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This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet
uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations
of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods
with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness.
One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method.
The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller
produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic
surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both
of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon.
Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

1. Introduction

Covering from outer space into earth’s atmosphere, reentry
flight is a critical phase of the operation for reentry vehicles
(RVs) [1]. Since the flight conditions change rapidly in the
reentry phase, reentry attitude control is always in face of
wide range of planet uncertainties and external disturbances.
On the other hand, aerodynamic surfaces come into the eyes
of engineers firstly with their advantage of saving energy.
However, the density of atmosphere can be so low in begin-
ning of reentry flight that the desired control torque may be
unachievable with the employment of aerodynamic surfaces
alone because of poor aerodynamic maneuverability. As a
result, RVs have to rely on reaction control system (RCS) jets
in addition to aerodynamic surfaces. In this case, control
allocation among redundant actuators becomes necessary,
which further raises the difficulties in attitude control design.
Meanwhile, a robust attitude control system for RVs with
redundant actuators is desirable.

The conventional attitude control method for RVs is gain
scheduling (GS) [2, 3]. This method linearizes the system
with a set of trimmed points, designs individual gains at each
point, and then interpolates those gains online with respect
to system parameters such as dynamic pressure or Mach
number. Nevertheless, the conventional GS involves the lack
of guaranteed global robustness and stability [4]. The reentry
flight conditions change rapidly, which makes this method
impractical [5]. Moreover, the point designs of gain schedul-
ing are manpower intensive and highly time consuming [6].
To conclude, GS is weak at performing linearity.

Compared to GS, feedback linearization (FBL) [7–10]
can exactly cancel the model nonlinearities and replace
undesirable dynamics with desirable dynamic using non-
linear coordinate transformation. However, FBL relies on
the knowledge of the exact model dynamics, which severely
influences FBL’s practicality because uncertainties and distur-
bances exist inevitably. To improve the flight control perfor-
mance systematically on the basis of FBL, Rahideh et al. [7]
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incorporated neural network (NN) based compensation in
the FBL design; Van Soest et al. [8] combined FBL with con-
strained linear model predictive control (MPC) method; Xu
et al. [9] utilized the combination of FBL and adaptive sliding
mode control (SMC) method.

Among the various upgraded nonlinear control methods,
SMC outstands with many advantages, such as simplicity
of implementation, fast dynamic response, good transient
behavior, exponential stability, insensitivity to parameter var-
iations, and robustness to plant uncertainties and external
disturbances [11–14]. Therefore, SMC has been successfully
applied to a variety of complex engineering systems [15].
Barambones Caramazana et al. [14] develop a sliding mode
position control incorporating a flux estimator for high-
performance real-time applications of induction motors. Wu
et al. [15] investigate the key problems of SMC of Markovian
jump singular time-delay systems. Shtessel et al. [16–19] stud-
ied the application of SMCmethod to reusable launch vehicle
(RLV) in launch and reentrymode, and amultiple-time-scale
SMC strategy is proposed in [18] for RLV in ascent phase.

Generally, SMC design consists of two steps [20, 21]: (1)
select a sliding surface as a function of the system states
so that the system trajectories along the surface meet the
desired performance, such as stability and tracking capability;
(2) design a suitable control law to drive the states onto the
predefined sliding surface in finite time.When it comes to the
design of conventional SMC, there are two major problems
concerned. One is its unguaranteed global robustness and
the other is chattering phenomenon.The conventional sliding
surfaces [16–18] employ linear function of tracking errors,
which results in the fact that the transient dynamics of SMC
consists of reaching phase and sliding phase. However, the
SMC method can only ensure the robustness against planet
uncertainties and external disturbances in sliding phase.
Therefore, the conventional sliding surfaces do not possess
the property of global robustness. Several studies are dedi-
cated to global robustness of SMC. Sun et al. [22] introduced
an integral sliding mode control (ISMC) method to solve
the longitudinal control problem of air-breathing hypersonic
vehicle (AHV). Shtessel et al. [19] proposed a two-loop con-
troller that utilized a time-varying sliding mode control
(TVSMC) method to achieve fault tolerance for RLV attitude
control. With the elimination of reaching phase, both ISMC
and TVSMC can keep the system states on the sliding surface
from the initial time, so that global robustness against planet
uncertainties and external disturbances is guaranteed.

As to the chattering phenomenon, it is assumed that the
control can be switched from one structure to another
infinitely fast in the design of SMC [23]. However, it is impos-
sible to achieve high-speed switching control because of the
inevitable switching delay computation and the limitation of
the physical actuators.The existence of time delay introduces
instability, oscillation, and poor performance [24]. High con-
trol gains of SMC lead to high frequency oscillations known
as chattering phenomenon. This harmful phenomenon may
erode the performance to gain robustness, decrease the con-
trol accuracy, and damage the actuators [25].There are essen-
tially two ways to alleviate the chattering phenomenon [23]:
one way is boundary layermethod [17–19, 26] and the other is

higher order sliding mode control (HOSMC). The boundary
layer method replaces the sign function (discontinuous con-
trol) with smooth approximations, such as high-gain satura-
tion function or sigmoid function. Nevertheless, this method
no longer drives the system state to the origin and cannot
guarantee the robustness and accuracy within the boundary
layer [23]. HOSMC was proposed by Levant [27]. Instead of
influencing the first order time derivative, the discontinuous
control acts on sliding variable’s higher order derivative. As
a special case of HOSMC, second-order sliding mode control
(SOSMC) is themost popular approach in engineering.There
are many kinds of SOSMC, such as twisting algorithm [28],
super-twisting algorithm [29], suboptimal algorithm [30, 31],
and prescribed convergence law algorithm [28].

Disturbance observer (DO) is an effective way to enhance
system robustness. The disturbance estimation is used for
compensation. DO was first proposed by Ohishi et al. [32].
Hall and Shtessel [33] combined SMC and sliding mode
disturbance observer (SMDO), which estimates the bounded
uncertainties and disturbances effectively to improve RLV
attitude control. Shtessel et al. [34] proposed a homogeneous
DO based on the standard robust exact differentiator to solve
the missile guidance problem.

Inspired by previous work, this paper proposes two
TVSMC methods to solve the finite-time attitude control
problem by incorporating the disturbance observer. One is
BTVSMC/DO which is the abbreviation for boundary layer
method based time-varying sliding mode controller with
disturbance observer, and the other is SOTVSMC/DO which
means the second-order time-varying sliding mode con-
troller with disturbance observer. With the same dedication
to systematically enhance robustness and suppress control
chattering, the two methods adopt different ways to alleviate
chattering. The former is designed based on boundary layer
technique, and the latter utilizes a novel SOSMC. The main
contributions of this paper are summarized as follows.

(1) This paper incorporates a novel reaching law based
on SOSMCwith the time-varying sliding function. In
order to enhance the robustness of the method, a DO
based on the standard robust exact differentiator is
employed to estimate the system’s uncertainties and
disturbances in finite time. In addition, the finite-
time convergence of time-varying sliding function for
resulted method is proved via Lyapunov theory, and
consequently the asymptotical stability of the closed-
loop nonlinear system is proved according to the
definition of the time-varying sliding function.

(2) Since RVs deploy both aerodynamic surfaces and
RCS jets, this paper introduces a control allocation
approach to assign control responsibility amongst
redundant actuators. The nonlinear programming
problem is established and solved by optimiza-
tion method, and the pulse-width-pulse-frequency
(PWPF) is employed tomodulate the on-off thrusters.

(3) The proposed control methods are applied to finite-
time attitude control problem for RVs. Numerical
simulation results confirm the validity and superior
performance of the proposed control methods by
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comparing them with other conventional control
methods. The comparison between boundary layer
method and SOSMC is also presented.

The major contents of the following part in this paper
are as follows. Section 2 describes the rotational equations
of motion and formulates problems of attitude controller
and control allocation. In Section 3, feedback linearization
technique is employed to the equations of motion. Section 4
presents two TVSMC methods as well as the corresponding
stability analysis. A control allocation method is introduced
in Section 5. In Section 6, the performances of proposed
control methods are assessed by numerical tests. Finally,
Section 7 summarizes and lists the conclusions.

