , 1 ≤ 𝑘 ≤ 𝑀 (𝐻

0
)

𝑌
𝑘
=

𝑁

∑

𝑖=1

𝜙
𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)] , 1 ≤ 𝑘 ≤ 𝑀 (𝐻

1
) ,

(27)

where 𝜙
𝑘𝑖
is the entry of measurement matrix Φ and 𝑛(𝑖)

denotes the entry of noise vector. The noise is a random
variable for each time; therefore the compressed measure-
ments are also random variables whether the measurement
matrix is the random matrix or the deterministic matrix.
From (27), we can observe that each entry of compressed
measurements can be obtained by the inner product of the
row vector of measurement matrix and the noncompressed
signal vector when the noncompressed signal is digital, which
is the case we study in this paper. If the noncompressed signal
is analog, obtaining the compressive measurement data is
by virtue of analog to information converter (AIC), which
is another important and open problem for compressive
sensing. However, we mainly focus on the spectrum sensing
by exploiting directly compressed measurements when the
noncompressed signal is digital. Therefore, inner product
may satisfy our requirements; no other particular method of
obtaining compressed measurements is introduced.

For measurement matrix Φ, it consists of deterministic
matrix and random matrix. Up to now, random matrix is
widely used because of incoherence of columns of measure-
ment matrix; only limited works about deterministic matrix
were reported. On the other hand, the entry of measurement
matrix is a constant if the deterministic matrix is adopted. It
is obvious that 𝑌

𝑘
is a random Gaussian variable because it is

a linear combination of the random Gaussian variables. This
case can be analyzed easily. To generalize our conclusion, the
randommatrix is used to analyze statistical characteristics of
compressed measurements in our paper. Besides, we assume
that entries of random matrix are i.i.d random variables,
which are independent with entries of noise vector.

For the convenience of following derivation, 𝑋
𝑘𝑖

is
defined as

𝑋
𝑘𝑖
= 𝜙
𝑘𝑖
𝑛 (𝑖) , 1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑖 ≤ 𝑁 (𝐻

0
)

𝑋
𝑘𝑖
= 𝜙
𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)] ,

1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑖 ≤ 𝑁 (𝐻
1
) .

(28)

According to principles of statistical signal processing,
𝑋
𝑘𝑖
is i.i.d random variable because entry of measurement

matrix Φ and entry of noise vector n are i.i.d random
variables, and they are independent of each other. Therefore
each entry in y can be denoted by

𝑌
𝑘
=

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
, 1 ≤ 𝑘 ≤ 𝑀. (29)

The column of the measurement matrixΦ is normalized;
𝐷(𝜙
𝑘𝑖
) = 1/𝑀. the main purpose of normalization is to
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remove the effect of measurement matrix on energy of the
compressed measurements, which offer agreed standard for
the comparison of different algorithms. In addition, the noise
is also normalized to compare with traditional energy nor-
malization scheme. Hence𝑍 = ∑𝑀−1

𝑘=0
𝑌
2

𝑘
/𝜎
2

𝑛
is adopted as test

statistic for compressive energy-based detection algorithm
under nonreconstruction framework.

3.2. Acquiring Probability Density Function by Virtue of
Direct Method. According to the principles of random signal
processing, the probability density function of 𝑌

𝑘
should be

obtained firstly to derive the probability density function
of 𝑌2
𝑘
. It can be seen from (29) that 𝑌

𝑘
is the sum of 𝑁

random variables, each random variable can be obtained by
the product of matrix entry 𝜙

𝑘𝑖
and 𝑛(𝑖). As declared above,

𝑛(𝑖) and themeasurement matrix entry 𝜙
𝑘𝑖
are independently

and identically distributed random Gaussian variables. Up
to now, the distribution of two random variables possesses
a concrete closed-form expression when only they are all
random Gaussian variables. It is very difficult to derive the
distribution function for other types of random variables.
Now we analyze the distribution of the product when the
entries of the measurement matrix are the random Gaussian
variables. The two cases 𝐻

0
and 𝐻

1
on the basis of the

binary test hypothesis will be discussed. For two independent
random Gaussian variables 𝑋 ∼ 𝑁(0, 𝜎

2

𝑋
) and 𝑌 ∼ 𝑁(0, 𝜎2

𝑌
),

the probability density function of their product 𝑍 = 𝑋𝑌

is

𝑓
𝑍
(𝑧) =

1

𝜋𝜎
𝑋
𝜎
𝑌

𝐾
0
(
|𝑧|

𝜎
𝑋
𝜎
𝑌

) , (30)

where𝐾
0
is the modified Bessel function of the second kind.

Applying 𝐷(𝜙
𝑘𝑖
) = 1/𝑀 and 𝐷[𝑛(𝑖)] = 𝜎2

𝑛
to (30) yields the

probability density function of𝑋
𝑘𝑖
:

𝑓
𝑋
𝑘𝑖
(𝑥) =

𝑀

𝜋𝜎
𝑛

𝐾
0
(
𝑀 |𝑥|

𝜎
𝑛

) . (31)

