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The single degree-of-freedom (SDOF) system under the control of three semiactive methods is analytically studied in this paper,
where a fractional-order derivative is used in the mathematical model. The three semiactive control methods are on-off control,
limited relative displacement (LRD) control, and relative control, respectively. The averaging method is adopted to provide an
analytical study on the performance of the three different control methods. Based on the comparison between the analytical
solutions with the numerical ones, it could be proved that the analytical solutions are accurate enough.The effects of the fractional-
order parameters on the control performance, especially the relative and absolute displacement transmissibility, are analyzed. The
research results indicate that the steady-state amplitudes of the three semiactive systems with fractional-order derivative in the
model could be significantly reduced and the control performance can be greatly improved.

1. Introduction

Machinery equipment will vibrate if it is excited, and more
damage can be caused when it is under the condition of
resonance. In order to reduce vibration, Frahm invented the
original shock absorber based on classical vibration theory.
Then Den Hartog propounded the design rule for damping
dynamic shock absorber based on the fixed-points theory [1].
Subsequently, many improved shock absorbers were pre-
sented based on this one. At that stage, the control method
should be named as passive control one. The damping force
of passive vibration control system could not be adjusted
instantaneously, so that it may be limited effective. With the
development of science and technology, active control and
semiactive controlmethods came into being.These two kinds
of control methods performed noticeably well and they were
adopted in many fields such as vehicle suspension and vibra-
tion absorption system [2–5].

Vehicle suspension could be simplified to a single degree-
of-freedom (SDOF) semiactive control system under some
assumptions. The study on semiactive control methods orig-
inated from Karnopp et al. who presented the on-off control
method in 1974 [2]. After that, many scholars carried out

research directing at semiactive suspension system, and the
research efforts were focused on the control methods and/or
design of control devices [6–8]. Some other scholars pre-
ferred analytical method than numerical one, because the
analytical study may present more information about the
adjustment or design of the controllable parameters. Shen
et al. [9] applied averagingmethod to present analytical inves-
tigations for different controlmethods. Eslaminasab et al. [10]
adopted averaging method to provide an analytical platform
for analyzing the performance of relative control method.
Shen et al. [11–13] studied the approximately analytical solu-
tions and parameters optimization of four semiactive on-off
dynamic vibration absorbers and researched a single degree-
of-freedom semiactive oscillator with time delay.

In fact, it is rather hard to accurately describe the consti-
tutive relations of most real materials by the classical integer-
order model, especially for some viscoelastic and/or rheolog-
ical materials. Therefore, some scholars started to research
fractional-order derivativemodels. As far back as 1985, Bagley
and Torvik [14–16] introduced fractional-order derivative
into fluid mechanics and modelled the constitutive relation
of the material viscoelasticity in many vibration mitigations.
Rossikhin and Shitikova [17] proposed a method to analyze
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the free damped vibrations of a fractional-order oscillator.
Tavazoei et al. [18] and Pinto and Tenreiro Machado [19]
studied the fractional-order van der Pol oscillator and found
multiple limit cycles existing in the system. Shen et al. [20–23]
analytically studied the primary resonance of some nonlinear
oscillators with different fractional-order derivatives by the
averaging method and illustrated the effects of fractional-
order parameters on dynamical response. Wahi and Chat-
terjee [24] studied an oscillator with special fractional-order
derivative and time-delay by averaging method. Chen and
Zhu [25],Wang andHe [26], Huang and Jin [27], and Xu et al.
[28] also investigated different fractional-order systems and
presented some important results by analytical research.

In this paper, we introduce fractional-order derivative
into semiactive SDOF systems,where the semiactivemethods
are on-off control, limited relative displacement (LRD) con-
trol, and relative control, respectively.The analytical solutions
of the three semiactive systems are obtained by averaging
method.Thenwe study the stability of those steady-state solu-
tions by Lyapunov stability theory. Furthermore, the effects
of fractional-order parameters on the steady-state amplitude
and control performance are researched. At last the main
conclusions are made.

2. Analytical Solutions of
SDOF Semiactive System

Theconsidered SDOF semiactive system is shown in Figure 1.
If the fractional-order viscoelastic device is used, its mathe-
matical model should be

𝑚𝑥̈+ 𝑘 (𝑥 − 𝑥0) + 𝑐 (𝑥̇ − 𝑥̇0) +𝐾𝐷
𝑝
(𝑥 − 𝑥0) = 0, (1)

where 𝑥0 = 𝑋0 cos𝜔𝑡 is the external excitation to the con-
trolled system with𝑋0 and 𝜔 as the excitation amplitude and
excitation frequency.𝑚, 𝑐, and 𝑘 are the system mass, system
damping coefficient, and stiffness, respectively.𝐾𝐷

𝑝
(𝑥−𝑥0) is

the fractional-order derivative of𝑥−𝑥0 to 𝑡with the fractional
coefficient𝐾 (𝐾 ≥ 0) and the fractional-order 𝑝 (0 ≤ 𝑝 ≤ 1).
There are several definitions for fractional-order derivative,
and they are equivalent under some conditions for a wide
class of functions. In Caputo’s sense, the definition of 𝑝 order
derivative of 𝑥(𝑡) to 𝑡 is

𝐷
𝑝
[𝑥 (𝑡)] =

1
Γ (1 − 𝑝)