2. Preliminary

2.1. The Rotational Equations of Motion. Reentry guidance is
concerned with steering the vehicle from entry interface (EI)
to the designated target point in prescribed condition while
satisfying necessary path constraints such as heating rate con-
straint, aerodynamic load constraint, and dynamic pressure
constraint [35, 36]. The steering commands are defined in
terms of angle of attack (AOA) 𝛼

𝑐
, sideslip angle 𝛽

𝑐
, and bank

angle 𝜎
𝑐
. Furthermore, to prevent excessive heat buildup, 𝛽

𝑐

is kept around zero under the application of back-to-turn
(BTT) control policy [37]. The subsequent reentry control
system tracks these three attitude commands. And the objec-
tive of the reentry control system is to determine the actuator
command vector 𝛿 so that the reentry vehicle can follow the
attitude commands that are specified by guidance system.

The motion of reentry vehicle can be divided into trans-
lational motion and rotational motion. Since the focus of this
paper is about control system, the translational equations of
motion utilized in guidance system are not presented. The
reentry dynamics are governed by a group of nonlinear dif-
ferential equations [38]. The kinematic equations of reentry
vehicle are defined as [37]

𝑑𝛼

𝑑𝑡
= − 𝑝 cos𝛼 tan𝛽 + 𝑞 − 𝑟 sin𝛼 tan𝛽

+
sin𝜎

cos𝛽
(𝜓̇ cos 𝛾 − ̇𝜙 sin𝜓 sin 𝛾

+ ( ̇𝜃 + 𝜔
𝑒
) (cos𝜙 cos𝜓 sin 𝛾 − sin𝜙 cos 𝛾))

−
cos𝜎
cos𝛽

( ̇𝛾 − ̇𝜙 cos𝜓 − ( ̇𝜃 + 𝜔
𝑒
) cos𝜙 sin𝜓) ,

𝑑𝛽

𝑑𝑡
= 𝑝 sin𝛼 − 𝑟 cos𝛼

+ sin𝜎 ( ̇𝛾 − ̇𝜙 cos𝜓 − ( ̇𝜃 + 𝜔
𝑒
) cos𝜙 sin𝜓)

+ cos𝜎 (𝜓̇ cos 𝛾 − ̇𝜙 sin𝜓 sin 𝛾

+ ( ̇𝜃 + 𝜔
𝑒
) (cos𝜙 cos𝜓 sin 𝛾 − sin𝜙 cos 𝛾)) ,

𝑑𝜎

𝑑𝑡
= − 𝑝 cos𝛼 cos𝛽 − 𝑞 sin𝛽 − 𝑟 sin𝛼 cos𝛽

+ 𝛼̇ sin𝛽 − 𝜓̇ sin 𝛾 − ̇𝜙 sin𝜓 cos 𝛾

+ ( ̇𝜃 + 𝜔
𝑒
) (cos𝜙 cos𝜓 cos 𝛾 − sin𝜙 sin 𝛾) ,

(1)

where 𝛼, 𝛽, and 𝜎 are AOA, sideslip angle, and bank angle,
respectively. 𝑝, 𝑞, and 𝑟 are the rates of roll, pitch, and yaw,
respectively. 𝛾 denotes flight path angle and 𝜓 denotes head-
ing angle. 𝜃 and𝜙 are longitude and latitude of reentry vehicle.
𝜔
𝑒
is the angular rate of Earth rotation.
In order to simplify the online calculation, this paper

obtains the kinetics of reentry vehicle under the following
assumption.

Assumption 1. (1) The reentry vehicle is a rigid body; the
terms impacted by elastic effects are not considered. (2) The
reentry vehicle has a longitudinal symmetry plane, which
means the products of inertia 𝐼

𝑥𝑦
= 𝐼
𝑦𝑧

= 0. (3)The vehicle is
unpowered during reentry.

Hence, the kinetics of reentry vehicle can be expressed as
[37]

d𝑝
d𝑡

=
𝐼
𝑧
𝑀
𝑙
+ 𝐼
𝑧𝑥

𝑀
𝑛
+ 𝐼
𝑧𝑥

(𝐼
𝑧
+ 𝐼
𝑥
− 𝐼
𝑦
) 𝑝𝑞 + (𝐼

𝑦
𝐼
𝑧
− 𝐼
2

𝑧
− 𝐼
2

𝑧𝑥
) 𝑞𝑟

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

,

d𝑞
d𝑡

=
𝑀
𝑚

+ (𝐼
𝑧
− 𝐼
𝑥
) 𝑝𝑟 + 𝐼

𝑧𝑥
(𝑟2 − 𝑝2)

𝐼
𝑦

,

d𝑟
d𝑡

=
𝐼
𝑧𝑥

𝑀
𝑙
+ 𝐼
𝑥
𝑀
𝑛
+ (−𝐼

𝑥
𝐼
𝑦
+ 𝐼2
𝑥
+ 𝐼2
𝑧𝑥

) 𝑝𝑞 + 𝐼
𝑧𝑥

(−𝐼
𝑧
− 𝐼
𝑥
+ 𝐼
𝑦
) 𝑞𝑟

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

,

(2)

where 𝑀
𝑙
, 𝑀
𝑚
, and 𝑀

𝑛
are three control torques defined in

the body frame roll pitch and yaw, respectively. 𝐼
𝑥
, 𝐼
𝑦
, and 𝐼

𝑧

denote the moments of inertia, and 𝐼
𝑧𝑥

denotes the product
of inertia.

The control-oriented model can be developed for control
design based on (1) and (2). Since the rotational motions are
much faster than translational motions and the motion of
Earth, the translational terms and angular velocity of earth
can be neglected; that is, ̇𝛾 = 𝜓̇ = ̇𝜃 = ̇𝜙 = 0, 𝜔

𝑒
= 0.

Therefore, the rotational equations of motions (1) and (2) can
be further simplified as follows:

Ω̇ = R𝜔 + Δf

𝜔̇ = − I−1𝜔×I𝜔 + I−1M
𝑐
+ Δd,

(3)
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whereΩ = [𝛼, 𝛽, 𝜎]
𝑇 is the attitude angle vector,𝜔 = [𝑝, 𝑞, 𝑟]

𝑇

is the attitude angular rate vector, and M
𝑐
= [𝑀
𝑙
,𝑀
𝑚
,𝑀
𝑛
]
𝑇

is the command control torque vector. R ∈ R3×3 is the
coordinate-transformation matrix, Δf = [Δ𝑓

1
, Δ𝑓
2
, Δ𝑓
3
, ]
𝑇

denotes the unknown bounded uncertainties caused by the
model reduction, 𝜔× ∈ R3×3 stands for the skew-symmetric
matrix operator on vector𝜔, I ∈ R3×3 denotes the symmetric
positive definite inertia matrix of reentry vehicle, and Δd ∈

R3 denotes the bounded uncertain term.R,𝜔×, I, and Δd are
given by

R =
[
[

[

− cos𝛼 tan𝛽 1 − sin𝛼 tan𝛽

sin𝛼 0 − cos𝛼
− cos𝛼 cos𝛽 − sin𝛽 − sin𝛼 cos𝛽

]
]

]

,

𝜔
×

=
[
[

[

0 −𝑟 𝑞

𝑟 0 −𝑝

𝑞 𝑝 0

]
]

]

,

I =
[
[

[

𝐼
𝑥

0 −𝐼
𝑧𝑥

0 𝐼
𝑦

0

−𝐼
𝑧𝑥

0 𝐼
𝑧

]
]

]

,

(4)

Δd = I−1 [−ΔI𝜔̇ − 𝜔
×

ΔI𝜔 + ΔM] , (5)

where ΔI ∈ R3×3 denotes unknown bounded inertia
variations and ΔM ∈ R3 stands for the bounded external
disturbance moment.