To derive the probability density function of 𝑌
𝑘

=

∑
𝑁

𝑖=1
𝑋
𝑘𝑖
, 1 ≤ 𝑘 ≤ 𝑀 from 𝑋

𝑘𝑖
, we assume that 𝑌

𝑘1
=

𝑋
𝑘1
, 𝑌
𝑘2

= 𝑋
𝑘2
, . . . , 𝑌

𝑘𝑁
= 𝑌
𝑘
= ∑
𝑁

𝑖=1
𝑋
𝑘𝑖
; they form

the multidimensional vectors Y = [𝑌
𝑘1
𝑌
𝑘2
⋅ ⋅ ⋅ 𝑌
𝑘𝑁
]
𝑇 and

X
𝑘
= [𝑋
𝑘1
𝑋
𝑘2
⋅ ⋅ ⋅ 𝑋
𝑘𝑁
]
𝑇. Therefore, the entries of X

𝑘
can be

expressed in terms of Y in the form

𝑋
𝑘1
= ℎ
1
(𝑌
𝑘1
, 𝑌
𝑘2
, . . . , 𝑌

𝑘𝑁
) = 𝑌
𝑘1

𝑋
𝑘2
= ℎ
2
(𝑌
𝑘1
, 𝑌
𝑘2
, . . . , 𝑌

𝑘𝑁
) = 𝑌
𝑘2

.

.

.

𝑋
𝑘𝑁
= ℎ
𝑁
(𝑌
𝑘1
, 𝑌
𝑘2
, . . . , 𝑌

𝑘𝑁
) = 𝑌
𝑘𝑁
−

𝑁−1

∑

𝑖=1

𝑌
𝑘𝑖
.

(32)

Their corresponding Jacobian is

|𝐽| =



𝜕ℎ
1

𝜕𝑦
𝑘1

𝜕ℎ
1

𝜕𝑦
𝑘2

⋅ ⋅ ⋅
𝜕ℎ
1

𝜕𝑦
𝑘𝑁

𝜕ℎ
2

𝜕𝑦
𝑘1

𝜕ℎ
2

𝜕𝑦
𝑘2

⋅ ⋅ ⋅
𝜕ℎ
2

𝜕𝑦
𝑘𝑁

.

.

.
.
.
.

.

.

.
.
.
.

𝜕ℎ
𝑁

𝜕𝑦
𝑘1

𝜕ℎ
𝑁

𝜕𝑦
𝑘2

⋅ ⋅ ⋅
𝜕ℎ
𝑁

𝜕𝑦
𝑘𝑁



=



1 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−1 −1 ⋅ ⋅ ⋅ 1



= 1. (33)

Accordingly, the relation of joint probability density
function of Y and joint probability density function of X

𝑘
is

𝑓
𝑌
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
) = |𝐽| ⋅ 𝑓𝑋

𝑘

(𝑥
𝑘1
, 𝑥
𝑘2
, . . . , 𝑥

𝑘𝑁
)

= |𝐽| ⋅ 𝑓𝑋
𝑘

(ℎ
1
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
) ,

ℎ
2
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
) , . . . , ℎ

𝑁
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
)) .

(34)

Because the entries of X
𝑘
are independently and identi-

cally distributed random variables, the joint PDF of (34) can
be rewritten by

𝑓
𝑌
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
) = |𝐽|

⋅ 𝑓
𝑋
𝑘1

(ℎ
1
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
))

⋅ 𝑓
𝑋
𝑘2

(ℎ
2
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
))

⋅ ⋅ ⋅ 𝑓
𝑋
𝑘𝑁

(ℎ
𝑁
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
)) .

(35)

Consequently, the probability density function of 𝑌
𝑘
is

derived by virtue of that of Y:

𝑓
𝑌
𝑘𝑁

(𝑦
𝑘𝑁
) =∭

𝑁−1

(𝑓
𝑋
𝑘1

(ℎ
1
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
))

⋅𝑓
𝑋
𝑘2

(ℎ
2
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
))

⋅ ⋅ ⋅ 𝑓
𝑋
𝑘𝑁

(ℎ
𝑁
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
))) 𝑑𝑦

𝑘1
𝑑𝑦
𝑘2
⋅ ⋅ ⋅ 𝑑𝑦
𝑘(𝑁−1)

=∭
𝑁−1

(𝑓
𝑋
𝑘1

(𝑥
𝑘1
) 𝑓
𝑋
𝑘2

(𝑥
𝑘2
)

⋅ ⋅ ⋅ 𝑓
𝑋
𝑘N
(

𝑁

∑

𝑖=1

𝑥
𝑘𝑖
))𝑑𝑥

𝑘1
𝑑𝑥
𝑘2
⋅ ⋅ ⋅ 𝑑𝑥

𝑘(𝑁−1)

= 𝑓
𝑋
𝑘1

(ℎ
1
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
)) ∗ 𝑓

𝑋
𝑘2

(ℎ
2
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . ,

𝑦
𝑘𝑁
)) ∗ ⋅ ⋅ ⋅ ∗ 𝑓

𝑋
𝑘𝑁

(ℎ
𝑁
(𝑦
𝑘1
, 𝑦
𝑘2
, . . . , 𝑦

𝑘𝑁
)) .

(36)

As aforementioned, 𝐸(𝜙
𝑘𝑖
) = 𝐸[𝑛(𝑖)] = 0, 𝐷(𝜙

𝑘𝑖
) = 1/

𝑀, and 𝐷[𝑛(𝑖)] = 𝜎
2

𝑛
. Applying these results and (31) to
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(36), the specific expression can be achieved.When𝑁 is even
number, the probability density function of 𝑌

𝑘𝑁
is

𝑓
𝑌
𝑘𝑁

(𝑦
𝑘𝑁
) =

√𝑀

√𝜎2
𝑛
(𝑁/2 − 1)!

exp(−
√𝑀(𝑦

𝑘𝑁
)

√𝜎2
𝑛

)

⋅

𝑁/2−1

∑

𝑖=0

(𝑁/2 + 𝑖 − 1)!