∫

𝑡

0

𝑥
󸀠
(𝑢)

(𝑡 − 𝑢)
𝑝
𝑑𝑢, (2)

where Γ(𝑧) is Gamma function that satisfies Γ(𝑧+ 1) = 𝑧Γ(𝑧).
Defining 𝑧 = 𝑥 − 𝑥0, (1) becomes

𝑚𝑧̈ + 𝑘𝑧 + 𝑐𝑧̇ +𝐾𝐷
𝑝
(𝑧) = 𝑚𝑋0𝜔

2 cos𝜔𝑡. (3)

Using the following transformation of coordinates

𝜔
2
0 =

𝑘

𝑚

,

𝜉 =

𝑐

2𝑚
,

ck

x

x0

KDp(x − x0)

m

Figure 1:Themodel of SDOF semiactive systemby using fractional-
order derivative.

𝜆 =

𝐾

𝑚

,

𝑓 = 𝑋0𝜔
2
,

(4)

equation (3) becomes

𝑧̈ + 𝜔
2
0𝑧 + 2𝜉𝑧̇ + 𝜆𝐷

𝑝
(𝑧) = 𝑓 cos𝜔𝑡. (5)

Supposing the solution of (5) is

𝑧 = 𝑎 cos𝜙,

𝑧̇ = −𝜔𝑎 sin𝜙,

(6)

where 𝜙 = 𝜔𝑡 + 𝜃, one could get

𝑧̇ = ̇𝑎 cos𝜙− 𝑎 (𝜔+
̇

𝜃) sin𝜙,

𝑧̈ = −𝜔 [ ̇𝑎 sin𝜙+ 𝑎 (𝜔+
̇

𝜃) cos𝜙] .
(7)

From (5), (6), and (7), one could obtain

̇𝑎 cos𝜙− 𝑎
̇

𝜃 sin𝜙 = 0,

̇𝑎 sin𝜙+ 𝑎
̇

𝜃 cos𝜙 =

𝐹

𝜔

,

(8)

where

𝐹 = − [𝑓 cos𝜔𝑡 + 𝑎 (𝜔
2
−𝜔

2
0) cos𝜙+ 2𝑎𝜉𝜔 sin𝜙

−𝜆𝐷
𝑝
(𝑎 cos𝜙)] .

(9)

The derivatives of the generalized amplitude 𝑎 and phase
𝜃 could be solved as

̇𝑎 =

𝐹

𝜔

sin𝜙,

𝑎
̇

𝜃 =

𝐹

𝜔

cos𝜙.
(10)
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Then, one could apply the standard averaging method to (10)
in time interval [0, 𝑇]

̇𝑎 = lim
𝑇→∞

1
𝑇

∫

𝑇

0

𝐹

𝜔

sin𝜙𝑑𝜙,

𝑎
̇

𝜃 = lim
𝑇→∞

1
𝑇

∫

𝑇

0

𝐹

𝜔

cos𝜙𝑑𝜙.

(11)

Furthermore, (11) could be written as

̇𝑎 = ̇𝑎1 + ̇𝑎2 + ̇𝑎3,

𝑎
̇

𝜃 = 𝑎
̇

𝜃1 + 𝑎
̇

𝜃2 + 𝑎
̇

𝜃3,
(12)

where

̇𝑎1 = lim
𝑇→∞

1
𝑇𝜔

⋅ ∫

𝑇

0
− [𝑋0𝜔

2 cos (𝜙 − 𝜃) + 𝑎 (𝜔
2
−𝜔

2
0) cos𝜙]

⋅ sin𝜙𝑑𝜙,

(13a)

̇𝑎2 = lim
𝑇→∞

1
𝑇𝜔

∫

𝑇

0
−2𝑎𝜉𝜔 sin2𝜙𝑑𝜙, (13b)

̇𝑎3 = lim
𝑇→∞

1
𝑇𝜔

∫

𝑇

0
𝜆𝐷
𝑝
(𝑎 cos𝜙) sin𝜙𝑑𝜙, (13c)

𝑎
̇

𝜃1 = lim
𝑇→∞

1
𝑇𝜔

⋅ ∫

𝑇

0
− [𝑋0𝜔

2 cos (𝜙 − 𝜃) + 𝑎 (𝜔
2
−𝜔

2
0) cos𝜙]

⋅ cos𝜙𝑑𝜙,

(14a)

𝑎
̇

𝜃2 = lim
𝑇→∞

1
𝑇𝜔

∫

𝑇

0
−𝑎𝜉𝜔 sin 2𝜙𝑑𝜙, (14b)

𝑎
̇

𝜃3 = lim
𝑇→∞

1
𝑇𝜔

∫

𝑇

0
𝜆𝐷
𝑝
(𝑎 cos𝜙) cos𝜙𝑑𝜙. (14c)

According to the averaging method, one could select the
time terminal 𝑇 as 𝑇 = 2𝜋 if the integrand is periodic
function or 𝑇 = ∞ if the integrand is aperiodic one.
Accordingly, one could obtain

̇𝑎1 = −

𝑋0𝜔 sin 𝜃

2
, (15a)

𝑎
̇

𝜃1 =

−𝑎 (𝜔
2
+ 𝜔

2
0) − 𝑋0𝜔

2 cos 𝜃
2𝜔

.
(15b)

In order to obtain the definite integral in (13c) and (14c),
two important formulae, which have been deduced in [20, 21],
are introduced

𝐵1 = lim
𝑇→∞

∫

𝑇

0

sin (𝜔𝑡)

𝑡
𝑝

𝑑𝑡

= 𝜔
𝑝−1

Γ (1−𝑝) cos(
𝑝𝜋

2
) ,

(16a)

𝐵2 = lim
𝑇→∞

∫

𝑇

0

cos (𝜔𝑡)

𝑡
𝑝

𝑑𝑡

= 𝜔
𝑝−1

Γ (1−𝑝) sin(

𝑝𝜋

2
) .