2.2. Problem Formulation. As shown in Figure 1, the control
problem for reentry vehicle with redundant actuators can be
solved in two steps. They are

(1) specifying the control torque vector M
𝑐

= [𝑀
𝑙
,𝑀
𝑚
,

𝑀
𝑛
]
𝑇 in equation set (3), which leads the output vector Ω to

track the attitude commandΩ
𝑐
= [𝛼
𝑐
, 𝛽
𝑐
, 𝜎
𝑐
]
𝑇 in a finite time:

lim
𝑡>𝑡𝐹

‖e‖ = lim
𝑡>𝑡𝐹

󵄩󵄩󵄩󵄩Ω −Ω
𝑐

󵄩󵄩󵄩󵄩 = 0, (6)

where e = Ω −Ω
𝑐
is the tracking error;

(2) designing a control allocation method 𝑓CA(⋅) that
maps the command control torque vector M

𝑐
to actuator

deflection commands 𝛿
𝑐
[39]:

𝛿
𝑐
= 𝑓CA (M

𝑐
) . (7)

The actual torque produced by control allocation may
not exactly equal the torque command. Assume that ΔM

𝑐𝑎

is the bounded disturbance caused by the process of control
allocation, and the torque vector produced by actuators can
be expressed as M

𝑐
+ ΔM

𝑐𝑎
. Hence, the bounded uncertain

term of (5) can be rewritten as

Δd = I−1 [−ΔI𝜔̇ − 𝜔
×

ΔI𝜔 + ΔM + ΔM
𝑐𝑎
] . (8)
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Attitude 
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6-DOF reentry 
vehicle
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Figure 1: Control architecture for reentry vehicle.

3. Feedback Linearization

By the selection of control input as control torque vector
M and the output as attitude angle vector Ω, the nonlinear
attitude equations (3) can be expressed as [40]

ẋ = f (x) + g (x) u + d,

y = h (x) ,
(9)

where x = [𝛼, 𝛽, 𝜎, 𝑝, 𝑞, 𝑟]
𝑇 is the state vector, y = [𝛼, 𝛽, 𝜎]

𝑇

is the output vector, u = [𝑀
𝑙
,𝑀
𝑚
,𝑀
𝑛
]
𝑇 is the control vector,

and d = [Δf𝑇, Δd𝑇]𝑇 stands for the system uncertain term.
f(x) and g(x) can be obtained by (10) and (11), respectively:

f (x) =

[
[
[
[
[
[
[

[

𝑓
1
(x)

𝑓
2
(x)

𝑓
3
(x)

𝑓
4
(x)

𝑓
5
(x)

𝑓
6
(x)

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑝 cos𝛼 tan𝛽 + 𝑞 − 𝑟 sin𝛼 tan𝛽

𝑝 sin𝛼 − 𝑟 cos𝛼
−𝑝 cos𝛼 cos𝛽 − 𝑞 sin𝛽 − 𝑟 sin𝛼 cos𝛽

𝐼
𝑧𝑥

(𝐼
𝑧
+ 𝐼
𝑥
− 𝐼
𝑦
) 𝑝𝑞 + (𝐼

𝑦
𝐼
𝑧
− 𝐼2
𝑧
− 𝐼2
𝑧𝑥

) 𝑞𝑟

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

(𝐼
𝑧
− 𝐼
𝑥
) 𝑝𝑟 + 𝐼

𝑧𝑥
(𝑟2 − 𝑝2)

𝐼
𝑦

(−𝐼
𝑥
𝐼
𝑦
+ 𝐼2
𝑥
+ 𝐼2
𝑧𝑥

) 𝑝𝑞 + 𝐼
𝑧𝑥

(−𝐼
𝑧
− 𝐼
𝑥
+ 𝐼
𝑦
) 𝑞𝑟

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(10)

g (x) = [𝑔
1
(x) 𝑔

2
(x) 𝑔

3
(x)]

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0

0 0 0

0 0 0
𝐼
𝑧

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

0
𝐼
𝑧𝑥

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

0
1

𝐼
𝑦

0

𝐼
𝑧𝑥

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

0
𝐼
𝑥

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

]
]
]
]
]
]
]
]
]
]
]
]
]

]

.
(11)
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The vector relative degree of system (9) is (2, 2, 2). After
differentiating output vector y twice, the control input vector

u appears:
ÿ = Ku + B + RI−1Δd + FΔf , (12)

where K, B, and F are given by

K =
[
[

[

𝐿
𝑔1
𝐿
𝑓
ℎ
1
(x) 𝐿

𝑔2
𝐿
𝑓
ℎ
1
(x) 𝐿

𝑔3
𝐿
𝑓
ℎ
1
(x)

𝐿
𝑔1
𝐿
𝑓
ℎ
2
(x) 𝐿

𝑔2
𝐿
𝑓
ℎ
2
(x) 𝐿

𝑔3
𝐿
𝑓
ℎ
2
(x)

𝐿
𝑔1
𝐿
𝑓
ℎ
3
(x) 𝐿

𝑔2
𝐿
𝑓
ℎ
3
(x) 𝐿

𝑔3
𝐿
𝑓
ℎ
3
(x)

]
]

]

,

B = [𝐿
2

𝑓
ℎ
1
(x) , 𝐿2

𝑓
ℎ
2
(x) , 𝐿2

𝑓
ℎ
3
(x)]
𝑇

,

F =
[
[

[

𝑝 sin𝛼 tan𝛽 − 𝑟 cos𝛼 tan𝛽 + 1 −𝑝 cos𝛼sec2𝛽 − 𝑟 sin𝛼sec2𝛽 0

𝑝 cos𝛼 + 𝑟 cos𝛼 1 0

𝑝 sin𝛼 cos𝛽 − 𝑟 cos𝛼 cos𝛽 𝑝 cos𝛼 sin𝛽 − 𝑞 cos𝛽 + 𝑟 sin𝛼 sin𝛽 1

]
]

]

.

(13)

According to (12), the total relative degree of system
equals the order of the system. Furthermore, since the sideslip
angle 𝛽 ≈ 0 during reentry,

det (K) =
cos𝛽 − sin𝛽 tan𝛽

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

≈
1

𝐼
𝑥
𝐼
𝑧
− 𝐼2
𝑧𝑥

̸= 0. (14)

Thus, the system (9) can be linearized completely without
zero dynamics by using the following feedback control law:

u = K−1 (−B + k) , (15)

where k = [V
1
, V
2
, V
3
]
𝑇 is selected as the new control input in

this paper.
Define the bounded uncertainty terms Δk = RI−1Δd +

FΔf as the lumped uncertainty, and substitute (15) into (12),
and the basic model for attitude controller design can be
obtained by

ÿ = k + Δk. (16)

4. Sliding Mode Attitude Controller Design

This section develops two TVSMC attitude controllers to
solve the finite-time control problem by incorporating distur-
bance observer. The first controller is BTVSMC/DO and the
second controller is SOTVSMC/DO. This part elaborates on
the design of sliding surface and reaching law of the con-
trollers. Moreover, the design of disturbance observer is pre-
sented, too.

4.1. Time-Varying Sliding Surface Design. The time-varying
sliding surface is selected as [41]

s = ė + ce + ae−𝜆𝑡, (17)

where s = [𝑠
1
, 𝑠
2
, 𝑠
3
]
𝑇, the tracking error vector e = y − yc =

[𝑒
1
, 𝑒
2
, 𝑒
3
]
𝑇

, c = diag(𝑐
1
, 𝑐
2
, 𝑐
3
) is the sliding function gain

matrix, and the element 𝑐
𝑖

> 0, 𝑖 = 1, 2, 3, 𝜆 ∈ R+, a =

[𝑎
1
, 𝑎
2
, 𝑎
3
]
𝑇 is the coefficient vector to guarantee the existence

of sliding mode from the beginning of motion. Hence, a is
defined as

a = −ė (0) − ce (0) . (18)

Lemma 2. If the sliding mode s(𝑡) = 0
3×1

is satisfied, the
system (9) is globally asymptotically stable.

