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AModified Gabor Filter (MGF) network based approach is used for feature extraction and classification of𝑀-ary Pulse Amplitude
Modulated (𝑀-PAM) signals by adaptively tuning the parameters of MGF network. Modulation classification of 𝑀-PAM signals
is done under the influence of additive white Gaussian noise (AWGN) and channel effects such as Rayleigh flat fading and Rician
flat fading. The MGF network uses the network structure of two layers. First layer which is input layer constitutes the adaptive
feature extraction part and second layer constitutes the signal classification part.The Gabor atom parameters are tuned using Delta
rule and updating of weights of MGF using Recursive Least Square (RLS) algorithm. The simulation results in the form confusion
matrix show that proposedmodifiedmodulation classification algorithm has high classification accuracy at low signal to noise ratio
(SNR). The performance comparison with state-of-the-art existing techniques shows the significant performance improvement of
proposed MGF based classifier.

1. Introduction

Automatic Modulation Classification (AMC) is an approach
which classifies the modulation format of the received signal
at the receiver side. AMC has found extensive importance
in the field of electronic surveillance, military domain,
electronic counter measures, civil domain, software defined
radios, and lately cognitive radios. For example, in military
domains, itmay be employed formonitoring and interference
recognitions, while in civil domain it includes interference
confirmation, spectrum management, and signal confirma-
tion. The most important applications in civil domain are
intelligent modems, software defined radios, and cognitive
radios. Due to incremental technologies such as cognitive
radios, the recent research has been focussed to identify and
then classify these types of signal as discussed by Haykin
[1].

To accomplish AMC, there are two approaches, decision
theoretic approach, which is based upon likelihood function

of the received signal, and pattern recognition approach,
which is based upon features extraction from the received
signal [2]. The likelihood function based decision theoretic
approach is optimal, but computationally complex. The clas-
sifier based upon decision theoretic approach is proposed
in [3]. In [4], author gives survey of the decision theoretic
approach and the comparison of proposed classifier perfor-
mances in the literature. The modulation classification in
decision theoretic approach is viewed as multiple hypothesis
test or may be sequence of pairwise multiple hypothesis test.
Once the likelihood function is set up, average likelihood
ratio test (ALRT), generalized likelihood ratio test (GLRT),
hybrid likelihood ratio test (HLRT), and combinations of
these tests are to be used to determine themodulation format
of the received signal [5]. Due to phase errors, channel effects,
timing jitter, and frequency offset, the decision theoretic
approach is not robust to model mismatch [6]. Maximum
likelihood method is used in classification of digital modu-
lations in [7]. The author shows that ML classifier is capable
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of classifying any finite set constellations with zero error rate
when the number of available data symbols goes to infin-
ity. The modulation classification algorithm proposed for
identification of software defined radio modulation schemes
without pilot symbols between transmitter and receiver in
[8]. The classifier based upon likelihood ratio test loads the
values of test function for likelihood ratio test; the proposed
algorithm converts unknown signal symbol to the address of
lookup table.

The feature extraction based pattern recognition
approach (PRA) is robust to model mismatch, but not
optimal with less computational complexity as compared to
decision theoretic approach. The PRA is divided into two
modules. In the first module, distinct features are extracted
from the received signal, which undergo channel effects
such as fading and also channel noise such as additive white
Gaussian noise (AWGN). After the successful extraction of
these features, second module is classifier which decides
about the modulation format of the received signal [9].