2𝑁/2+𝑖𝑖! (𝑚 − 𝑖 − 1)!

⋅
[
[

[

√𝑀(𝑦
𝑘𝑁
)

√𝜎2
𝑛

]
]

]

𝑁/2−1−𝑖

.

(37)

When𝑁 is odd number, the probability density function
of 𝑌
𝑘𝑁

is

𝑓
𝑌
𝑘𝑁

(𝑦
𝑘𝑁
) =

√𝑀[
𝑦𝑘𝑁


√𝑀/2√𝜎2

𝑛
]

(𝑁−1)/2

√𝜋𝜎2
𝑛
Γ [(𝑁 − 1) /2 + 1/2]

⋅ 𝐾
(𝑁−1)/2

[
[

[

𝑦𝑘𝑁

√𝑀

√𝜎2
𝑛

]
]

]

.

(38)

Now we analyze probability density function of the 𝐻
1

case. According to the binary test hypothesis, it follows that
𝑌
𝑘
= ∑
𝑁

𝑖=1
𝜙
𝑘𝑖
[𝑠(𝑖) + 𝑛(𝑖)], 1 ≤ 𝑘 ≤ 𝑀; the statistical

parameters are with 𝐸[𝜙
𝑘𝑖
] = 0, 𝐸[𝑠(𝑖) + 𝑛(𝑖)] = 𝑠, 𝐷(𝜙

𝑘𝑖
) =

1/𝑀, and 𝐷[𝑛(𝑖)] = 𝜎
2

𝑛
. If 𝐷[𝜙

𝑘𝑖
] = 𝐷[𝑠(𝑖) + 𝑛(𝑖)], that is,

𝜎
2

𝑛
= 1/𝑀, the probability density function of 𝑌

𝑘𝑁
has a

closed-form expression. Let 𝜎2
𝑛
= 1/𝑀 = 𝜎

2. When𝑁 is even
number, the probability density function of 𝑌

𝑘𝑁
is

𝑓
𝑌
𝑘𝑁

(𝑦
𝑘𝑁
) =

1

2𝜎2
[

𝑦𝑘𝑁


2𝜎2
]

𝑁/2−𝑙

exp[−
𝑦𝑘𝑁

 + 𝑠
2
/2

𝜎2
]

⋅

∞

∑

𝑖=0

𝑁/2+𝑖−1

∑

𝑙=0

(𝑚 + 𝑖 + 𝑙 − 1)!

2𝑙𝑖! (𝑚 + 𝑖 − 1)!

⋅
1

𝑙! (𝑚 + 𝑖 − 𝑙 − 1)!
[
𝑠
2

4𝜎2
]

𝑖

[

𝑦𝑘𝑁


𝜎2
]

𝑖−𝑙

.

(39)

When𝑁 is odd number, the probability density function
of 𝑌
𝑘𝑁

is

𝑓
𝑌
𝑘𝑁

(𝑦
𝑘𝑁
) =

1

√𝜋𝜎2
[
𝑦
𝑘𝑁

2𝜎2
]

(𝑁−1)/2

exp[− 𝑠
2

2𝜎2
]

⋅

∞

∑

𝑖=0

1

𝑖!Γ (𝑚 + 𝑖 + 1/2)

⋅ [
𝑠
2 𝑦𝑘𝑁



4𝜎2
]

(𝑁−1)/2+𝑖

⋅ 𝐾
(𝑁−1)/2+𝑖

[

𝑦𝑘𝑁


𝜎2
] .

(40)

In fact, it is difficult to satisfy the condition 𝜎2
𝑛
= 1/𝑀 =

𝜎
2. Therefore we cannot derive the specific closed form of

probability density function under a condition of 𝜎2
𝑛
̸= 1/𝑀.

Through the previous analysis, we can observe that it
is difficult or even impossible to derive the probability
density function of the square of 𝑌

𝑘𝑁
, because the probability

density function of 𝑌
𝑘𝑁

consists of multiple accumulations
and factorial, and some operations are implemented in the
range (0,∞). In addition, the most troublesome thing to
us is that the aforementioned derivation can be carried out
because the entries of measurement matrix are supposed
as random Gaussian variables. But, in practical application,
measurement matrix may fit with other distributions. Con-
sequently, it is formidable to generalize the previous results
to other distributions. In order to obtain general conclu-
sions, probability distribution of compressed measurements
is modeled as Gaussian distribution in terms of central limit
theorem. In this case, we derive some related closed-form
expressions when the entries of the measurement matrix are
only independently and identically distributed.

3.3. Derivation of Probability Density Function of Test Statistic
Using Central Limit Theorem. The probability density func-
tion is only determined bymean and variance for the random
Gaussian variable. Therefore, we firstly derive their expres-
sion for two cases 𝐻

0
and 𝐻

1
of the binary test hypothesis

under nonreconstruction framework. It is assumed that each
entry of the measurement matrix and noise is the statistically
independent random variable.

Assume that 𝑈 and 𝑉 are statistically and independently
random variables; we give the result aboutmean and variance
of product 𝑇 of two random variables 𝑈 and 𝑉 directly. So
the mean of product 𝑇 of two random variables 𝑈 and 𝑉 is
expressed by

𝐸 [𝑇] = 𝐸 [𝑈𝑉] = 𝐸 [𝑈] 𝐸 [𝑉] . (41)

The variance of the product 𝑇 is

𝐷 [𝑇] = 𝐷 [𝑈𝑉] = 𝜎
2

𝑈
𝜎
2

𝑉
+ (𝜎
2

𝑈
𝑚
2

𝑉
+ 𝑚
2

𝑈
𝜎
2

𝑉
)

= 𝐷 (𝑈)𝐷 (𝑉) + (𝜎
2

𝑈
𝑚
2

𝑉
+ 𝑚
2

𝑈
𝜎
2

𝑉
) .