Proof. According to (17), s(𝑡) = 0
3×1

can be rewritten in scalar
form:

̇𝑒
𝑖
+ 𝑐
𝑖
𝑒
𝑖
+ 𝑎
𝑖
𝑒
−𝜆𝑡

= 0, 𝑖 = 1, 2, 3. (19)

If 𝑐
𝑖

̸= 𝜆, the differential equations can be solved as

𝑒
𝑖
(𝑡) =

𝑐
𝑖
𝑒
𝑖
(0)

𝑐
𝑖
− 𝜆

𝑒
−𝜆𝑡

−
𝜆𝑒
𝑖
(0)

𝑐
𝑖
− 𝜆

𝑒
−𝑐𝑖𝑡

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑐
𝑖
𝑒
𝑖
(0)

𝑐
𝑖
− 𝜆

−
𝜆𝑒
𝑖
(0)

𝑐
𝑖
− 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−𝜍𝑡

,

(20)

where 𝜍 = min(𝑐
𝑖
, 𝜆), and thus the system (9) is globally expo-

nentially stable.
If 𝑐
𝑖
= 𝜆, the differential equation can be solved as

𝑒
𝑖
(𝑡) = 𝑒

−𝑐𝑖𝑡 (𝑐
𝑖
𝑡 + 1) 𝑒

𝑖
(0) . (21)

Because lim
𝑡→∞

𝑒
𝑖
(𝑡) → 0, the system (9) is globally asymp-

totically stable.
In conclusion, the asymptotic stability of the system (9)

is guaranteed when sliding mode s(𝑡) = 0
3×1

is satisfied. This
completes the proof.

Remark 3. To simplify the selection procedure, the four
parameters 𝑐

1
, 𝑐
2
, 𝑐
3
, and 𝜆 in (17) are set equal so that

each of them is able to determine the sliding surface. As
the parameters become larger, the rate of tracking error is
faster and the control input is required to be larger. However,
control input in real situation could not always be bigger
as a faster convergence rate requires. As a result, a trade-
off between control input and convergence rate is necessary,
which can be achieved by trial-and-error method.
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4.2. Disturbance Observer Design. The first order derivative
of the sliding surface s is

̇s = ë + cė − 𝜆ae−𝜆𝑡

= −ÿc + ÿ + cė − 𝜆ae−𝜆𝑡

= −b + k + Δk,

(22)

where b = ÿc − cė + 𝜆ae−𝜆𝑡.
Hence, the control vector k can be expressed as

k = b − Δk + ̇s. (23)

The sliding variable dynamics (22) is sensitive to the
unknown bounded term Δk. However, the detailed infor-
mation of Δk in (23) is unavailable. To estimate the
lumped uncertainty, the robust differentiator technique [34]
is employed.

Assumption 4. 𝑠
1
, 𝑠
2
, 𝑠
3
are measured by Lebesgue-measur-

able noise bounded 𝜀
1

> 0, 𝜀
2

> 0, 𝜀
3

> 0, respectively.
Furthermore, k, b are assumed to be bounded and Lebesgue
measurable respectively, and the lumped uncertainty Δk is 2
times differentiable and bounded.

Consider z
0

= [𝑧
01
, 𝑧
02
, 𝑧
03
]
𝑇, z
1

= [𝑧
11
, 𝑧
12
, 𝑧
13
]
𝑇, and

z
2
= [𝑧
21
, 𝑧
22
, 𝑧
23
]
𝑇 as the estimated values of state variables,

and the observer can be expressed as [34]

ż
0
= v − b + ^

0

^
0
= −𝜆
0
L1/3 [[

[

󵄨󵄨󵄨󵄨𝑧01 − 𝑠
1

󵄨󵄨󵄨󵄨
2/3

0 0

0
󵄨󵄨󵄨󵄨𝑧02 − 𝑠

2

󵄨󵄨󵄨󵄨
2/3

0

0 0
󵄨󵄨󵄨󵄨𝑧03 − 𝑠

3

󵄨󵄨󵄨󵄨
2/3

]
]

]

× sgn (z
0
− s) + z

1
,

ż
1
= ^
1
,

^
1
= −𝜆
1
L1/2 [[

[

󵄨󵄨󵄨󵄨𝑧11 − ]
01

󵄨󵄨󵄨󵄨
1/2

0 0

0
󵄨󵄨󵄨󵄨𝑧12 − ]

02

󵄨󵄨󵄨󵄨
1/2

0

0 0
󵄨󵄨󵄨󵄨𝑧13 − ]

03

󵄨󵄨󵄨󵄨
1/2

]
]

]

× sgn (z
1
− ^
0
) + z
2
,

ż
2
= −𝜆
2
L sgn (z

2
− ^
1
) ,

(24)

where ^
0
= []
01
, ]
02
, ]
03
]
𝑇, ^
0
= []
01
, ]
02
, ]
03
]
𝑇. 𝜆
0
, 𝜆
1
, 𝜆
2
and

L = diag(𝑙
1
, 𝑙
2
, 𝑙
3
) are the parameters to be selected.

Lemma 5 (see [34]). Suppose Assumption 4 is satisfied. DO
(24) is finite-time stable. The following inequalities can be
established in finite time:

𝑧
0𝑖

− 𝑠
𝑖
≤ 𝜇
0𝑖
𝜀
𝑖
,

𝑧
1𝑖

− ΔV
𝑖
≤ 𝜇
1𝑖
𝜀
2/3

𝑖
,

𝑧
2𝑖

− ΔV̇
𝑖
≤ 𝜇
2𝑖
𝜀
1/3

𝑖
,

𝑖 = 1, 2, 3,

(25)

where 𝜇
0𝑖
, 𝜇
1𝑖
, 𝜇
2𝑖
, 𝑖 = 1, 2, 3, are positive constants.

Remark 6. The proof of Lemma 5 is similar to the studies of
Shtessel et al. [34] and is not presented in this paper. The
parameters 𝜆

0
, 𝜆
1
, 𝜆
2
can be chosen recursively, and the sim-

ulation-checked set 8, 5, 3 is suitable for the observer design
[34, 42].

In absence of measurement noise, the exact equalities can
be established in a finite time:

z0 = s, z1 = Δk, z2 = Δk̇. (26)

After DO is constructed, the control vector k can be
modified as

k = b − z
1
+ ̇s. (27)

4.3. Reaching Law Design. Before giving the reaching law
design, three lemmas to be used are presented.

Lemma 7 (see [43]). Consider the system of differential equa-
tions:

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) , (28)

where 𝑥 ∈ R𝑛, 𝑓 : 𝐷
0

→ R𝑛 is continuous on an open
neighborhood 𝐷

0
containing the origin, 𝑓(0) = 0.

Suppose there exists a continuous positive definite function
𝑉 : 𝐷

0
→ R. In addition, there exist real numbers 𝑘 > 0,

𝛼 ∈ (0, 1), and an open neighborhood of the origin 𝐷
1

⊆ 𝐷
0

satisfies

𝑉̇ + 𝑘𝑉
𝛼

≤ 0, 𝑥 ∈ 𝐷
1
\ {0} . (29)

Then the origin is a finite-time stable equilibrium of system
(28). The settling time 𝑡 is depended on the initial value 𝑥

0
:

𝑡 (𝑥
0
) ≤

𝑉(𝑥
0
)
1−𝛼

𝑘 (1 − 𝛼)
. (30)

Furthermore, if 𝐷 = 𝐷
0

= R𝑛, the origin is a globally finite-
time stable equilibrium of system (28).