The previous techniques employed in literature for fea-
ture extraction based modulation classification are discussed
below. In [10], authors considered seven modulation formats
for classification using genetic algorithm (GA) based clus-
tering. The features extracted are spectral features from the
received signal and reduced set of parameters is derived from
these coefficients and input toGAbased clustering technique.
The modulation classification based upon combination of
2nd, 4th, 6th, and 8th order cumulants and spectral features
are proposed in [11]. Hierarchical support vector machine
(SVM) is used as classifier. The optimization Bee algorithm
is used to improve the overall performance of proposed
classifier. Spectral features, statistical features, and wavelet
based features are used to classify the modulation formats in
[12] and performance is evaluated on AWGN channel. The
authors proposed a classifier based upon SVM and optimiza-
tion of algorithm is done using particle swarm optimization
(PSO).Themodulation formats are recognized using artificial
neural network (ANN) and resilient back propagation in
[13]. The GA is used to select the best feature subset from
the combined spectral features and statistical features. The
classifier based on a SVM is proposed as multiclass classifier
in [14]. The features used are higher order statistics and
GA is used for selecting the parameters of classifier. The
performance is discussed with or without optimization. The
modulation classification of 𝑀-QAM signals is considered
in [15]. The classifier based upon combination of subtractive
clustering and PSO is used to extract features. The algorithm
gives higher accuracy in the presence of AWGN channel at
higher SNRs. Higher order cumulants (HOC) are used as
feature set for the classification of several modulation formats
in the presence of AWGN channel in [16]. Hybrid classifier
which is neural network based is used for classification. The
Cramer-Rao lower bound is derived for 4th order cumulants
estimator in [17], and the classification accuracy is measured
on AWGN channel. The author proposed a classifier which
is based upon optimized distribution sampling test (ODST)
for classification [18]. GA is used to optimize distance
metrics using sampled distribution parameters. The decision
is based upon candidate modulation and distance between

tested signals. Time frequency distributions are proposed for
modulation classification in [19]. The classification accuracy
increased using time frequency features and multilayer clas-
sifier are used to classify six modulation formats.

From literature review of the feature based modulation
classifications approaches, there are some issues which need
to be properly addressed for the development of efficient
classifier. The main two issues are choice of extraction of
features from the received signal which had undergone
channel effects and noise and the classifier structure which
is used to discriminate the features for desired modulation
format.

In this paper, MGF based efficient features are extracted
from the received signal which to the best of our knowl-
edge have not been utilized for the problem of modulation
classification of 𝑀-ary Pulse Amplitude Modulated signals.
The features are extracted from the noisy (AWGN) signals
plus channel effects (Rayleigh flat fading and Rician flat
fading) using MGF network. After successful extraction of
the features, weights of adaptive filter are updated using RLS
algorithm and classification algorithm efficiently classifies the
𝑀-PAM signals. Our previous paper for 𝑀-QAM, 𝑀-PSK,
and 𝑀-FSK classification was not at all efficient for 𝑀-PAM
signals [20]. In this paper, we have made two important
changes to make it efficient for 𝑀-PAM signals. The classi-
fication accuracy of the proposed classifier is also compared
with well-known state-of-the-art existing techniques.

The rest of the paper is organized as follows. Section 2
represents the Modified Gabor Filter network and system
model and also feature extraction using Gabor filter is
presented. In Section 3, Modified Gabor Filter algorithm for
training and testing is presented. In Section 4, performance
of proposed modified classifier in the presence of AWGN
channel, Rician fading channel, and Rayleigh fading channel
is presented. Section 5 concludes the paper.

2. Gabor Filter Based System Model

2.1. System Model. The generalized expression for signal
received is given by a work of Ghauri et al. [2]:

𝑟 (𝑛) = 𝑠 (𝑛) + 𝑔 (𝑛) , (1)

where 𝑟(𝑛) is complex baseband envelope of received signal
and 𝑔(𝑛) is the additive white Gaussian noise with zero mean
and a variance of 𝜎2

𝑔
. The 𝑠(𝑛) is defined as

𝑠 (𝑛) = 𝐴𝑒
𝑖(𝑤
𝑜
𝑛𝑇+𝜃
𝑛
)

∞

∑

𝑗=−∞

𝑠 (𝑙) ℎ (𝑛𝜏 − 𝑗𝜏 + ∈
𝑇
𝜏) , (2)

where 𝑠(𝑙) is the input symbol sequence which is drawn
from set of 𝑀 constellations of known symbols and it is not
necessary that symbols are equiprobable. 𝐴 is the amplitude
of signal, 𝑤

𝑜
is angular frequency offset constant, 𝜏 is symbol

spacing, 𝜃
𝑛
is the phase jitter which varies from symbol to

symbol, ℎ(⋅) is the channel effects, and ∈
𝑇
is the timing jitter.