(16b)

Based on Caputo’s definition, (13c) becomes

̇𝑎3 = lim
𝑇→∞

𝜆

𝑇𝜔

∫

𝑇

0
𝐷
𝑝
[𝑎 cos (𝜔𝑡 + 𝜃)] sin (𝜔𝑡 + 𝜃) 𝑑𝑡

=

−𝜆𝑎

Γ (1 − 𝑝)

lim
𝑇→∞

1
𝑇

⋅ ∫

𝑇

0
{[∫

𝑡

0

sin (𝜔𝑢 + 𝜃)

(𝑡 − 𝑢)
𝑝

𝑑𝑢] sin (𝜔𝑡 + 𝜃)} 𝑑𝑡.

(17)

Introducing 𝑠 = 𝑡 − 𝑢 and 𝑑𝑠 = −𝑑𝑢, (17) becomes

̇𝑎3 =

−𝜆𝑎

Γ (1 − 𝑝)

lim
𝑇→∞

1
𝑇

∫

𝑇

0
{[∫

𝑡

0

sin (𝜔𝑡 + 𝜃 − 𝜔𝑠)

𝑠
𝑝

𝑑𝑠]

⋅ sin (𝜔𝑡 + 𝜃)} 𝑑𝑡 =

−𝜆𝑎

Γ (1 − 𝑝)

lim
𝑇→∞

1
𝑇

⋅ ∫

𝑇

0
{[∫

𝑡

0

cos (𝜔𝑠)

𝑠
𝑝

𝑑𝑠] sin (𝜔𝑡 + 𝜃) sin (𝜔𝑡 + 𝜃)} 𝑑𝑡

+

𝜆𝑎

Γ (1 − 𝑝)

lim
𝑇→∞

1
𝑇

∫

𝑇

0
{[∫

𝑡

0

sin (𝜔𝑠)

𝑠
𝑝

𝑑𝑠]

⋅ cos (𝜔𝑡 + 𝜃) sin (𝜔𝑡 + 𝜃)} 𝑑𝑡.

(18)

In fact, the secondpart in (18)would vanish according to (16a)
and (16b). Defining the first part in (18) as𝐴1 and integrating
it by parts, one could obtain

𝐴1

=

−𝜆𝑎

4𝜔Γ (1 − 𝑝)

lim
𝑇→∞

{

2𝜔𝑡 − sin (2𝜔𝑡 + 2𝜃)
𝑇

[∫

𝑡

0

cos (𝜔𝑠)

𝑠
𝑝

𝑑𝑠]}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑇

0

−

−𝜆𝑎

4𝜔Γ (1 − 𝑝)

lim
𝑇→∞

1
𝑇

∫

𝑇

0
[

[2𝜔𝑡 − sin (2𝜔𝑡 + 2𝜃)] cos (𝜔𝑡)

𝑡
𝑝

] 𝑑𝑡.

(19)

Based on (16a) and (16b), one could find that the second part
in (19) would vanish and the first part in (19) will be

𝐴1 = −

−𝜆𝑎𝜔
𝑝−1

2
sin(

𝑝𝜋

2
) . (20)

That means

̇𝑎3 =

−𝜆𝑎𝜔
𝑝−1

2
sin(

𝑝𝜋

2
) . (21)

After the similar procedure, (14c) will be

𝑎
̇

𝜃3 =

𝜆𝑎𝜔
𝑝−1

2
cos(

𝑝𝜋

2
) . (22)
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Equations (13b) and (14b) can be rewritten as

̇𝑎2 =

1
2𝜋

∫

2𝜋

0
−2𝑎𝜉sin2𝜙𝑑𝜙, (23a)

𝑎
̇

𝜃2 =

1
2𝜋

∫

2𝜋

0
−𝑎𝜉 sin 2𝜙𝑑𝜙. (23b)

The solutions of (23a) and (23b) depend on the specific
semiactive control methods.

Accordingly, (12) becomes

̇𝑎 = −

𝑋0𝜔 sin 𝜃

2
−

𝜆𝑎𝜔
𝑝−1

2
sin(

𝑝𝜋

2
)

+

𝑎

2𝜋
∫

2𝜋

0
−2𝜉 sin2𝜙𝑑𝜙,

𝑎
̇

𝜃 =

−𝑎𝜔
2
+ 𝑎𝜔

2
0 − 𝑋0𝜔

2 cos 𝜃
2𝜔

+

𝜆𝑎𝜔
𝑝−1

2
cos(

𝑝𝜋

2
)