Lemma8 (see [44]). Suppose there exists a continuous positive
definite function 𝑉 : 𝐷

0
→ R. In addition, there exist real

numbers 𝑘, 𝑙 > 0, 𝛼 ∈ (0, 1), and an open neighborhood of the
origin 𝐷

1
⊆ 𝐷
0
satisfies

𝑉̇ + 𝑘𝑉
𝛼

+ 𝑙𝑉 ≤ 0, 𝑥 ∈ 𝐷
1
\ {0} . (31)
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Then the origin is a finite-time stable equilibrium of system
(28). The settling time 𝑡 is depended on the initial value 𝑥

0
:

𝑡 (𝑥
0
) ≤

ln (1 + (𝑙/𝑘) 𝑉(𝑥
0
)
1−𝛼

)

𝑘 (1 − 𝛼)
. (32)

Furthermore, if 𝐷 = 𝐷
0

= R𝑛, the origin is a globally finite-
time stable equilibrium of system (28).

Lemma 9 (see [45]). For 𝑥
𝑖
∈ R, 𝑖 = 1, . . . , 𝑛, 0 < 𝑝 ≤ 1 is a

real number, and the inequality holds:

(
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨)
𝑝

≤
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨
𝑝

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨
𝑝

. (33)

Consider the reaching law with saturation function:

̇s = −𝜂 sat (s) , (34)

where 𝜂 = diag(𝜂
1
, 𝜂
2
, 𝜂
3
), 𝜂
𝑖

∈ R+, 𝑖 = 1, 2, 3, sat(s) =

[sat(𝑠
1
), sat(𝑠

2
), sat(𝑠

3
)]
𝑇 stands for the saturation function

that is used to attenuate the chattering problem, and sat(𝑠
𝑖
),

𝑖 = 1, 2, 3, is defined as

sat (𝑠
𝑖
) = {

ℎ−1
𝑖

𝑠
𝑖

󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨 ≤ ℎ
𝑖

sgn (𝑠
𝑖
)

󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨 > ℎ
𝑖

𝑖 = 1, 2, 3, (35)

where h = diag(ℎ
1
, ℎ
2
, ℎ
3
) and ℎ

𝑖
is the boundary layer thick-

ness.
Substitute (34) into (27); the control algorithm of BTVS-

MC/DO can be expressed as

v = b − z
1
− 𝜂 sat (s) . (36)

Theorem 10. Based on Assumption 4, the attitude control
problem described in (9) can be solved by BTVSMC/DO (36).
Furthermore, the attitude tracking error e is asymptotically
stable if the exact estimate of Δk is available through the DO.

Proof. Consider the Lyapunov function candidate:

𝑉
1
=

1

2
s𝑇s. (37)

According to (37) and (22), the time derivative of 𝑉
1
is

𝑉̇
1
= s𝑇 ̇s

= s𝑇 (−b + v + Δv) .
(38)

Substituting (36) into (38) gives

𝑉̇
1
= s𝑇 (−𝜂 sat (𝑠) − z

1
+ Δv) . (39)

According to Lemma 5, DO (24) is finite-time stable;
hence, we suppose there exists a moment 𝑡 = 𝑡ob, which
satisfies z

1
= Δv, 𝑡 ≥ 𝑡ob.

When 𝑡 ≥ 𝑡ob,

𝑉̇
1
= s𝑇 (−𝜂 sat (s))

=

3

∑
𝑖=1

𝜂
𝑖
𝑠
𝑖
sat (𝑠
𝑖
) .

(40)

In view of (35), consider the following two cases.

(1) If |𝑠
𝑖
| > ℎ

𝑖
, 𝑖 = 1, 2, 3, we can get 𝜂

𝑖
𝑠
𝑖
sat(𝑠
𝑖
) =

𝜂
𝑖
𝑠
𝑖
sgn(𝑠
𝑖
) = 𝜂
𝑖
|𝑠
𝑖
|.

(2) If |𝑠
𝑖
| ≤ ℎ

𝑖
, 𝑖 = 1, 2, 3, we can get 𝜂

𝑖
𝑠
𝑖
sat(𝑠
𝑖
) =

𝜂
𝑖
𝑠
𝑖
ℎ−1
𝑖

𝑠
𝑖
= 𝜂
𝑖
|𝑠
𝑖
|
2

ℎ−1
𝑖

≤ 𝜂
𝑖
|𝑠
𝑖
|.

Hence, it is obvious that

𝑉̇
1
≤

3

∑
𝑖=1

𝜂
𝑖

󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨

≤ −𝜒√𝑉
1
,

(41)

where 𝜒 = min(𝜂
1
, 𝜂
2
, 𝜂
3
); according to Lemma 7, the trajec-

tory of system will be driven into the related sliding surface
s = 0
3×1

in a finite time 𝑡
𝑟
:

𝑡
𝑟
≤

2√𝑉
1
(𝑡ob)

𝜒
+ 𝑡ob,

(42)

where 𝑉
1
(𝑡ob) is the value of 𝑉1 at 𝑡 = 𝑡ob.

According to Lemma 2, once the slide mode s = 0
3×1

is
established, the system (9) is globally asymptotically stable.
This completes the proof.

Generally, a thicker boundary layer (larger values of ℎ
𝑖
,

𝑖 = 1, 2, 3) contributes to smaller chattering; however, the
static error inside the boundary layer may be large. Since the
boundary layer method may result in the erosion of robust-
ness and precision, a novel second-order SMC is pro-posed
in this paper.

Consider the reaching law:

̇s = − k
1
sig(𝑚−1)/𝑚 (s) sgn (s) − k

2
s + 𝜏,

𝜏̇ = k
3
sig(𝑚−2)/𝑚 (s) sgn (s) − k

4
s,

(43)

where 𝑚 > 2, k
1
= diag(𝑘

11
, 𝑘
12
, 𝑘
13
), k
2
= diag(𝑘

21
, 𝑘
22
, 𝑘
23
),

k
3

= diag(𝑘
31
, 𝑘
32
, 𝑘
33
), and k

4
= diag(𝑘

41
, 𝑘
42
, 𝑘
43
) with 𝑘

1𝑖
,

𝑘
2𝑖
, 𝑘
3𝑖
, 𝑘
4𝑖

∈ R+, 𝑖 = 1, 2, 3. And sig𝑚(s) is defined as

sig𝑚 (s) = [sgn (𝑠
1
)
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨
𝑚

, sgn (𝑠
2
)
󵄨󵄨󵄨󵄨𝑠2

󵄨󵄨󵄨󵄨
𝑚

, sgn (𝑠
3
)
󵄨󵄨󵄨󵄨𝑠3

󵄨󵄨󵄨󵄨
𝑚

]
𝑇

.

(44)

Substitute (43) into (27); the related control algorithm of
SOTVSMC/DO is given by

v = b − z
1
− k
1
sig(𝑚−1)/𝑚 (s) sgn (s) − k

2
s

+ ∫ (k
3
sig(𝑚−2)/𝑚 (s) sgn (s) − k

4
s) .

(45)

Remark 11. In view of (43), when the system’s initial state is
close to equilibrium point (s

𝑖
= 0, 𝑖 = 1, 2, 3), the conver-

gence speed mainly depends on the nonlinear terms. Other-
wise, when the system’s initial state is far from equilibrium
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point, the convergence speed mainly depends on the linear
terms. Hence, the system can hold a fast convergence speed
whether the initial state is close to equilibrium point or not.

Theorem 12. Suppose that the following inequality holds:

𝑚
2

𝑘
3𝑖
𝑘
4𝑖

− (
𝑚3

𝑚 − 1
𝑘
3𝑖

+ (4𝑚
2

− 4𝑚 + 1) 𝑘
2

1𝑖
)𝑘
2

2𝑖
> 0,

𝑖 = 1, 2, 3.

(46)

Based on Assumption 4, the attitude control problem described
in (9) can be solved by the SOTVSMC/DO (45). Furthermore,
the attitude tracking error e is asymptotically stable if the exact
estimate of Δk is available through the DO.

Proof. The Lyapunov function can be expressed as

𝑉
2
=

3

∑
𝑖=1

𝑉
2𝑖
, 𝑖 = 1, 2, 3. (47)

According to [46], 𝑉
2𝑖
is defined as

𝑉
2𝑖

=
1

2
(−𝑘
1𝑖

󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨
(𝑚−1)/𝑚 sgn (𝑠

𝑖
) − 𝑘
2𝑖
𝑠
𝑖
+ 𝜏
𝑖
)
2

+
𝑘
3𝑖
𝑚

𝑚 − 1

󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨
2(𝑚−1)/𝑚

+ 𝑘
4𝑖
𝑠
2

𝑖
+

1

2
𝜏
2

𝑖
.