The system model for classification of 𝑀-PAM signals is
shown in Figure 1. The received signal is first preprocessed
in which the main part is to remove the noise from the signal
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Figure 1: System model for classification of 𝑀-PAM signals.
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Figure 2: Training of Modified Gabor Filter network for𝑀-PAM signals classification.

or to eliminate the sources of variations. After preprocessing
efficient features are extracted using Gabor filter network and
these features are used for classification of 𝑀-PAM formats
among class of𝑀-PAM signals.

2.2. Feature Extraction Using Modified Gabor Filter Network.
The Gabor atom is used for the extraction of features and in
generalized form it can be written as

𝑔
(𝑐,𝜎,𝑓)

(𝑡) =
1

√𝜎
𝑔(

𝑡 − 𝑐

𝜎
) 𝑒
𝑗𝑓𝑡

, (3)

where 𝑔(𝑡) = 2
1/4

𝑒
−𝜋𝑡
2

and 𝑐, 𝜎, and 𝑓 are shift parameter,
scale parameter, and modulation parameter, respectively
[20]. There are two layer structures for Gabor filter; in
first layer, features are extracted adjusting the Gabor atom
parameters (𝑐, 𝜎, 𝑓) until some cost function is minimized.
In second layer, adjustment of adaptive filter weights and the
classification process is to be done. As seen from Figure 2,
𝑋 = {𝑥

𝑖
, 𝑖 = 1, 2, . . . ,𝑀} input to the filter is first serial

to parallel converted and after that Gabor atom nodes are
calculated using the relationship 𝜑

𝑖
= |⟨𝑔
𝑖
, 𝑥
𝑖
⟩|. The output of

the 𝑖th Gabor atom node is 𝜑
𝑖
corresponding to input signal

𝑥
𝑖
. Thus, output of Gabor atom is defined as

𝜙 (𝑖) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
1

√𝜎
𝑖

𝑔
∗
(
𝑡 − 𝑐
𝑖

𝜎
𝑖

) 𝑒
−𝑗𝑓
𝑖
𝑡
𝑥
𝑖
(𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (4)

The Gabor atom {𝑔
𝑖
, 𝑖 = 1, 2, 3, . . . ,𝑀} is defined as

𝑔 (𝑖, 𝑡) =
1

√𝜎
𝑖

𝑔(
𝑡 − 𝑐
𝑖

𝜎
𝑖

) 𝑒
𝑗𝑓
𝑖
𝑡
. (5)

The output of the Gabor atom node 𝜑
𝑖
in the input layer is

weighted by 𝑤
𝑖
; that is,

𝑦 (𝑛) =

𝑀

∑

𝑖=1

𝜑
𝑖
𝑤
𝑖
, (6)

where 𝑛 = 1, 2, . . . , 𝑁. The difference between the desired
outputs 𝑑(𝑛) and actual output 𝑦(𝑛) is defined as

𝑒 (𝑛) = 𝑑 (𝑛) − 𝑦 (𝑛) . (7)

The cost function is square of error function 𝑒(𝑛) which is
given by

𝐽 (𝑛) = [𝑑 (𝑛) − 𝑦 (𝑛)]
2

. (8)

The four parameters of Gabor filter network and adaptive
filter (𝑐, 𝜎, 𝑓, 𝑤) are adjusted until the 𝐽(𝑛) is minimized and
approaches to zero.