+

𝑎

2𝜋
∫

2𝜋

0
−𝜉 sin 2𝜙𝑑𝜙,

(24)

which could be rewritten as

̇𝑎 = −

𝑋0𝜔 sin 𝜃

2
−

𝑎

2𝑚
𝐶
󸀠
,

𝑎
̇

𝜃 =

−𝑋0𝜔 cos 𝜃
2

−

𝜔𝑎

2
+

𝑎

2𝜋
∫

2𝜋

0
−

𝑐

2𝑚
sin 2𝜙𝑑𝜙

+

𝑎

2𝑚𝜔

𝐾
󸀠
,

(25)

where

𝐶
󸀠
= 𝐾𝜔

𝑝−1 sin(

𝑝𝜋

2
)+∫

2𝜋

0

−𝑐 sin2𝜙𝑑𝜙

𝜋

, (26a)

𝐾
󸀠
= 𝐾𝜔

𝑝 cos(
𝑝𝜋

2
)+ 𝑘. (26b)

𝐶
󸀠 and 𝐾

󸀠 are defined as the equivalent damping coefficient
and equivalent stiffness coefficient in semiactive systems,
respectively. In the SDOF semiactive system, the fractional-
order derivative𝐾𝐷

𝑝
(𝑥 −𝑥0) serves as damping and stiffness

at the same time.When 𝑝 → 0,𝐾𝐷
𝑝
(𝑥−𝑥0)will be changed

into spring force, whereas it will be almost the same as damp-
ing force if 𝑝 → 1. When 𝐾 → 0, 𝐾𝐷

𝑝
(𝑥 − 𝑥0) will have

little effect on control performance and the semiactive system
will degrade into the traditional semiactive one.

3. Cases for Three Kinds of
Semiactive Control Systems

3.1. Analytical Investigation for on-off Control System. The
strategy of semiactive on-off control is

𝑐 =

{

{

{

𝑐max 𝑥̇ (𝑥̇ − 𝑥̇0) ≥ 0,

𝑐min else.
(27)

Originally, 𝑐min is selected as 𝑐min = 0 in [2], which may be
inaccurate in real engineering. Here we select it as 𝑐min =

0.01𝑐max.
After transformation of coordinates, (27) becomes

𝜉 =

{

{

{

𝜉max 𝑧̇ (𝑧̇ + 𝑥̇0) ≥ 0,

𝜉min else.
(28)

Expanding the critical condition

(𝑧̇ + 𝑥̇0) 𝑧̇ ≥ 0, (29)

one could get

−𝜔𝑎 sin𝜙 [−𝜔𝑎 sin𝜙−𝑋0𝜔 sin (𝜔𝑡)]

= 𝑎𝑅 sin𝜙 sin (𝜙 − 𝛽) ≥ 0,
(30)

where

𝛽 = arctan
𝑋0 sin 𝜃

𝑎 + 𝑋0 cos 𝜃
,

𝑅 = 𝜔
2
√(𝑎 + 𝑋0 cos 𝜃)

2
+ 𝑋

2
0sin
2
𝜃.

(31)

Equation (28) can be rewritten as

𝜉 =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝜉min 0 < 𝜙 < 𝛽,

𝜉max 𝛽 < 𝜙 < 𝜋,

𝜉min 𝜋 < 𝜙 < 𝜋 + 𝛽,

𝜉max 𝜋 + 𝛽 < 𝜙 < 2𝜋.

(32)

Using the averagingmethod, one could obtain the simpli-
fied forms of (13b) and (14b) as

̇𝑎2 =

−2𝑎𝐴 − 𝑎𝐵

2𝜋
,

𝑎
̇

𝜃2 =

𝑎𝐶 − 𝑎𝐷

2𝜋
,

(33)

where

𝐴 = 𝜋𝜉max +𝛽 (−𝜉max + 𝜉min) ,

𝐵 = (𝜉max − 𝜉min) sin 2𝛽,

𝐶 = 𝜉max − 𝜉min,

𝐷 = (𝜉max − 𝜉min) cos 2𝛽.

(34)

Combining (12), (15a), (15b), (21), (22), and (33), one
could obtain

̇𝑎 = −

𝑋0𝜔 sin 𝜃

2
−

𝜆𝑎𝜔
𝑝−1

2
sin(

𝑝𝜋

2
)+

−2𝑎𝐴 − 𝑎𝐵

2𝜋
,

𝑎
̇

𝜃 =

−𝑎𝜔
2
+ 𝑎𝜔

2
0 − 𝑋0𝜔

2 cos 𝜃
2𝜔

+

𝜆𝑎𝜔
𝑝−1

2
cos(

𝑝𝜋

2
)

+

𝑎𝐶 − 𝑎𝐷

2𝜋
.

(35)
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Obviously, the equivalent damping coefficient in this case
could be written as

𝐶
󸀠
= 𝐾𝜔

𝑝−1 sin(

𝑝𝜋

2
)+ 𝑐max +

𝛽

𝜋

(−𝑐max + 𝑐min)

+

sin 2𝛽
2𝜋

(𝑐max − 𝑐min) .

(36)

From (36), it could be found that the equivalent damping
coefficient𝐶󸀠mainly depends on the fractional-order param-
eters 𝐾 and 𝑝, associated with the critical angle 𝛽.