(48)

Construct the vector 𝜉
𝑖
= [|𝑠
𝑖
|
(𝑚−1)/𝑚 sgn(𝑠

𝑖
), 𝑠
𝑖
, 𝜏
𝑖
]
𝑇

; then
𝑉
2𝑖
and the derivative 𝑉̇

2𝑖
can be expressed as

𝑉
2𝑖

= 𝜉
𝑇

𝑖
Λ
𝑖
𝜉
𝑖
,

𝑉̇
2𝑖

= −
󵄨󵄨󵄨󵄨𝑠𝑖

󵄨󵄨󵄨󵄨
−1/𝑚

𝜉
𝑇

𝑖
Γ
1𝑖
𝜉
𝑖
+ 𝜉
𝑇

𝑖
Γ
2𝑖
𝜉
𝑖
,

(49)

where

Λ
𝑖
=

1

2
[

[

(2𝑚/ (𝑚 − 1)) 𝑘
3𝑖

+ 𝑘2
1𝑖

𝑘
1𝑖
𝑘
2𝑖

−𝑘
1𝑖

𝑘
1𝑖
𝑘
2𝑖

2𝑘
4𝑖

+ 𝑘2
2𝑖

−𝑘
2𝑖

−𝑘
1𝑖

−𝑘
2𝑖

2

]

]

,

Γ
1𝑖

=
𝑘
1𝑖

𝑚

× [

[

𝑚𝑘
3𝑖

+ (𝑚 − 1) 𝑘
2

1𝑖
0 − (𝑚 − 1) 𝑘

1𝑖

0 𝑚𝑘
4𝑖

+ (3𝑚 − 1) 𝑘
2

2𝑖
− (2𝑚 − 1) 𝑘

2𝑖

− (𝑚 − 1) 𝑘
1𝑖

− (2𝑚 − 1) 𝑘
2𝑖

𝑚 − 1

]

]

,

Γ
2𝑖

= 𝑘
2𝑖

[

[

𝑘
3𝑖

+ ((3𝑚 − 2) /𝑚) 𝑘
2

1𝑖
0 0

0 𝑘
4𝑖

+ 𝑘
2

2𝑖
−𝑘
2𝑖

0 −𝑘
2𝑖

1

]

]

.

(50)

𝑉
2𝑖
is continuous positive function:

𝜆min {Λ
𝑖
}
󵄩󵄩󵄩󵄩𝜉𝑖

󵄩󵄩󵄩󵄩
2

≤ 𝑉
2𝑖

≤ 𝜆max {Λ
𝑖
}
󵄩󵄩󵄩󵄩𝜉𝑖

󵄩󵄩󵄩󵄩
2

, (51)

where ‖ ⋅ ‖ denotes the Euclidean norm. 𝜆min{⋅} and 𝜆max{⋅}
denote the minimum and maximum eigenvalues of the
related matrix, respectively:

󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨
(𝑚−1)/𝑚

≤ √󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨
2(𝑚−1)/𝑚

+ 𝑠2
𝑖
+ 𝜏2
𝑖
=

󵄩󵄩󵄩󵄩𝜉𝑖
󵄩󵄩󵄩󵄩 ≤ √

𝑉
2𝑖

𝜆min {Λ
𝑖
}

󵄨󵄨󵄨󵄨𝑠𝑖
󵄨󵄨󵄨󵄨
1/𝑚

≤ (
𝑉
2𝑖

𝜆min {Λ
𝑖
}
)

1/2(𝑚−1)

.

(52)

According to (46),Γ
1𝑖
andΓ
2𝑖
are positive definitematrix-

es; hence, 𝑉̇
2𝑖
is negative:

𝑉̇
2𝑖

≤ −
󵄨󵄨󵄨󵄨𝑠𝑖

󵄨󵄨󵄨󵄨
−1/𝑚

𝜆min {Γ
1𝑖
}
󵄩󵄩󵄩󵄩𝜉𝑖

󵄩󵄩󵄩󵄩
2

− 𝜆min {Γ
2𝑖
}
󵄩󵄩󵄩󵄩𝜉𝑖

󵄩󵄩󵄩󵄩
2

≤ −(
𝜆min {Λ

𝑖
}

𝑉
2𝑖

)

1/2(𝑚−1)

× 𝜆min {Γ
1𝑖
}

𝑉
2𝑖

𝜆max {Λ
𝑖
}
− 𝜆min {Γ

2𝑖
}

𝑉
2𝑖

𝜆max {Λ
𝑖
}

= −𝜒
1𝑖
𝑉
(2𝑚−3)/(2𝑚−2)

2𝑖
− 𝜒
2𝑖
𝑉
2𝑖
,

(53)

where 𝜒
1𝑖

= (𝜆min{Λ𝑖})
1/2(𝑚−1)

(𝜆min{Γ1𝑖}/𝜆max{Λ𝑖}), 𝜒
2𝑖

=

(𝜆min{Γ2𝑖}/𝜆max{Λ𝑖}),

𝑉
2
=

3

∑
𝑖=1

(−𝜒
1𝑖
𝑉
(2𝑚−3)/(2𝑚−2)

2𝑖
− 𝜒
2𝑖
𝑉
2𝑖
)

≤ −𝜒
1

3

∑
𝑖=1

𝑉
(2𝑚−3)/(2𝑚−2)

2𝑖
− 𝜒
2
𝑉
2
,

(54)

where 𝜒
1
= max{𝜒

11
, 𝜒
12
, 𝜒
13
}, 𝜒
2
= max{𝜒

21
, 𝜒
22
, 𝜒
23
}.

Since 𝑚 > 2, 0 < (2𝑚 − 3)/(2𝑚 − 2) < 1. According to
Lemma 9

𝑉
2
+ 𝜒
1
𝑉
(2𝑚−3)/(2𝑚−2)

2
+ 𝜒
2
𝑉
2
≤ 0. (55)

Similar to the proof of Theorem 10, according to
Lemma 8, the trajectory of system will be driven into the
related sliding surface s = 0

3×1
in a finite time 𝑡

𝑟
:

𝑡
𝑟
≤

2 (𝑚 − 1) ln (1 + (𝜒
2
/𝜒
1
) 𝑉
2
(𝑡ob)
1/2(𝑚−1)

)

𝜒
1

+ 𝑡ob,
(56)

where 𝑡ob is the moment which satisfies z
1

= Δv, 𝑡 ≥ 𝑡ob.
𝑉
2
(𝑡ob) is the value of 𝑉2 at 𝑡 = 𝑡ob.
According to Lemma 2, once the slide mode s = 0

3×1
is

established, the system (9) is globally asymptotically stable.
This completes the proof.