3. Testing and Training of Proposed Algorithm

To classify the𝑀-PAM signals, the training and testing of the
proposed algorithm have to be done. The PAM formats are
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spread about axis, and as increasing the 𝑀 which may vary
from 2 to 64, the values of amplitudes are also increasing.
The increased values of amplitudes destroy the convergence
of the algorithm. To cope up with the problem of divergence,
following are the proposed changes in the existing algorithm
[20] for classification of PAM formats:

(1) The absolute values of amplitude are taken instead
of taking whole input modulated signal; for example,
PAM 4 have amplitudes {−3, −1, 1, 3} but only take
absolute values of amplitudes, that is, {3, 1, 1, 3}.

(2) The desired responses for each of the considered
modulation formats are the average amplitudes

𝑎 =

𝑀

∑

𝑗=1

(

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑀
) , (9)

where {𝐴
𝑗
𝜀 − 7, −5, −3, −1, 1, 3, 5, 7}, for example, for

PAM 8, and the desired response for the PAM 8 is 4.

(3) The weights of the adaptive filter are updated using
Recursive Least Square (RLS) algorithm instead of
using Least Mean Square (LMS) algorithm for the
two motives. First, the convergence rate of RLS is
sooner than the LMS. Second, the mean square error
produced by RLS is lesser than the LMS.

(A) Training of MGF Network. The training of MGF network
for PAM 2, PAM 4, PAM 8, PAM 16, PAM 32, and PAM
64 is carried out by adjusting the three parameters of MGF
network which are shift, scale, and modulation parameters
(𝑐, 𝜎, 𝑓) and weights of the adaptive filter (𝑤). Figure 2
shows the training of Gabor filter network by adjusting the
three parameters and weights of the adaptive filter by using
Delta rule and RLS algorithm, respectively. The training
process continues until error function is minimized to some
threshold or approaches to zero.

To update (𝑐, 𝜎, 𝑓), Delta rule is used to calculate the
change in shift parameter 𝑐

𝑖
, scale parameter 𝜎

𝑖
, and modu-

lation parameter 𝑓
𝑖
:

Δ𝑐
𝑖
= 𝑐
𝑖
(𝑛 + 1) − 𝑐

𝑖
(𝑛) ,

Δ𝑐
𝑖
= −

𝜂
𝑐

2
[
𝜕𝐽 (𝑛)

𝜕𝜑
𝑖

𝜕𝜑
𝑖

𝜕𝑐
𝑖

] ,

Δ𝜎
𝑖
= 𝜎
𝑖
(𝑛 + 1) − 𝜎

𝑖
(𝑛) ,

Δ𝜎
𝑖
= −

𝜂
𝜎

2
[
𝜕𝐽 (𝑛)

𝜕𝜑
𝑖

𝜕𝜑
𝑖

𝜕𝜎
𝑖

] ,

Δ𝑓
𝑖
= 𝑓
𝑖
(𝑛 + 1) − 𝑓

𝑖
(𝑛) ,

Δ𝑓
𝑖
= −

𝜂
𝑓

2
[
𝜕𝐽 (𝑛)

𝜕𝜑
𝑖

𝜕𝜑
𝑖

𝜕𝑓
𝑖

] .

(10)

To minimize the cost function 𝐽(𝑛) for the Gabor filter
network parameters (𝑐, 𝜎, 𝑓), we take the partial derivatives

with respect to shift parameter 𝑐
𝑖
, scale parameter 𝜎

𝑖
, and

modulation parameter 𝑓
𝑖
:

𝜕𝐽 (𝑛)

𝜕𝜑
𝑖

= −2 [𝑑 (𝑛) − 𝑦 (𝑛)]
𝜕

𝜕𝜑
𝑖

𝑦 (𝑛) . (11)

From (6),

𝜕

𝜕𝜑
𝑖

𝑦 (𝑛) = 𝑤
𝑖
. (12)

Using the above result in (11),

𝜕𝐽 (𝑛)