Now we study the steady-state solution, which is more
important and meaningful in vibration engineering. Letting
̇𝑎 = 0 and 𝑎

̇
𝜃 = 0, one could obtain the amplitude and phase

of steady-state response

𝑎 =

𝜋𝑋0𝜔
2

√𝑁
2
+ 𝐿

2
,

𝜃 = arctan 𝑁

𝐿

,

(37)

where

𝑁 = − 2𝜔𝐴−𝜔𝐵−𝜋𝜔
𝑝
𝜆 sin

𝑝𝜋

2
,

𝐿 = 𝜔𝐶−𝜔𝐷+𝜋𝜔
𝑝
𝜆 cos

𝑝𝜋

2
+𝜋𝜔

2
0 −𝜋𝜔

2
.

(38)

The transmissibility for relative displacement is

𝜇1 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎

𝑋0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝜋𝜔
2

√𝑁
2
+ 𝐿

2
. (39)

The absolute displacement of on-off control system is

𝑥 = 𝑥0 + 𝑧 = 𝑋0 cos𝜔𝑡 + 𝑎 cos (𝜔𝑡 + 𝜃)

= 𝑋1 cos (𝜔𝑡 − 𝜏) ,

(40)

where

𝑋1 = √

𝑋
2
0𝜋

2
𝜔
4
𝑁

2

(𝑁
2
+ 𝐿

2
)
2 + (𝑋0 +

𝑋0𝜋𝜔
2
|𝐿|

𝑁
2
+ 𝐿

2 )

2

,

𝜏 = − arctan 𝜋𝜔
2
𝑁

𝐿 (𝜋𝜔
2
+ (𝐿

2
+ 𝑁

2
) / |𝐿|)

.

(41)

The displacement transmissibility is

𝜍1 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

𝑋0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑋1
𝑋0

. (42)

Next, we study the stability of steady-state solution. Let-
ting 𝑎 = 𝑎 + Δ𝑎 and 𝜃 = 𝜃 + Δ𝜃 and then substituting them
into (35), one could get

𝑑Δ𝑎

𝑑𝑡

=

1
2𝜋

[𝑁 ⋅ Δ𝑎−𝑋0𝜋𝜔 cos 𝜃Δ𝜃] ,

𝑑Δ𝜃

𝑑𝑡

=

1
2𝜋

[

𝜋𝑋0𝜔 sin 𝜃

𝑎

⋅ Δ𝜃 +

𝜋𝑋0𝜔 cos 𝜃
𝑎
2 ⋅ Δ𝑎] .

(43)

Based on (37), one could eliminate 𝜃 and obtain the charac-
teristic determinant

det[[

[

𝑁

𝜔

− 𝛼

−𝑎𝐿

𝜔

𝐿

𝑎𝜔

𝑁

𝜔

− 𝛼

]

]

]

= 0. (44)

Expanding the determinant, one could obtain the character-
istic equation

(

𝑁

𝜔

−𝛼)

2
+

𝐿
2

𝜔
2 = 0. (45)

Solving (45), one could obtain characteristic values

𝛼1,2 =

𝑁

𝜔

±

𝐿

𝜔

𝑖. (46)

Obviously,𝑁 is less than 0. Accordingly, all real parts of char-
acteristic roots are negative, which means the steady-state
solution of this kind of semiactive system is unconditionally
stable.

3.2. Analytical Investigation for LRD Control System. The
strategy of LRD control is

𝑐 =

{

{

{

𝑐max
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑥0

󵄨
󵄨
󵄨
󵄨
≥ 𝛿,

𝑐min
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑥0

󵄨
󵄨
󵄨
󵄨
< 𝛿,

(47)

where 𝑐min = 0.01𝑐max and 𝛿 is the space between the mass
and excitation point. Here we select 𝛿=0.5𝑋0.

After transformation of coordinates, (47) becomes

𝑐 =

{

{

{

𝑐max |𝑧| ≥ 𝛿,

𝑐min |𝑧| < 𝛿,

(48)

and the control strategy can be rewritten as

𝜉 =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝜉max 0 < 𝜙 < 𝜀,

𝜉min 𝜀 < 𝜙 < 𝜋 − 𝜀,

𝜉max 𝜋 − 𝜀 < 𝜙 < 𝜋 + 𝜀,

𝜉min 𝜋 + 𝜀 < 𝜙 < 2𝜋 − 𝜀,

𝜉max 2𝜋 − 𝜀 < 𝜙 < 2𝜋,

(49)

where 𝜀 = arccos(0.5𝑋0/𝑎).
Using the averagingmethod, one could obtain the simpli-

fied forms of (13b) and (14b)

̇𝑎2 =

−2𝑎𝐴0 + 2𝑎𝐵0
2𝜋𝜔

,

𝑎
̇

𝜃2 = 0,
(50)

where 𝐴0 = 𝜔(2𝜀𝜉max + 𝜋𝜉min − 2𝜀𝜉min), 𝐵0 = 𝜔(𝜉max −

𝜉min) sin 2𝜀.
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Combining (12), (15a), (15b), (21), (22), and (50), one
could obtain

̇𝑎 =

−2𝑎𝐴0 + 2𝑎𝐵0 − 𝑋0𝜔
2
𝜋 sin 𝜃

2𝜋𝜔

−

𝜆𝑎𝜔
𝑝−1

2
sin(

𝑝𝜋

2
) ,

𝑎
̇

𝜃 =

−𝑎𝜋 (𝜔
2
− 𝜔

2
0) − 𝑋0𝜔

2
𝜋 cos 𝜃

2𝜋𝜔

+

𝜆𝑎𝜔
𝑝−1

2
cos(

𝑝𝜋

2
) .