Mathematical Problems in Engineering 9

5. Control Allocation

With low atmosphere density, reentry vehicle suffers poor
aerodynamic maneuverability at high altitude. In such case,
the combination of RCS jets and aerodynamic surfaces is
considered to meet the control performances. To ensure that
the command control torque M

𝑐
can be produced jointly

by the actuators input 𝛿
𝑐
, a control allocation approach is

designed in this paper.
The core of the control allocation problem is to solve the

nondeterministic system equations with typical constraints.
Suppose that the number of aerodynamic surface is 𝑛

1
, and

the number of RCS jets is 𝑛
2
:

M
𝑐
= D (⋅) 𝛿

𝑐
, (57)

where 𝛿
𝑐

= [𝛿
𝐴
; 𝛿RCS], 𝛿𝐴 = [𝛿

𝐴1
, 𝛿
𝐴2

, . . . , 𝛿
𝐴𝑛1

]
𝑇 denotes

the vector of aerodynamic surface deflection, and 𝛿RCS =

[𝛿RCS1, 𝛿RCS2, . . . , 𝛿RCS𝑛2] stands for the vector of RCS thruster
states. The matrixD(⋅) can be expressed as

D (⋅) = [D
𝐴
(⋅) ,DRCS (⋅)] , (58)

where D
𝐴
(⋅) and DRCS(⋅) stand for aerodynamic torque

matrix and RCS torque matrix, respectively.
The typical constraints for the control allocation problem

are commonly defined as

𝛿
𝐴𝑖min ≤ 𝛿

𝐴𝑖
≤ 𝛿
𝐴𝑖max,

𝛿
𝑑-𝐴𝑖min ≤ ̇𝛿

𝐴𝑖
≤ 𝛿
𝑑-𝐴𝑖max, 𝑖 = 1, . . . , 𝑛

1
,

0 ≤ 𝛿RCS𝑗 ≤ 1, 𝑗 = 1, . . . , 𝑛
2
,

(59)

where 𝛿
𝐴𝑖min and 𝛿

𝐴𝑖max are the lower boundary and upper
boundary of aerodynamic surface 𝛿

𝐴𝑖
, respectively. 𝛿

𝑑-𝐴𝑖min
and 𝛿
𝑑-𝐴𝑖max are the lower boundary and upper boundary of

deflection rate ̇𝛿
𝐴𝑖
, respectively.

The optimizationmethod can be used to solve the nonde-
terministic system equations. The primary object of the con-
trol allocation is to minimize the difference between com-
mand control torque M

𝑐
and the torque produced by actua-

tors [39]. Moreover, another objective is to minimize the use
of RCS jets. Hence, the cost function can be expressed as

min 𝐽
1
= W
1

󵄩󵄩󵄩󵄩M𝑐 − D (⋅) 𝛿
𝑐

󵄩󵄩󵄩󵄩 + W
2
𝛿RCS, (60)

whereW
1
∈ R3,W

2
∈ R𝑛2 are the weights to be designed.

Therefore, the control allocation problem is transformed
into optimization problem tominimize the cost function (60)
subject to (59).

In practical, on-off RCS jets can only provide the maxi-
mum torque or zero torque. Thus, 𝛿RCS should be defined as
binary variables. This paper employs the PWPF modulator
to convert the continuous signal into on-off RCS commands.
As shown in Figure 2, PWPFmodulator consists of a low pass
filer and a Schmitt trigger inside a feedback loop. 𝐾

𝑚
and 𝑇

𝑚

are the low pass filer gain. 𝑢on and 𝑢off are the on-value and
off-value of Schmitt trigger.

6. Numerical Simulation
Results and Assessment

In order to verify the effectiveness of proposed control
methods, the comparisons between proposed control meth-
ods and two conventional methods are presented. The two
conventional methods are FBL and boundary layer method
based time-varying sliding mode control (BTVSMC).

The control algorithm of FBL can be expressed as [40]

v = ÿc − 𝑘
𝑝
e − 𝑘
𝑑
ė, (61)

where the parameters 𝑘
𝑝
and 𝑘
𝑑
should be a positive value.

As stated earlier, bound layer method is a conventional
method to alleviate chattering phenomenon of SMC. Since
DO is not employed in the control method, the control
algorithm of BTVSMC is given by [17]

k = b − 𝜂 sat (s) . (62)

Thenumerical tests in this paper employ a reentry vehicle,
whose moments of inertia are 𝐼

𝑥
= 588791 kg⋅m2, 𝐼

𝑦
=

1303212 kg⋅m2, and 𝐼
𝑧
= 1534164 kg⋅m2, and the products of

inertia are 𝐼
𝑧𝑥

= 𝐼
𝑥𝑧

= 24242 kg⋅m2. In addition, the vehicle
has a lifting-body configuration with 8 aerodynamic surfaces
and 10 RCS jets. The aerodynamic surfaces include left outer
elevon 𝛿elo, right outer elevon 𝛿ero, left inner elevon 𝛿eli, right
inner elevon 𝛿eri, left flap 𝛿fl, and right flap 𝛿fr, left rudder
𝛿rl, and right rudder 𝛿rr [47]. The constraints of the vector
𝛿
𝐴

= [𝛿elo, 𝛿ero, 𝛿eli, 𝛿eti, 𝛿fl, 𝛿fr, 𝛿rl, 𝛿rr]
𝑇 are given by

𝛿
𝐴max = [0, 0, 0, 0, 30, 30, 30, 30]

𝑇

,

𝛿
𝐴min = − [25, 25, 25, 25, 10, 10, 30, 30]

𝑇

,

𝛿
𝑑-𝐴max = − 𝛿

𝑑-𝐴𝑖min = [10, 10, 10, 10, 10, 10, 10, 10]
𝑇

,

(63)

where 𝛿
𝐴max and 𝛿𝐴min are measured in degree and 𝛿

𝑑-𝐴max
and 𝛿

𝑑-𝐴𝑖min are measured in degree per second.
Each RCS jet of reentry vehicle can produce 3559N of

thrust. In addition, the RCS torque matrix DRCS(⋅) is defined
as [48]

DRCS (⋅) =
[
[

[

0 −2048 11625 −6912 0 2054 −11623 6912 0 0

−498 0 −9466 10944 −498 0 −9465 11798 −498 −498

19897 −15723 −9465 −11798 −19897 15723 9465 11798 −19897 19897

]
]

]

. (64)
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Table 1: Sliding mode control parameters.

Parameter\controller BTVSMC BTVSMC/DO SOTVSMC/DO

Sliding surface parameters c = diag(2, 2, 2)
𝜆 = 2

c = diag(2, 2, 2)
𝜆 = 2

c = diag(2, 2, 2)
𝜆 = 2

Control parameters 𝜂 = diag(0.1, 0.1, 0.1)
h = diag(0.015, 0.015, 0.015)

𝜂 = diag(0.1, 0.1, 0.1)
h = diag (0.015, 0.015, 0.015)

k
1
= diag(0.1, 0.1, 0.1)

k
2
= diag(0.2, 0.2, 0.2)

k
3
= diag(0.1, 0.1, 0.1)

k
4
= diag(0.1, 0.1, 0.1)

𝑚 = 3

DO parameters 𝛾
1
= 8.2, 𝛾

2
= 4.1, 𝛾

3
= 2.0

L = diag(0.005, 0.005, 0.01)
𝛾
1
= 8.2, 𝛾

2
= 4.1, 𝛾

3
= 2.0

L = diag(0.005, 0.005, 0.01)

A in

uoff uon

Aout

−1

1
Km

1 + Tms

Figure 2: PWPF modulator.

The initial conditions for reentry vehicle are taken as
follows: the altitude ℎ = 55.0 km, Mach number Ma = 9.8,
Ω
0

= [32.0
∘

, 2.0
∘

, 58.0
∘

]
𝑇, and w

0
= [0.0

∘

/s, 0.0∘/s, 0.0∘/s]𝑇.
And attitude angle commands are set to be Ω

𝑐
= [30.0

∘

, 0.0
∘

,

60.0∘]
𝑇.The reentry vehicle suffers high structural stresses for

high Mach number and bad aerodynamics for large AOA,
and, hence, the rudders are not allowed to be used [10].

Furthermore, additional constraints for control allocation
problem should be satisfied:

𝛿rl = 𝛿rr = 0. (65)

The planet uncertainties are set in consideration of 5
percent bias conditions for moments of inertia and products
of inertia, 10 percent bias conditions for aerodynamic coeffi-
cients, and 10 percent bias conditions for atmospheric density.
In addition, the external disturbance torque vector takes the
form of

ΔM =
[
[

[

0.5 + sin (0.1𝑡) + sin (𝑡)

0.5 + sin (0.1𝑡) + sin (𝑡)

0.5 + sin (0.1𝑡) + sin (𝑡)

]
]

]

× 10
4N ⋅ m. (66)

To validate the robustness and the chattering reduction
of the proposed methods, numerical simulations of FBL (61),
BTVSMC (62), BTVSMC/DO (36), and SOTVSMC/DO (45)
are presented.The overall attitude control system architecture
for reentry is showed in Figure 1. And the integration step is

Table 2: Control allocation parameters.