𝜕𝜑
𝑖

= −2 [𝑑 (𝑛) − 𝑦 (𝑛)] 𝑤
𝑖
. (13)

From (4),

𝜙
𝑖
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑖

1

√𝜎
𝑖

𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

cos (𝑓
𝑖
𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (14)

The partial derivatives of 𝜑
𝑖
with respect to shift parameter

𝑐
𝑖
, scale parameter 𝜎

𝑖
, and modulation parameter 𝑓

𝑖
are as

follows [20]:

𝜕𝜑
𝑖

𝜕𝑐
𝑖

=
𝜕

𝜕𝑐
𝑖

(𝑥
𝑖
𝑔
𝑖
)

=
𝑥
𝑖

5√𝜎
𝑖

cos (𝑓
𝑖
𝑡) 2𝜋 (𝑡 − 𝑐

𝑖
) 𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

,

𝜕𝜑
𝑖

𝜕𝜎
𝑖

=
𝜕

𝜕𝜎
𝑖

[𝑥
𝑖

1

√𝜎
𝑖

𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

cos (𝑓
𝑖
𝑡)]

=
𝑥
𝑖
cos (𝑓

𝑖
𝑡)

√𝜎
𝑖

𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

[
2𝜋 (𝑡 − 𝑐

𝑖
)
2

𝜎
3

𝑖

−
1

2𝜎
𝑖

] ,

𝜕𝜑
𝑖

𝜕𝑓
𝑖

=
𝜕

𝜕𝑓
𝑖

[𝑥
𝑖

1

√𝜎
𝑖

𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

cos (𝑓
𝑖
𝑡)]

= −
𝑡

√𝜎
𝑖

𝑥
𝑖
𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

sin (𝑓
𝑖
𝑡) .

(15)

The updated Gabor filter parameters are as follows [20]:

𝑐
𝑖
(𝑛 + 1) = 𝑐

𝑖
(𝑛) + [𝜂

𝑐
{𝑑 (𝑛) − 𝑦 (𝑛)} 𝑤

𝑖
]

⋅ [
𝑥
𝑖

5√𝜎
𝑖

cos (𝑓
𝑖
𝑡) 2𝜋 (𝑡 − 𝑐

𝑖
) 𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

] ,

𝜎
𝑖
(𝑛 + 1) = 𝜎

𝑖
(𝑛) + [𝜂

𝜎
{𝑑 (𝑛) − 𝑦 (𝑛)} 𝑤

𝑖
]

⋅ {
𝑥
𝑖
cos (𝑓

𝑖
𝑡)

√𝜎
𝑖

𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

[
2𝜋 (𝑡 − 𝑐

𝑖
)
2

𝜎
3

𝑖

−
1

2𝜎
𝑖

]} ,

𝑓
𝑖
(𝑛 + 1) = 𝑓

𝑖
(𝑛) + [𝜂

𝑓
{𝑑 (𝑛) − 𝑦 (𝑛)} 𝑤

𝑖
]

⋅ {−
𝑡

√𝜎
𝑖

𝑥
𝑖
𝑒
−𝜋((𝑡−𝑐

𝑖
)/𝜎
𝑖
)
2

sin (𝑓
𝑖
𝑡)} .

(16)
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Figure 3: Testing of Modified Gabor Filter network for 𝑀-PAM signals classification.

The weights of adaptive filter are updated using RLS algo-
rithm as follows:

𝑘 (𝑛) =
𝐾 (𝑛 − 1) 𝜑 (𝑛)

𝜆 + 𝜑𝑇 (𝑛)𝐾 (𝑛 − 1) 𝜑 (𝑛)
,

𝑒 (𝑛) = 𝑑 (𝑛) − 𝑦 (𝑛) = 𝑑 (𝑛) −

𝑀

∑

𝑖=1

𝜑
𝑖
𝑤
𝑖
,

𝑤 (𝑛) = 𝑤 (𝑛 − 1) + 𝑘 (𝑛) 𝑒 (𝑛) ,

𝐾 (𝑛) = 𝜆
(−1)

𝐾 (𝑛 − 1) − 𝜆
(−1)

𝑘 (𝑛) 𝜑
𝑇
(𝑛)𝐾 (𝑛 − 1) .