(51)

Obviously, one could easily obtain the equivalent damping
coefficient

𝐶
󸀠

= 𝐾𝜔
𝑝−1 sin(

𝑝𝜋

2
)

+

(𝑐max − 𝑐min) sin 2𝜀 − (2𝜀𝑐max + 𝑐min𝜋 − 2𝜀𝑐min)

𝜋

.

(52)

From (52), it could be found that the equivalent damping
coefficient𝐶󸀠mainly depends on the fractional-order param-
eters 𝐾 and 𝑝, associated with the critical angle 𝜀.

Now we study the steady-state solution, which is more
important and meaningful in vibration engineering. Letting
̇𝑎 = 0 and 𝑎

̇
𝜃 = 0, one could obtain

𝑎 =

𝜋𝑋0𝜔
2

√[−2𝐴0 + 2𝐵0 − 𝜆𝜋𝜔
𝑝 sin (𝑝𝜋/2)]2 + [−𝜋 (𝜔

2
− 𝜔0

2
) + 𝜆𝜋𝜔

𝑝 cos (𝑝𝜋/2)]2
,

𝜃 = arctan
−2𝐴0 + 2𝐵0 − 𝜆𝜋𝜔

𝑝 sin (𝑝𝜋/2)
−𝜋 (𝜔

2
− 𝜔

2
0) + 𝜆𝜋𝜔

𝑝 cos (𝑝𝜋/2)
,

(53)

where 𝑎 and 𝜃 are the amplitude and phase of steady-state
response, respectively.

The transmissibility for relative displacement is

𝜇2 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎

𝑋0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝜋𝜔
2

√[−2𝐴0 + 2𝐵0 − 𝜆𝜋𝜔
𝑝 sin (𝑝𝜋/2)]2 + [−𝜋 (𝜔

2
− 𝜔0

2
) + 𝜆𝜋𝜔

𝑝 cos (𝑝𝜋/2)]2
. (54)

The absolute displacement of LRD control system is

𝑥 = 𝑥0 + 𝑧 = 𝑋0 cos𝜔𝑡 + 𝑎 cos (𝜔𝑡 + 𝜃)

= 𝑋2 cos (𝜔𝑡 − 𝜒) ,

(55)

where

𝑋

2
2

=

𝑋
2
0𝜋

2
𝜔
4
𝑊

2

[(2𝐴0 − 2𝐵0)
2
+ 𝜋

2
(𝜔

4
− 2𝜔2

𝜔
2
0 + 𝜔

4
0 + 𝜔

2𝑝
𝜆
2
) − 2𝜋2

𝜔
𝑝
(𝜔

2
− 𝜔

2
0) 𝜆 cos (𝑝𝜋/2) + 4 (𝐴0 − 𝐵0) 𝜋𝜔

𝑝
𝜆 sin (𝑝𝜋/2)]

2

+(𝑋0 +
𝑋0𝜋𝜔

2
𝐺

𝐺
2
+ 𝑊

2)

2

,

𝜒 = arctan 𝜋
2
𝜔
2
𝑊

𝐺𝜋
2
𝜔
2
+ 𝜋𝐺

2
+ 𝜋𝑊

2 ,

(56)
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where

𝐺 = 𝜋(−𝜔
2
+𝜔

2
0 +𝜔
𝑝
𝜆 cos

𝑝𝜋

2
) ,

𝑊 = 2𝐴0 − 2𝐵0 +𝜋𝜔
𝑝
𝜆 sin

𝑝𝜋

2
.

(57)

The transmissibility for the absolute displacement of LRD
control system is

𝜍2 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

𝑋0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑋2
𝑋0

. (58)

Next, we study the stability of the steady-state solutions.
Letting 𝑎 = 𝑎+Δ𝑎 and 𝜃 = 𝜃+Δ𝜃 and substituting them into
(51), one could get

𝑑Δ𝑎

𝑑𝑡

=

1
2𝜋𝜔

[−𝑊 ⋅Δ𝑎−𝑋0𝜋𝜔
2 cos 𝜃Δ𝜃] ,

𝑑Δ𝜃

𝑑𝑡

=

1
2𝜋𝜔

[

𝜋𝑋0𝜔
2 sin 𝜃

𝑎

⋅ Δ𝜃 +

𝜋𝑋0𝜔
2 cos 𝜃
𝑎
2 ⋅ Δ𝑎] .

(59)

Based on (53), one could eliminate 𝜃 and obtain the charac-
teristic determinant as

det[

[

−𝑊 − 𝛼 −𝑎𝐺

𝐺

𝑎

−𝑊 − 𝛼

]

]

= 0. (60)

Expanding the determinant one could obtain the character-
istic equation as

(−𝑊−𝛼)
2
+𝐺

2
= 0. (61)

Solving (61), one could obtain the characteristic values as

𝛼1,2 = −𝑊±𝐺𝑖. (62)

Obviously, all real parts of the characteristic roots are neg-
ative, which means the steady-state solution of this kind of
semiactive system is also unconditionally stable.