(42)

We observe from (42) that 𝐷[𝑈𝑉] ≥ 𝐷(𝑈)𝐷(𝑉), when
the random variable has zero mean. Applying these results to
(28), we can obtain mean and variance, respectively:

𝐸 [𝑋
𝑘𝑖
] = 𝐸 [𝜙

𝑘𝑖
𝑛 (𝑖)] = 𝐸 [𝜙

𝑘𝑖
] 𝐸 [𝑛 (𝑖)] ,

1 ≤ 𝑘 ≤ 𝑀 (𝐻
0
)

𝐸 [𝑋
𝑘𝑖
] = 𝐸 [𝜙

𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)]]

= 𝐸 [𝜙
𝑘𝑖
] 𝐸 [𝑠 (𝑖) + 𝑛 (𝑖)] , 1 ≤ 𝑘 ≤ 𝑀 (𝐻

1
)

(43)

𝐷[𝑋
𝑘𝑖
] = 𝐷 [𝜙

𝑘𝑖
𝑛 (𝑖)] , 1 ≤ 𝑘 ≤ 𝑀 (𝐻

0
)

𝐷 [𝑋
𝑘𝑖
] = 𝐷 [𝜙

𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)]] , 1 ≤ 𝑘 ≤ 𝑀 (𝐻
1
) .

(44)
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Because 𝐸[𝜙
𝑘𝑖
] = 𝐸[𝑛(𝑖)] = 0, the mean of (43) can be calcu-

lated by

𝐸 [𝑋
𝑘𝑖
] = 0, 1 ≤ 𝑘 ≤ 𝑀 (𝐻

0
)

𝐸 [𝑋
𝑘𝑖
] = 0, 1 ≤ 𝑘 ≤ 𝑀 (𝐻

1
) .

(45)

The variance of𝐻
0
case is computed by

𝐷[𝑋
𝑘𝑖
] = 𝐷 [𝜙

𝑘𝑖
𝑛 (𝑖)] = 𝐷 [𝜙

𝑘𝑖
]𝐷 [𝑛 (𝑖)] . (46)

Next we analyze the variance for 𝐻
1
case; it follows that

𝐸[𝑠(𝑖) + 𝑛(𝑖)] = 𝐸[𝑠(𝑖)] + 𝐸[𝑛(𝑖)] = 𝐸[𝑠(𝑖)] ̸= 0. According to
(42), we have

𝐷[𝜙
𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)]] = 𝐷 [𝜙𝑘𝑖]𝐷 [𝑠 (𝑖) + 𝑛 (𝑖)]

+ 𝐷 [𝜙
𝑘𝑖
] 𝐸
2
[𝑠 (𝑖) + 𝑛 (𝑖)]

= 𝐷 [𝜙
𝑘𝑖
]𝐷 [𝑛 (𝑖)]

+ 𝐷 [𝜙
𝑘𝑖
] 𝐸
2
[𝑠 (𝑖)] .

(47)

So the variance of (44) is

𝐷[𝑋
𝑘𝑖
] = 𝐷 [𝜙

𝑘𝑖
𝑛 (𝑖)] = 𝐷 [𝜙

𝑘𝑖
]𝐷 [𝑛 (𝑖)] ,

1 ≤ 𝑘 ≤ 𝑀 (𝐻
0
)

𝐷 [𝑋
𝑘𝑖
] = 𝐷 [𝜙

𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)]]

= 𝐷 [𝜙
𝑘𝑖
]𝐷 [𝑛 (𝑖)] + 𝐷 [𝜙𝑘𝑖] 𝐸

2
[𝑠 (𝑖)] ,

1 ≤ 𝑘 ≤ 𝑀 (𝐻
1
) .

(48)

Because, for all 𝑘 and 𝑖, 𝜙
𝑘𝑖

and 𝑛(𝑖) are statistically
independent, 𝜙

𝑘𝑖
is identically distributed, and equivalently

𝑛(𝑖) is also identically distributed. Hence, for all 𝑘 and 𝑖, each
𝑋
𝑘𝑖
is statistically independent; themean can be computed by

𝐸 [𝑌
𝑘
] = 𝐸(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
) =

𝑁

∑

𝑖=1

𝐸 (𝑋
𝑘𝑖
) = 0, 𝐻

0

𝐸 [𝑌
𝑘
] = 𝐸(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
) =

𝑁

∑

𝑖=1

𝐸 (𝑋
𝑘𝑖
)

=

𝑁

∑

𝑖=1

𝐸 [𝜙
𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)]] = 0, 𝐻

1
.

(49)

And the variance can be calculated by

𝐷[𝑌
𝑘
] = 𝐷(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
) =

𝑁

∑

𝑖=1

𝐷(𝑋
𝑘𝑖
)

=

𝑁

∑

𝑖=1

𝐷[𝜙
𝑘𝑖
]𝐷 [𝑛 (𝑖)] , 𝐻

0

𝐷[𝑌
𝑘
] = 𝐷(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
) =

𝑁

∑

𝑖=1

𝐷(𝑋
𝑘𝑖
)

=

𝑁

∑

𝑖=1

{𝐷 [𝜙
𝑘𝑖
]𝐷 [𝑛 (𝑖)] + 𝐷 [𝜙𝑘𝑖] 𝐸

2
[𝑠 (𝑖)]} ,

𝐻
1
.