(17)

To initialize the algorithm, weights are initialized as 𝑤(0) =

[1, 1, . . . , 1] and the 𝐾 is referred to as inverse correlation
matrix. The 𝜑(𝑛) is the input vector and 𝜆 is forgetting factor.

Algorithm 1 (training of Modified Gabor Filter network for
modulation classification).

Step 1. Initialize Gabor atom parameters.

Step 2. Compute all Gabor atom nodes using (14).

Step 3. Adjust adaptive filter using RLS (17).

Step 4. After adjusting the weights, calculate error form (7).

Step 5. If error is less than chosen threshold, then training
of algorithm is stopped and save Gabor atom parameters
(𝑐
𝑖
, 𝜎
𝑖
, 𝑓
𝑖
) and Gabor filter weights 𝑤

𝑖
.

Step 6. If error is not less than threshold, repeat step (3) by
using the error calculated in step (4).

Step 7. Tune the Gabor atom parameters (𝑐
𝑖
, 𝜎
𝑖
, 𝑓
𝑖
) using (16).

(B) Testing of MGF Network. Figure 3 shows the testing of
MGFnetwork by computing the error function of eachGabor
filter network.Theminimumerror corresponds to the desired
modulation format among class of𝑀-PAM signals.

The algorithm for testing of MGF network for classifica-
tion of𝑀-PAM signals is as shown below.

Algorithm 2 (testing of Modified Gabor Filter network for
modulation classification).

Step 1. Input digital modulated signal whichmay be PAM 2 to
64 modulated.

Step 2. Compute the output of each Gabor filter network by
using the relation

𝑦 =

𝑀

∑

𝑖=1

𝜑
𝑖
𝑤
𝑖
. (18)

Step 3. Compute the error function of each Gabor filter
network.

Step 4. Minimum error corresponds to the desired modula-
tion format of the input signal.

4. Simulation Results

The simulation results are divided into two modules; in the
first module, training of Gabor filter network is evaluated
for the 𝑀-PAM signal classification in tabular form and also
curves for mean square error versus number of iterations
and signal to noise ratio are evaluated. The considered
modulation formats are trained accordingly in the class of
𝑀-PAM signals. The received signal is also corrupted form
AWGN and efficient features are calculated and used for
training of Gabor filter network. At the end of training,
the three parameters of Gabor filter network (shift, scale,
and modulation parameters) and adaptive filter weights
are saved for minimum mean square error. In the second
module, the testing of Gabor filter network is carried out by
finding the error function of each Gabor filter network and
minimum error corresponds to desired modulation format.
The simulation results in testing module are in the form of
probability of correctness curve versus SNR under the effects
of AWGN and channel effects.
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Figure 4: Training of Gabor filter network for the𝑀-PAM formats under no noise.

4.1. Training of Modified Gabor Filter Network. Figure 4
shows the training of Gabor filter network under no noise
conditions. From Figure 4, it is clear that the minimum
means square error (MMSE) is approaching to zero as the
number of iterations increases for all considered modulation
formats. The training of network is stopped when MMSE
reaches some threshold or zero and the features are stored.

Figure 5 shows the training of Gabor filter network
under the influence of AWGN channel with fixed number of
iterations.TheMMSE is approaching to zero as SNR increases
from −10 to 20 dB for the considered modulation formats as
shown in Figure 5.

Table 1 shows the training performance of Gabor filter
network in the form of diagonal matrix or accuracy matrix
for the classification of considered modulation formats

Table 1: Training performance of Gabor filter network of 𝑀-PAM
signal classification without noise.