3.3. Analytical Investigation for Relative Control System. The
strategy for semiactive relative control is shown as

𝑐 =

{

{

{

𝑐max (𝑥 − 𝑥0) (𝑥̇ − 𝑥̇0) ≤ 0,

𝑐min else.
(63)

After transformation of coordinates, (63) will become

𝜉 =

{

{

{

𝜉max 𝑧𝑧̇ ≤ 0,

𝜉min else,
(64)

and the control strategy can be rewritten as

𝜉 =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝜉max 0 < 𝜙 <

𝜋

2
,

𝜉min
𝜋

2
< 𝜙 < 𝜋,

𝜉max 𝜋 < 𝜙 <

3𝜋
2

,

𝜉min
3𝜋
2

< 𝜙 < 2𝜋.

(65)

Using the averagingmethod, one could obtain the simpli-
fied forms of (13b) and (14b) for this semiactive control system

̇𝑎2 =

−𝜋𝑎 (𝜉max + 𝜉min)

2𝜋
,

𝑎
̇

𝜃2 =

2𝑎 (−𝜉max + 𝜉min)

2𝜋
.

(66)

Combining (12), (15a), (15b), (21), (22), and (66), one could
obtain

̇𝑎

=

−𝜋𝜔𝑎 (𝜉max + 𝜉min) − 𝑋0𝜋𝜔
2 sin 𝜃

2𝜋𝜔

−

𝜆𝑎𝜔
𝑝−1

2
sin(

𝑝𝜋

2
) ,

𝑎
̇

𝜃

=

𝑎 [𝜋 (𝜔
2
0 − 𝜔

2
) + 2𝜔 (−𝜉max + 𝜉min)] − 𝑋0𝜋𝜔

2 cos 𝜃
2𝜋𝜔

+

𝜆𝑎𝜔
𝑝−1

2
cos(

𝑝𝜋

2
) .

(67)

Obviously, we could easily obtain the equivalent damping
coefficient

𝐶
󸀠
= 𝐾𝜔

𝑝−1 sin(

𝑝𝜋

2
)+

𝑐max + 𝑐min
2

. (68)

From (68), we can find that the equivalent damping coeffi-
cient 𝐶󸀠 mainly depends on the fractional-order parameters
𝐾 and 𝑝, associated with the original damping coefficient.

Letting ̇𝑎 = 0 and 𝑎
̇

𝜃 = 0, one could obtain the amplitude
and phase of the steady-state response

𝑎 =

𝜋𝑋0𝜔
2

√𝑈
2
+ 𝑉

2
,

𝜃 = arctan 𝑈

𝑉

,

(69)

where

𝑈 = −𝜆𝜋𝜔
𝑝 sin(

𝑝𝜋

2
)−𝜋𝜔 (𝜉max + 𝜉min) ,

𝑉 = 𝜋 (𝜔
2
0 −𝜔

2
) + 2𝜔 (−𝜉max + 𝜉min)

+ 𝜆𝜋𝜔
𝑝 cos(

𝑝𝜋

2
) .

(70)
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The transmissibility for relative displacement in this case
is

𝜇3 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎

𝑋0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝜋𝜔
2

√𝑈
2
+ 𝑉

2
. (71)

The absolute displacement of relative control system is

𝑥 = 𝑥0 + 𝑧 = 𝑋0 cos𝜔𝑡 + 𝑎 cos (𝜔𝑡 + 𝜃)

= 𝑋3 cos (𝜔𝑡 − 𝛾) ,

(72)

where

𝑋3 = √(𝑋0 +

𝑋0𝜋𝜔
2 cos𝜓

√𝑄

)

2

+

𝑋
2
0𝜋

2
𝜔
4sin2𝜓

𝑄

,

𝛾 = arctan
𝑋0𝜋𝜔

2 sin𝜓

(𝑋0 + cos𝜓)√𝑄

,

(73)

where

𝜓 =

𝑈

𝑉

,

𝑄 = 𝑉
2
+𝑈

2
.

(74)

The transmissibility for the absolute displacement is

𝜍3 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

𝑋0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑋3
𝑋0

. (75)

Next, we study the stability of steady-state solutions.
Letting 𝑎 = 𝑎 + Δ𝑎, 𝜃 = 𝜃 + Δ𝜃 and substituting them into
(67), one could get

𝑑Δ𝑎

𝑑𝑡

=

1
2𝜋𝜔

[[−𝜋𝜔 (𝜉max + 𝜉min) − 𝜆𝜋𝜔
𝑝 sin(

𝑝𝜋

2
)]

⋅ Δ𝑎 −𝑋0𝜋𝜔
2 cos 𝜃Δ𝜃] ,

𝑑Δ𝜃

𝑑𝑡

=

1
2𝜋𝜔

[

𝜋𝑋0𝜔
2 sin 𝜃

𝑎

⋅ Δ𝜃 +

𝜋𝑋0𝜔
2 cos 𝜃
𝑎
2

⋅ Δ𝑎] .

(76)

Based on (69), one could eliminate 𝜃 and obtain the charac-
teristic determinant:

det[

[

𝑈 − 𝛼 −𝑎𝑉

𝑈

𝑎

𝑉 − 𝛼

]

]

= 0. (77)
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Figure 2: Comparison of analytical solution with numerical one
under on-off control.

Expanding the determinant, one could obtain the character-
istic equation:

(𝑈−𝛼)
2
+𝑉

2
= 0. (78)

Solving (78), one could obtain the characteristic values:

𝛼1,2 = 𝑈±𝑉𝑖. (79)

Obviously, 𝑈 < 0. That is to say, all real parts of the char-
acteristic values are negative, which means the steady-state
solution of this kind of semiactive system is stable uncondi-
tionally.