(50)

Supposed that 𝐸[𝑠(𝑖)] = 𝑠, 1 ≤ 𝑖 ≤ 𝑁. In addition,
in order to eliminate the effects of measurement matrix to
the energy of compressed measurements, column entries of
measurement matrix are normalized; that is, 𝐷[𝜙

𝑘𝑖
] = 1/𝑀;

the variance in (50) can be simplified to

𝐷[𝑌
𝑘
] = 𝐷(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
) =

𝑁

∑

𝑖=1

𝐷(𝑋
𝑘𝑖
) =

𝑁

𝑀
𝜎
2

𝑛
, 𝐻
0

𝐷[𝑌
𝑘
] = 𝐷(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
) =

𝑁

∑

𝑖=1

𝐷(𝑋
𝑘𝑖
) =

𝑁

𝑀
{𝜎
2

𝑛
+ 𝑠
2
} ,

𝐻
1
.

(51)

Due to𝑀 ≪ 𝑁, 𝐷(𝑌
𝑘
) ≥ 𝐷[𝑛(𝑖)] holds for the two cases

of binary test hypothesis; namely, the variance of compressed
measurements is bigger than that of initial noise and signal.
After deriving its mean and variance, we can acquire the
closed-form expression of probability density function for
compressed measurements.

3.4. Performance Analysis of Energy-Based Spectrum Sensing
Algorithm under Nonreconstruction Framework. For the con-
venience of analysis, the sum of square of the compressed
measurements is expressed in terms of𝑋

𝑘𝑖
in the form

𝑀−1

∑

𝑘=0

𝑌
2

𝑘

=

{{{{{{{

{{{{{{{

{

𝑀−1

∑

𝑘=0

[

𝑁

∑

𝑖=1

𝜙
𝑘𝑖
𝑛 (𝑖)]

2

=

𝑀−1

∑

𝑘=0

[

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
]

2

, 𝐻
0

𝑀−1

∑

𝑘=0

[

𝑁

∑

𝑖=1

𝜙
𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)]]

2

=

𝑀−1

∑

𝑘=0

[

𝑁

∑

𝑖=1

𝑋
𝑘𝑖
]

2

, 𝐻
1
.

(52)

It can be seen from (51) that the compressed measure-
ments no longer fit with the standard Gaussian distribution
because the variance is not equal to 1. So the sum of square of
the compressed measurements does not satisfy the condition
of chi-square distribution. For convenience of computation
and comparisons, the noise is normalized; therefore the test
statistic of energy-based spectrum sensing algorithm under
nonreconstruction framework is taken as 𝑍 = ∑

𝑀−1

𝑘=0
𝑌
2

𝑘
/𝜎
2

𝑛
.
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Applying this expression to the binary test hypothesis (26),
the test statistic is denoted as

𝑍 =
∑
𝑀−1

𝑘=0
𝑌
2

𝑘

𝜎2
𝑛

=

𝑀−1

∑

𝑘=0

(
𝑌
𝑘

𝜎
𝑛

)

2

=

{{{{{{{

{{{{{{{

{

𝑀−1

∑

𝑘=0

[

𝑁

∑

𝑖=1

𝜙
𝑘𝑖

𝑛 (𝑖)

𝜎
𝑛

]

2

, 𝐻
0

𝑀−1

∑

𝑘=0

{

𝑁

∑

𝑖=1

[𝜙
𝑘𝑖

𝑠 (𝑖)

𝜎
𝑛

+ 𝜙
𝑘𝑖

𝑛 (𝑖)

𝜎
𝑛

]}

2

, 𝐻
1
.

(53)

We can see from (53) that compressed measurements can
be exploited to perform spectrum sensing, where spectrum
sensing and compressive sensing are integrated. The mean
and variance of test statistic are calculated, respectively, by

𝐸[
𝑌
𝑘

𝜎
𝑛

] = 𝐸(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖

𝜎
𝑛

) =
1

𝜎
𝑛

𝑁

∑

𝑖=1

𝐸 (𝑋
𝑘𝑖
)

=
1

𝜎
𝑛

𝑁

∑

𝑖=1

𝐸 [𝜙
𝑘𝑖
𝑛 (𝑖)] = 0, 𝐻

0

𝐸[
𝑌
𝑘

𝜎
𝑛

] = 𝐸(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖

𝜎
𝑛

) =
1

𝜎
𝑛

𝑁

∑

𝑖=1

𝐸 (𝑋
𝑘𝑖
)

=
1

𝜎
𝑛

𝑁

∑

𝑖=1

𝐸 [𝜙
𝑘𝑖 [𝑠 (𝑖) + 𝑛 (𝑖)]] = 0, 𝐻

1

𝐷[
𝑌
𝑘

𝜎
𝑛

] = 𝐷(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖

𝜎
𝑛

) =
1

𝜎2
𝑛

𝑁

∑

𝑖=1

𝐷(𝑋
𝑘𝑖
) = 𝑁𝜎

2

𝑚
,

𝐻
0

𝐷[
𝑌
𝑘

𝜎
𝑛

] = 𝐷(

𝑁

∑

𝑖=1

𝑋
𝑘𝑖

𝜎
𝑛

) =
1

𝜎2
𝑛

𝑁

∑

𝑖=1

𝐷(𝑋
𝑘𝑖
)

= 𝑁𝜎
2

𝑚
{1 +

𝑠
2

𝜎2
𝑛

} , 𝐻
1
.