Parameter Value
W
1

[1, 1, 1]

W
2

[0.1, . . . , 0.1]

𝐾
𝑚

4.5

𝑇
𝑚

0.15

𝑢on 0.45

𝑢off 0.15

specified as 0.01 seconds. In FBL (61), the control parameters
are selected as 𝑘

𝑝
= 𝑘
𝑑

= 3. In addition, the control param-
eters of the sliding mode controllers are specified in Table 1.
After the command control torque vector, M

𝑐
, is produced

by these controllers, the actuator command is obtained by
control allocation algorithm as presented in Section 5. The
parameters of control allocation problem are as shown in
Table 2.

The variations of the attitude angles including AOA,
sideslip angle, and bank angle under FBL, BTVSMC, BTVS-
MC/DO, and SOTVSMC/DO are shown in Figure 3. It is
obvious that SMC has significant robustness performance in
the presence of uncertainties and disturbances. Since FBL
relies on the knowledge of the exact model dynamics, the
tracking errors under FBL do not converge to zero. The
second row of Figure 3 shows the attitude angle evolutions
in steady-state region. Compared with FBL and BTVSMC,
BTVSMC/DO and SOTVSMC/DO achieve the goals of
tracking with higher accuracy.

To further evaluate the tracking performance between
BTVSMC/DO and SOTVSMC/DO, the local view of attitude
angle evolutions via BTVSMC/DO and SOTVSMC/DO is
shown in Figure 4. The results suggest that all the attitude
angles converge to the desired values within 4 seconds in
the transient region for both methods. As shown in the local
view of attitude angles in the steady-state region, the tracking
errors under SOTVSMC/DO are much smaller than those
under BTVSMC/DO.
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Figure 3: Comparison of attitude angle evolutions via FBL, BTVSMC, BTVSMC/DO, and SOTVSMC/DO.

0 1 2 3 4 5
30

30.5

31

31.5

32

0 1 2 3 4 5
0

0.5

1

1.5

2

0 1 2 3 4 5
57.5

58

58.5

59

59.5

60

5 10 15
29.9995

30

30.0005

30.001

30.0015

5 10 15
−5

0

5

10

15

5 10 15
59.9985

59.999

59.9995

60

60.0005

60.001

𝛼
(d

eg
)

𝛼
(d

eg
)

𝛽
(d

eg
)

𝛽
(d

eg
)

𝜎
(d

eg
)

𝜎
(d

eg
)

Time (s)

Time (s) Time (s)

Time (s)

Time (s)

Time (s)

×10−4

BTVSMC/DO
SOTVSMC/DO

BTVSMC/DO
SOTVSMC/DO

BTVSMC/DO
SOTVSMC/DO

Figure 4: Local view of attitude angle evolutions via BTVSMC/DO and SOTVSMC/DO.

The sliding surface responses via BTVSMC, BTVSMC/
DO, and SOTVSMC/DO are shown in Figure 5. It is obvious
that the sliding surface under BTVSMC does not converge to
zero because DO is not introduced. The system trajectories

under BTVSMC/DO and SOTVSMC/DO move apart from
zero after the start point, and move back to zero around
4 seconds later. The second row of Figure 5 shows the
local view of steady-state region under BTVSMC/DO and
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Figure 5: Comparison of sliding surface responses via BTVSMC, BTVSMC/DO, and SOTVSMC/DO.

SOTVSMC/DO. As boundary layer method is applied, the
sliding surface stays inside of the boundary layer; however,
the tracking accuracy within the boundary layer is not
guaranteed. As a result, the sliding surface under SOTVSMC/
DO converges to zero more precisely.

The estimations of the sliding surface by BTVSMC/DO
and SOTVSMC/DO are shown in Figures 6(a) and 6(b)
respectively. In addition, Figure 7 depicts the estimations of
uncertainty terms. Clearly, all of sliding surfaces and lumped
uncertainty can be estimated by DO effectively.

Figure 8 illustrates the comparison of attitude angular
rate evolutions via FBL, BTVSMC, BTVSMC/DO, and SOT-
VSMC/DO. And the produced command control torques
are showed in Figure 9. Control chattering is undesirable in
practice because it involves high control activity and may
excite high frequency unmolded dynamics. As is shown in
Figure 9, the problem of chattering phenomenon for SMC is
eliminated in the cases of BTVSMC, BTVSMC/DO, and SOT-
VSMC/DO.

This paper formulates all the numerical simulations in
consideration of the constraints for aerodynamic deflections
and RCS thrusts, both of which are actuator command and
can be obtained by control allocation algorithm presented
in Section 5. The aerodynamic deflections via BTVSMC/DO
and SOTVSMC/DO are shown in Figures 10(a) and 11(a),
respectively. The rudders are kept around zero. All the
actuator limits in (59) and (65) are satisfied. The RCS thrust

commands via BTVSMC/DO and SOTVSMC/DO are shown
in Figures 10(b) and 11(b), respectively.The RCS thrusts com-
pensate the torque errors caused by aerodynamic deflection
saturation with high accuracy.

7. Conclusion

This paper investigates the finite-time control problem of
reentry vehicle with aerodynamic surfaces and RCS jets and
seeks for more reliable attitude controller design and the
control allocation design. The numerical simulation results
prove the tracking accuracy and robustness of the proposed
attitude controller and control allocation method.

For attitude controller design, two kinds of robust finite-
time TVSMC controllers are proposed. Time-varying sliding
surface is employed to eliminate the reaching phase of transit
dynamics, and thus the global robustness is guaranteed. A
DO is introduced to enhance the robustness against planet
uncertainness and external disturbances. To alleviate the
chattering, boundary layer method and second-order SMC
method are employed, respectively. Both of the proposed
methods can avoid chattering phenomenon effectively.More-
over, the tracking error under SOTVSMC/DO converges to
zero more precisely.

A control allocation approach is introduced to gener-
ate the actuator commands, including aerodynamic surface
deflections and on-off RCS thrusts. The nondeterministic
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Figure 7: The estimations of the uncertainty terms by BTVSMC/DO and SOTVSMC/DO.
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Figure 8: Comparison of attitude angular rate evolutions via FBL, BTVSMC, BTVSMC/DO, and SOTVSMC/DO.
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Figure 9: Comparison of command control torque via FBL, BTVSMC, BTVSMC/DO, and SOTVSMC/DO.

system equations are solved by optimization methods, and
the proposedweighted cost function is capable ofminimizing
both the utilization of RCS jets and the differences between
the desired torque and the torque produced by actuators.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



16 Mathematical Problems in Engineering

−20
−10

0

−20
−10

0

−20
−10

0

0 5 10 15

0 5 10 15

0 5 10 15

0 5 10 15

−20
−10

0

0

10

10

0

20

−5

0

5

0 5 10 15

0 5 10 15

0 5 10 15

0 5 10 15

−2

0

2

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

×10−8

×10−13

𝛿
el

o
𝛿

er
o

𝛿
el

i
𝛿

er
i

𝛿
fl

𝛿
fr

𝛿
rl

𝛿
rr

5

(a) Elevon, flap, and rudder commands

0
1

0
1

0
1

0
1

0
1

0

0
1

1

0
1

0
1

0 5 10 15
0
1

Time (s)

0 5 10 15
Time (s)

0 5 10 15
Time (s)

0 5 10 15
Time (s)

0 5 10 15
Time (s)

0 5 10 15
Time (s)

0 5 10 15
Time (s)

0 5 10 15

0 5 10 15
Time (s)

Time (s)

0 5 10 15
Time (s)

𝛿
R
1

𝛿
R
2

𝛿
R
3

𝛿
R
4

𝛿
R
5

𝛿
R
6

𝛿
R
7

𝛿
R
8

𝛿
R
10

𝛿
R
9

(b) RCS commands

Figure 10: Aerodynamic surface commands and RCS commands via BTVSMC/DO.
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