4. Numerical Simulation and Analysis

4.1. Comparison between the Analytical and Numerical Solu-
tion. In order to verify the precision of the analytical solu-
tions, we also present the numerical results. The numerical
scheme [29–34] is

𝐷
𝑝
[𝑥 (𝑡𝑙)] ≈ ℎ

−𝑝
𝑙

∑

𝑗=0
𝐶
𝑝

𝑗
𝑥 (𝑡𝑙−𝑗) , (80)

where 𝑡𝑙 = 𝑙ℎ is the time sample points, ℎ is the sample step,
and𝐶

𝑝

𝑗
is the fractional binomial coefficient with the iterative

relationship as

𝐶
𝑝

0 = 1,

𝐶
𝑝

𝑗
= (1−

1 + 𝑝

𝑗

)𝐶
𝑝

𝑗−1.
(81)

The selected basic system parameters are 𝑚 = 240, 𝑘 =

16000, 𝑐 = 1000,𝑋0 = 0.01, 𝑝 = 0.5,𝐾 = 1000, and 𝛿=0.5𝑋0.
We take 400 seconds as numerical time in the process of
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Figure 3: Comparison of analytical solution with numerical one
under LRD control.

the simulation. Considering the maximum value of the
numerical results in the last 100 seconds as the steady-state
amplitude, one could get the amplitude-frequency curves for
the numerical results, which are denoted by the lines with
circles shown in Figures 2–4. Based on (37), (53), and (69),
one could obtain the amplitude-frequency curves by the
analytical solutions denoted by the solid lines in Figures 2–4.
From the observation of the three figures, one could conclude
that the analytical solutions agree very well with the numeri-
cal results and could present satisfactory precision. However,
there are distinct errors between the approximate analytical
and numerical solution in some high-frequency range, espe-
cially the amplitude. These phenomena, called chatter in
semiactive control system, had also been found by Ahmadian
[35] numerically and experimentally.

4.2. Effects of 𝐾 on the Steady-State Amplitudes. When the
fractional coefficient 𝐾 is changed, the different amplitude-
frequency curves are shown in Figures 5–7. From the obser-
vation of Figures 5–7, we could conclude that the larger
the fractional coefficient 𝐾 is, the smaller the steady-state
amplitudes of the relative and absolute displacement of sys-
tem mass are. At the same time, the resonant frequency also
becomes larger. This phenomenon indicates that both the
equivalent damping coefficient and equivalent stiffness coef-
ficient become larger in this procedure. That is to say, the
fractional-order derivative 𝐾𝐷

𝑝
(𝑥 − 𝑥0) serves as damping

and spring simultaneously.

4.3. Effects of 𝑝 on the Steady-State Amplitudes. When the
fractional coefficient 𝑝 is changed, the results are shown
in Figures 8–10. From the observation of Figures 8–10, we
could conclude that the larger the fractional coefficient 𝑝 is,
the smaller the steady-state amplitudes of the relative and
absolute displacement of system mass are. However, it seems
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Figure 4: Comparison of analytical solution with numerical one
under relative control.

that there is little effect of𝑝 on the resonant frequency. In fact,
by differentiating𝐾

󸀠 and 𝐶
󸀠 to 𝑝, one can get

𝑑𝐶
󸀠

𝑑𝑝

= 𝑘𝜔
𝑝−1

√(𝑝𝜔
−1
)
2
+ (

𝜋

2
)

2
sin(

𝑝𝜋

2
+ 𝜗1) ,

𝑑𝐾
󸀠

𝑑𝑝

= − 𝑘𝜔
𝑝
√(𝑝𝜔

−1
)
2
+ (

𝜋

2
)

2
sin(

𝑝𝜋

2
− 𝜗2) ,

(82)

where

𝜗1 = arctan 𝜋𝜔

2𝑝
,

𝜗2 = arctan
2𝑝
𝜋𝜔

.

(83)

Because 0 < 𝑝 < 1, we can conclude that the derivative of
𝐶
󸀠 with respect to 𝑝 will be larger than 0. 𝐶󸀠 will be mono-

tonically larger if 𝑝 becomes larger. Accordingly the steady-
state amplitude will be smaller in the process. But the value
of 𝐾̇󸀠 is not monotonical in this procedure.𝐾󸀠 could increase
or reduce with different 𝑝, which is affected by the system
parameters.

5. Conclusion

In this paper, three SDOF semiactive systems are researched
by using averaging method. Aiming at these systems, we
present the concepts of equivalent damping coefficient and
equivalent stiffness coefficient in order to account for the
effect of the fractional-order derivative on the control perfor-
mance.

Based on the above study, one could find that fractional-
order derivative plays an important role in SDOF semiactive
system. Therefore, the results in this paper supply valuable
reference for engineering practice. In addition, analytical
method in this paper could be adopted in two or multi-
degrees-of-freedom system, and it also offers a new idea to
the research field on vehicle suspension theory.
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Figure 5: Effect of𝐾 on the steady-state amplitudes under on-off control.
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Figure 6: Effect of 𝐾 on the steady-state amplitudes under LRD control.
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Figure 7: Effect of𝐾 on the steady-state amplitudes under relative control.
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