(54)

Consequently, ∑𝑁
𝑖=1
(𝑛(𝑖)/𝜎

𝑛
) fits with the standard Gaus-

sian distribution. But, for the compressed measurements,
their variance no longer equals 1 in most cases; the test statis-
tic fits with gamma distribution; therefore the probability
density function is

𝑓
𝑍
(𝑧)

=

{{{{{{{

{{{{{{{

{

𝑧
𝑀/2−1 exp (−𝑧/2𝑁𝜎2

𝑚
)

(2𝑁𝜎2
𝑚
)
𝑀/2

Γ ((1/2)𝑀)

, 𝐻
0

𝑧
𝑀/2−1 exp (−𝑧𝜎2

𝑛
/2𝑁𝜎

2

𝑚
(𝜎
2

𝑛
+ 𝑠
2
))

[2𝑁𝜎2
𝑚
(1 + 𝑠2/𝜎2

𝑛
)]
𝑀/2

Γ ((1/2)𝑀)

, 𝐻
1
.

(55)

Here, Γ(⋅) is gamma function. The corresponding cumu-
lative distribution function (CDF) for the binary test hypoth-
esis is

𝐹
𝑍 (𝑧)

=

{{{{{{{

{{{{{{{

{

∫

𝑧

0

𝑢
𝑀/2−1 exp (−𝑢/2𝑁𝜎2

𝑚
)

(2𝑁𝜎2
𝑚
)
𝑀/2

Γ ((1/2)𝑀)

𝑑𝑢, 𝐻
0

∫

𝑧

0

𝑢
𝑀/2−1 exp (−𝜎2

𝑛
𝑢/2𝑁𝜎

2

𝑚
(𝜎
2

𝑛
+ 𝑠
2
))

[2𝑁𝜎2
𝑚
(1 + 𝑠2/𝜎2

𝑛
)] 2𝑁 (𝜎2

𝑛
+ 𝑠2)
𝑀/2

Γ ((1/2)𝑀)

𝑑𝑢, 𝐻
1
.

(56)

For any𝑀/2, there is no closed-form expression for this
integral; however, if𝑀/2 is an integer, that is,𝑀 is even, (56)
can be simplified to

𝐹
𝑍 (𝑧) =

{{{{{{

{{{{{{

{

1 − exp(− 𝑧

2𝑁𝜎2
𝑚

)

𝑀/2−1

∑

𝑘=0

1

𝑘
(

𝑧

2𝑁𝜎2
𝑚

)

𝑘

, 𝐻
0

1 − exp(−
𝜎
2

𝑛
𝑧

2𝑁𝜎2
𝑚
(𝜎2
𝑛
+ 𝑠2)

)

𝑀/2−1

∑

𝑘=0

1

𝑘
(

𝜎
2

𝑛
𝑧

2𝑁𝜎2
𝑚
(𝜎2
𝑛
+ 𝑠2)

)

𝑘

, 𝐻
1
.

(57)

For a given threshold 𝜆, the detection probability of
Gaussian channel is expressed by

𝑃
𝑑
= 𝑃 (𝑍 > 𝜆 | 𝐻

1
) = 1 − [

[

1

− exp(−
𝜎
2

𝑛
𝜆

2𝑁𝜎2
𝑚
(𝜎2
𝑛
+ 𝑠2)

)

⋅

𝑀/2−1

∑

𝑘=0

1

𝑘
(

𝜎
2

𝑛
𝜆

2𝑁𝜎2
𝑚
(𝜎2
𝑛
+ 𝑠2)

)

𝑘

]

]

= exp(−
𝜎
2

𝑛
𝜆

2𝑁𝜎2
𝑚
(𝜎2
𝑛
+ 𝑠2)

)

⋅

𝑀/2−1

∑

𝑘=0

1

𝑘
(

𝜎
2

𝑛
𝜆

2𝑁𝜎2
𝑚
(𝜎2
𝑛
+ 𝑠2)

)

𝑘

.

(58)

The false-alarm probability is

𝑃
𝑓
= 𝑃 (𝑍 > 𝜆 | 𝐻

0
)

= 1 − [1 − exp(− 𝜆

2𝑁𝜎2
𝑚

)

𝑀/2−1

∑

𝑘=0

1

𝑘
(

𝜆

2𝑁𝜎2
𝑚

)

𝑘

]
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Figure 1: pdf of CMD for noise;𝑁 = 2048,𝑀 = 500.

= exp(− 𝜆

2𝑁𝜎2
𝑚

)

𝑀/2−1

∑

𝑘=0

1

𝑘
(

𝜆

2𝑁𝜎2
𝑚

)

𝑘

.

(59)

The missed probability is computed by 𝑃
𝑚
= 𝑃(𝑍 < 𝜆 |

𝐻
1
) = 1 − 𝑃

𝑑
.

4. Simulation Results and Discussion

To prove the theoretical analysis, we will evaluate the pre-
sented algorithm and related conclusions by terms of Monte
Carlo simulation in this section, including the statistical
characteristics of compressed measurements and the per-
formance of spectrum sensing algorithm under nonrecon-
struction framework. For simplicity, the abbreviation of the
compressed measurements is CMD, the abbreviation of the
noncompressed signal is IND, and pdf, Pd, and Pf are the
abbreviated notations of probability density function, detec-
tion probability, and false-alarm probability, respectively, in
the simulation figure.