PAM 2 PAM 4 PAM 8 PAM 16 PAM 32 PAM 64
PAM 2 100%
PAM 4 100%
PAM 8 100%
PAM 16 99.2%
PAM 32 99.6%
PAM 64 100%

(PAM 2, PAM 4, PAM 8, PAM 16, PAM 32, and PAM 64).The
training performance is approximately 100% under no noise
considerations.
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Figure 5: Training of Gabor filter network for the 𝑀-PAM formats on AWGN channel.

Table 2: Training performance of Gabor filter network of 𝑀-PAM
signal classification on AWGN channel.

PAM 2 PAM 4 PAM 8 PAM 16 PAM 32 PAM 64
PAM 2 100%
PAM 4 99.9%
PAM 8 100%
PAM 16 98.4%
PAM 32 99.2%
PAM 64 99.3%

Table 2 shows the training performance of Gabor filter
network in the form of diagonal matrix or accuracy matrix
for the classification of 𝑀-PAM signals under the influence

of additive white Gaussian noise. The training of Gabor filter
network is done at SNR of 5 dB and accuracy is approximately
99.5% for considered modulation formats.

4.2. Testing of Modified Gabor Filter Network. Table 3 shows
the testing performance of Gabor filter network in the form
of diagonal matrix for the 𝑀-PAM signal classification. The
performance is evaluated at SNR of 5 dB and it is shown
from the table that percentage accuracy for classifying the
modulation formats is much better at low SNRs.

Table 4 shows the testing performance of Gabor filter
network in the form of diagonal matrix for the 𝑀-PAM
signal classification at SNR of 10 dB and it is shown from the
table that percentage accuracy for classifying the modulation



8 Mathematical Problems in Engineering

Table 3: Testing performance of Gabor filter network of 𝑀-PAM
signal classification at SNR = 5 dB on AWGN channel.

PAM 2 PAM 4 PAM 8 PAM 16 PAM 32 PAM 64
PAM 2 98.6%
PAM 4 97.8%
PAM 8 96.6%
PAM 16 96.1%
PAM 32 98.1%
PAM 64 97.6%

Table 4: Testing performance of Gabor filter network for 𝑀-PAM
signal classification at SNR = 10 dB on AWGN channel.

PAM 2 PAM 4 PAM 8 PAM 16 PAM 32 PAM 64
PAM 2 99.5%
PAM 4 98.9%
PAM 8 99.9%
PAM 16 98.3%
PAM 32 98.5%
PAM 64 98.9%
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Figure 6: Probability of correctness curve for the example of PAM
16.

formats is 98.7%.The testing performance is better due to two
facts: first choice of efficient features from the Gabor filter
network and second the classifier.

Figure 6 shows the probability of correctness (POC)
plotted against number of iterations and from Figure 6, it is
clear that POC is approximately 1 when number of iterations
increased up to 500. The example considered in Figure 6 is
PAM 16 among class of 𝑀-PAM signals which are classified
correctly.

Figure 7 shows the probability of correctness (POC)
plotted against signal to noise (SNR) for fixed number of
iterations and from Figure 7 it is clear that POC is approx-
imately 1 when SNR is increased up to 10. The example
considered in Figure 7 is PAM 16 and classification accuracy
is approximately 90% at SNR greater than 3 dB.
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Figure 7: Probability of correctness curve underAWGNchannel for
the example of PAM 16.

Pr
ob

ab
ili

ty
 o

f c
or

re
ct

ne
ss

 (P
O

C)

0.4

0.5

0.6

0.7

0.8

0.9

1

AWGN channel
Rayleigh flat fading channel
Rician flat fading channel

0 2 4 6 8 10
SNR (dB)

−4 −2

Figure 8: Performance comparison under the effect of AWGN and
faded channel for the example of PAM 8.

The classification performance of PAM 8 considered
example among the 𝑀-PAM signals is evaluated in Figure 8.
Figure 8 also shows the performance comparison under
the effect of AWGN channel, Rician flat fading channel,
and Rayleigh flat fading channel. The classification accuracy
is much better for the considered example on considered
channels.