4.1. Statistic Characteristics of Compressed Measurements.
To verify our assumption of Gaussian distribution for the
compressed measurements, Figures 1 and 2 demonstrate
simulation result and theoretical result in the case of noise
and noise plus signal. We observe that simulation result can
match theoretical analysis, which proves that Gaussian distri-
bution is reasonable and suitable model for the compressed
measurements.

Next, we begin with considering the statistical character-
istics of compressed measurements and test statistic, such as
pdf, mean, and variance. The pdf of compressed measure-
ments and noncompressed signal are illustrated in Figures
3 and 4. A random Gaussian matrix is adopted as the mea-
surement matrix; the number of noncompressed signals and
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Figure 2: pdf of CMD for noise plus signal; 𝑁 = 2048,𝑀 = 500,
and 𝐸(s) = 12.
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Figure 3: pdf of CMD and IND for noise; 𝑁 = 2048, 𝑀 = 500,
𝐸(n) = 0, and 𝜎2 = 1.

compressed measurements are 𝑁 and 𝑀, respectively. The
compressed measurements and the noncompressed signal
have same mean, but it is obvious that they possess different
variances, and the variance of the compressed measurements
is bigger than that of the noncompressed signal.

Now, let us analyze the theoretical results about mean
and variance through (49) and (51). It can be seen from
(49) that the mean of compressed measurements is zero
no matter what the mean of noncompressed signal is. For
variance, we can observe from (51) that 𝜎2

𝑛
is the variance of

initial noise, and 𝜎2
𝑛
+ 𝑠
2 is the variance of initial noise plus

signal. Due to 𝑁 ≫ 𝑀, it follows that (𝑁/𝑀)𝜎2
𝑛
is larger
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Figure 4: pdf of CMD and IND for noise plus signal;𝑁 = 2048,𝑀 = 500, 𝐸(n) = 0, 𝜎2 = 1, and 𝐸(n + s) = 4.
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Figure 5: pdf of energy of CMD and IND;𝑁 = 400,𝑀 = 100, variance of measurement is 1/𝑀, 𝐸(n) = 0, 𝜎2 = 1, and energy of signal = 2.

than 𝜎2
𝑛
and (𝑁/𝑀){𝜎2

𝑛
+ 𝑠
2
} is larger than 𝜎2

𝑛
+ 𝑠
2; namely,

the variance of compressed measurements becomes bigger
than that of noncompressed signal. As mentioned before,
simulation results of mean and variance are coincident with
their theoretical analysis.

Below, we discuss the mean and variance of sum of
square (energy); the simulation parameters are the same as
that of Figure 3. As illustrated in Figure 5, there are the
same mean and various variances for the compressed mea-
surements and the noncompressed signal, but the variance
becomes bigger after the signal is compressed by compressive
sensing methods, which enable the energy of compressed
measurements to be more dispersed.

To prove the simulation results in Figure 5 and generalize
the theoretical results, the mean and variance of∑𝑀−1

𝑘=0
𝑌
2

𝑘
are

calculated instead of test statistic 𝑍 = ∑
𝑀−1

𝑘=0
𝑌
2

𝑘
/𝜎
2

𝑛
. We deal

with firstly the mean of sum of square; it follows that

𝐸[

𝑀−1

∑

𝑘=0

𝑌
2

𝑘
] =

𝑀−1

∑

𝑘=0

𝐸 [𝑌
2

𝑘
] = 𝑀

𝑁

𝑀
𝜎
2

𝑛
= 𝑁𝜎

2

𝑛
, 𝐻
0

𝐸[

𝑀−1

∑

𝑘=0

𝑌
2

𝑘
] =

𝑀−1

∑

𝑘=0

𝐸 [𝑌
2

𝑘
] = 𝑀

𝑁

𝑀
(𝜎
2

𝑛
+ 𝑠
2
)

= 𝑁{𝜎
2

𝑛
+ 𝑠
2
} , 𝐻

1
.

(60)
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Figure 6: pd and pf for CMD and IND for fixed compressive rate.

We observe that the mean remains unchanged. The
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where 2𝑁𝜎4
𝑛
and 2𝑁{𝜎2

𝑛
+𝑠
2
}
2 are variance of noncompressed

signal for𝐻
0
and𝐻

1
cases, respectively. Similarly, due to𝑁 ≪

𝑀, (𝑁/𝑀)(2𝑁𝜎4
𝑛
) is bigger than 2𝑁𝜎4

𝑛
, and (𝑁/𝑀)[2𝑁{𝜎2

𝑛
+

𝑠
2
}
2
] is bigger than 2𝑁{𝜎

2

𝑛
+ 𝑠
2
}
2. Form (60) and (61),

the simulation results in Figure 5 fit with completely the
theoretical analysis.

For the test statistic 𝑍 = ∑
𝑀−1

𝑘=0
𝑌
2

𝑘
/𝜎
2

𝑛
, it is special case of

∑
𝑀−1

𝑘=0
𝑌
2

𝑘
; namely, 𝜎2

𝑛
= 1. As a result, the mean and variance

possess the same results as ∑𝑀−1
𝑘=0

𝑌
2

𝑘
.

4.2. Energy-Based Spectrum Sensing Performance for the
Compressed Measurements and the Noncompressed Signal.
According to Newman-Pearson criterion, the first step to
evaluate the performance of spectrum sensing is determining
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Figure 7: pd and pf for CMD and IND for various compressive rate.

the threshold in terms of (59) when the false-alarm proba-
bility is fixed. The key performance parameters for spectrum
sensing are detection probability, false-alarm probability,
and ROC curve. We will discuss the detection probability
for the different cases. Firstly, we fix the compressive rate
𝑁/𝑀 = 4; other simulation parameters are as follows: false-
alarm probability is 0.05, the SNR is varied from −20 dB to
5 dB, the variance of measurement matrix is 1/𝑀, and the
noise is standard normally distributed with the mean 0 and
the variance 1. The number of noncompressed signals and
compressed measurements are, respectively, 𝑁 = 512 and
𝑀 = 128 in Figure 6(a), 𝑁 = 2560 and 𝑀 = 640 in
Figure 6(b), 𝑁 = 4096 and 𝑀 = 1024 in Figure 6(b), and
𝑁 = 5120 and𝑀 = 1280 in Figure 6(d). In these figures, the

simulated false-alarm probability varies around the assumed
false-alarm probability slightly.

We notice from Figure 6 that detection probability
increases as 𝑁 and 𝑀 rise. Equivalently, increasing the
number means improving the SNR, which is also verified by
virtue of (58). In other words, the variance varies with 𝑁
inverse proportionally, which will result in higher detection
probability for the same threshold.

Next, we evaluate the performance for the various
compressive rate and SNR, but other parameters remain
unchanged. The false-alarm probability is 0.05, the number
of noncompressed signals 𝑁 is 512, the SNR is varied from
−20 dB to 5 dB, the variance of measurement matrix is 1/𝑀,
and the noise is normally distributed with themean 0 and the
variance 1. The compressive rate is, respectively,𝑁/𝑀 = 8 in
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Figure 8: ROC curve for energy-based spectrum sensing algorithm under nonreconstruction framework.

Figure 7(a),𝑁/𝑀 = 4 in Figure 7(b),𝑁/𝑀 = 2 in Figure 7(c),
and𝑁/𝑀 = 1 in Figure 7(d).

The simulation results show that sensing performance of
compressive sensing approaches that of conventional energy-
based method gradually with the increasing of𝑀.

And then the detection performance is quantified by
depicting the receiver operating characteristic (ROC) for
various SNR, as shown in Figure 8 for SNR = −5 dB and SNR
= −10 dB.The simulation parameters are as follows:𝑁 = 512

and𝑀 is 32, 64, 128, and 256. The variance of measurement
matrix is 1/𝑀; the noise is standard normally distributedwith
the mean 0 and the variance 1. The figure asserts the fact that
the performance of ROC improves as 𝑀 increases. On the
other hand, ROC varies with SNR proportionally.

Finally, we evaluate the computational complexity of
energy-based spectrum sensing and nonreconstruction-
based spectrum sensing. If the real-valued signal is sampled,
there are totally 𝑁 multiplications and 𝑁 − 1 additions,
but, for the compressed measurements, there are only 𝑀
multiplications and𝑀 − 1 additions. If the complex-valued
signal is sampled, there exist totally 2𝑁 multiplications and
2𝑁 − 1 additions, but, for the compressed measurements,
there exist only 2𝑀multiplications and 2𝑀−1 additions. As
mentioned before, 𝑀 ≪ 𝑁; the computational complexity
of energy-based spectrum sensing under nonreconstruction
framework is less than that of traditional energy-based
spectrum sensing, which will result in faster detection and
less detection time.

More importantly, we compare the computational com-
plexity of conventional reconstruction-based spectrum sens-
ing with that of nonreconstruction-based spectrum sensing.
We take theMP reconstruction algorithm as example because
it posseses lower computational complexity than that of other
reconstruction algorithms. Assume that the times of iteration
are the sparsity 𝐾, which is the fewest times required by

the reconstruction algorithm.The computational complexity
of each iteration is computing the 𝑁 times of inner pro-
duction; each inner production needs𝑀multiplications and
𝑀 − 1 addition. As a consequence, the total computational
complexity for times of𝑁 inner production is𝑁×𝑀multipli-
cations and𝑁×(𝑀−1) additions; moreover, there are (𝑁−1)
times comparisons. The entire computational complexity for
MP algorithm is 𝐾 × (𝑁 × 𝑀) multiplications, 𝐾 × (𝑁 ×

(𝑀−1)) additions, and𝐾(𝑁−1) times comparisons. Even the
idealMP reconstruction algorithmposseses higher extremely
computational complexity than that of nonreconstruction-
based spectrum sensing.

5. Conclusion

Signal processing under nonreconstruction framework, espe-
cially inference problem, is very valuable and interesting
topic due to its low computational complexity. The most
important thing to us is that the nonreconstruction frame-
work can eliminate the effect of reconstruction algorithm.
Firstly, we discuss the two conventional types of energy-
based detection methods, energy normalization and power-
based spectrum sensing. Certainly, we focus on deriving
statistical characteristics of compressed measurements and
its squared form (energy). Their mean and variance and the
corresponding approximated PDF are obtained in terms of
central limit theorem, which are basis of future work. From
the previous analysis, we notice that the mean of compressed
measurements is still zero if the noise has zero mean, but its
variance will become bigger clearly, which leads to decreas-
ing of detection performance in essence. To evaluate the
performance of energy-based spectrum sensing algorithm
under nonreconstruction framework, some simulations are
performed for the various simulation parameters; all simu-
lation results coincide with completely theoretical analysis.
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Through the simulation results and analysis, it can be seen
that the performance drops slightly, but its computational
complexity decreases evidently comparing with conventional
energy-based spectrum sensing and reconstruction-based
spectrum sensing, which is crucial for the case of requiring
less detection time in cognitive radio. As a consequence, the
presented algorithm provides a way for spectrum sensing
to reduce the computational time. However, we need trade-
off computational complexity and performance in practical
application.
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