Table 5 shows the performance comparison of percentage
classification on the AWGN channel, Rician flat fading
channel, and Rayleigh flat fading channel for the example of
8-PAM among class of𝑀-PAM signals. The classifier perfor-
mance is evaluated for SNR−4 to 10 dBon fading channel plus
AWGN. The classifier performance is approximately 100%
on AWGN channel, 95% on Rician flat fading channel, and
92% for the Rayleigh flat fading channel at SNR of 10 dB.
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Table 5: Testing performance comparison of Gabor filter network on AWGN and fading channels for the example of 8-PAM format.

SNR in dB AWGN channel Rician flat fading channel Rayleigh flat fading channel
−4 45.0% 35.1% 31.0%
−3 57.0% 45.6% 37.0%
−2 66.2% 55.44% 46.8%
−1 74.2% 64.64% 54.9%
0 81.0% 72.64% 63.4%
1 85.2% 78.84% 70.8%
2 88.4% 83.36% 76.8%
3 91.6% 87.16% 81.0%
4 94.4% 89.6% 85.1%
5 96.6% 91.4% 87.8%
6 98.4% 92.76% 89.8%
7 99.4% 93.76% 91.2%
8 99.91% 94.36% 91.8%
9 100% 94.87% 92.0%
10 100% 95% 92.0%

Table 6: Performance comparison with existing techniques.

Method year, and reference Features used Classification accuracy at
10 dB of SNR

Zero Crossing (1995) [21] PDF of cross related
variables

98%
15 dB of SNR

Hierarchical Architecture (1990) [22] Spectral features 90%

Multilayer Perceptron, Hierarchical SVM + Bees
Algorithm for Optimization (2012) [11]

Spectral features
HOM

97.45%
(w/o optimization)

99.83%
(optimization)

SVM + PSO (2012) [12]
Spectral features
Statistical features
Wavelets features

98.8%

Artificial Neural Network (2003) [23] Spectral features 93%
8 dB of SNR

Genetic Algorithm based Clustering (2011) [10] Spectral features 98.32% (GA)
98.12% (𝐾-mean)

Hierarchical Architecture (2000) [24] HOC & HOM 96%

Fuzzy based Classifier (2000) [25] Kurtosis
phase histogram

90%
5 dB of SNR

Multilayer Perceptron Neural Network Recognizer
(2004) [13]

Spectral features
cumulants 99.94%

Binary SVM, Multi SVM GA for Optimization (2010)
[14] HOM & HOC

98.5%
(w/o optimization)

99.36%
(optimization)

PSO-SVM based Intelligent Classifier (2013) [17] HOC 96%

Gabor Filter (2014) [20] Shift, scale, and modulation
parameters 100%

Proposed MGF Network based classifier Shift, scale, modulation,
and weights

100%
(8 dB of SNR)

The efficient features extraction from theGabor filter network
easily classifies the considered modulation formats with very
low probability of error.

Table 6 shows the classification performance comparison
with well-known existing techniques. The classification per-
formance of proposed MGF network based classifier is much
better at lower SNRs. The proposed classifier is also capable

of classifying 𝑀-PSK, 𝑀-QAM, and M-FSK [20]. The three
features are used to classify𝑀-PAM signals.

5. Conclusion

On the basis of simulations, it can be concluded that proposed
MGF network efficiently classifies the 𝑀-PAM signals on
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AWGN channel as well as Rician flat fading channel and
Rayleigh flat fading channel. The training and testing of
proposed MGF network algorithm are done using Delta
rule and RLS algorithm which shows the 100% classifica-
tion accuracy at 8 dB of SNR. The classification accuracy
is much better when compared with state-of-the-art well-
known techniques. In our future work, we intend to use other
biologically inspired computational intelligence algorithms
for optimizing the results and higher classification accuracy.
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