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Identification of high leverage point is crucial because it is responsible for inaccurate prediction and invalid inferential statement as
it has a larger impact on the computed values of various estimates. It is essential to classify the high leverage points into good and
bad leverage points because only the bad leverage points have an undue effect on the parameter estimates. It is now evident that
when a group of high leverage points is present in a data set, the existing robust diagnostic plot fails to classify them correctly. This
problem is due to the masking and swamping effects. In this paper, we propose a new robust diagnostic plot to correctly classify the
good and bad leverage points by reducing both masking and swamping effects. The formulation of the proposed plot is based on
the Modified Generalized Studentized Residuals. We investigate the performance of our proposed method by employing a Monte
Carlo simulation study and some well-known data sets. The results indicate that the proposed method is able to improve the rate
of detection of bad leverage points and also to reduce swamping and masking effects.

1. Introduction

In regression problems, several versions of outliers exist
such as residual outliers, vertical outliers, and high leverage
points. Any observation that has large residual is referred
to as a residual outlier. Ve rtical outliers (VO) or 𝑦-outliers
are those observations which are extreme or outlying in 𝑦-
coordinate. On the other hand, high leverage points (HLPs)
are those observations which are extreme or outlying in 𝑋-
coordinate. HLPs can be classified into good leverage points
(GLPs) and bad leverage points (BLPs). GLPs are those
outlying observations in the explanatory variables that follow
the pattern of the majority of the data, while BLPs are the
opposite. BLPs have a larger impact on the computed values
of various estimates. On the other hand, GLPs contribute
to the efficiency of an estimate (see [1–4]). As such, only
BLPs should be weighted down while GLPs should not be
given low weights in the computation of weighting function
in any robust method. Nonetheless, it is now evident that
most robust methods attempt to reduce the effect of outliers

by weighting the outliers down, irrespective of whether they
are good or bad leverage points.

There are a number of good papers in the literature on
the detection of HLPs (see [5–8]). However, those detection
methods are mainly focused only on the identification of
HLPs without taking into consideration their classification
into good and bad. It is very important to make the classi-
fication, as only the BLPs are responsible for the misleading
conclusion about the fitting of the regression model.

It is not easy to capture the existence of several versions
of outliers inmultiple regression analysis by using a graphical
method ([6]). If only one independent variable is being
considered, the four types of outliers can easily be observed
from a scatter plot of 𝑦 against the 𝑥 variables. However,
for more than one predictor variable, it is difficult to detect
these outliers from a scatter plot. Not much work has been
focused on classifying HLP’s into good and bad leverage
points. Rousseeuw and Van Zomeren [2] have proposed a
robust diagnostic plot or outlier map which is more efficient
than the nonrobust plot for classifying observations into four
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types of data points, namely, regular or good observations,
vertical outliers, GLPs, and BLPs. We suspect that this plot
fails to detectmultiple outliers andhigh leverage points. Pison
and Van Aelst [9], suggested a new plot using robust distance
obtained from robust location and scale estimators to identify
outliers and empirical influences and to find the influence
of observations. Similar to Rousseeuw and Van Zomeren
plot, they construct a graphical tool for multivariate models.
Although Pison and Van Aelst plot can be very useful in
model building stage to evaluate the quality of a fit based
on the number of detected outliers, it does not focus on
classifying unusual data into VO, GLP, and BLP (see [9]).
Hubert et al. 2005 introduced a new diagnostic plot based
on robust principle component analysis (PCA) denoted by
ROBPCA (see [10]).The ROBPCA can distinguish between 4
types of observations for high dimensional data. The regular
observations are close to the PCA subspace. GLP lies close to
the PCA space but far from the regular observations. We can
also have VO, which have a large orthogonal distance to the
PCA space.The BLPs have a large orthogonal distance whose
projection on the PCA subspace is remote from the typical
projections. To draw the diagnostic plot or outliers map, on
the horizontal axis, we plot the robust score distance of each
observation and on the vertical axis we draw the orthogonal
distance of each observation. They suggested that the cut-off
point for horizontal axis is √𝜒2

𝑝,0.975
and approximately cut-

off value for vertical axis equals (𝜇 + �̂�𝑧
0.975
), where 𝜇 and �̂�

are the estimated mean and standard deviation, respectively.
The ROBPCA method is efficient for high dimensional data
but not for low dimensional data.

As such, we propose a suitable plot, in this regard.
The Modified Generalized Studentized Residuals for the
identification of multiple vertical outliers and multiple high
leverage points are discussed in Section 2. In Section 3,
we propose a new robust diagnostic plot for classifying
observations into the four categories. The proposed plot is
based on the Modified Generalized Studentized Residuals
(MGt
𝑖
). A simulation study and three numerical examples

are presented in Sections 4 and 5, respectively. Finally, some
concluding remarks are given in Section 6.

2. The Modified Generalized Studentized
Residuals for the Identification of Multiple
Outliers and Multiple High Leverage Points

Consider a multiple linear regression model as follows:

𝑦 = 𝑋𝛽 + 𝜀, (1)

where 𝑦 is an (𝑛 × 1) vector of observation of dependent
variables,𝑋 is an (𝑛×𝑝)matrix of independent variables,𝛽 is a
(𝑝×1) vector of unknown regression parameters, 𝜀 is an (𝑛×1)
vector of random errors with identical normal distribution of
𝜀 ∼ NID(0, 𝜎2), and𝑝 is the number of independent variables.
The linear regressionmodel in (1) can be rewritten as follows:

𝑦
𝑖
= 𝑥
𝑇

𝑖𝑗
𝛽
𝑗
+ 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑝. (2)

The ordinary least squares (OLS) estimates for linear regres-
sion in (1) are given by

𝛽 = (𝑋
𝑇
𝑋)
−1

𝑋
𝑇
𝑦 (3)

and the 𝑖th residuals can be expressed in terms of the true
disturbance as follows:

𝜀
𝑖
= 𝑦 − 𝑦 = (1 − 𝐻) 𝜀, (4)

where𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 is a projectionmatrix or hat matrix
denoted by “𝐻.” The diagonal elements of “𝐻” matrix are
called the hat values denoted by ℎ

𝑖𝑖
, given by

ℎ
𝑖𝑖
= 𝑥
𝑇

𝑖
(𝑋
𝑇
𝑋)
−1

𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (5)

The ℎ
𝑖𝑖
values are often used as a classical diagnostic method

to identify the high leverage points. However, the ℎ
𝑖𝑖
mostly

fails to detect HLPs due to the fact that it suffers from the
masking effect ([6, 7, 12, 13]). However, the ℎ

𝑖𝑖
mostly fails to

detect HLPs due to the fact that it suffers from the masking
and swamping effects. The masking problem happens when
we fail to detect some outliers that are hidden by other
outliers (outlier is identifiedwrongly as an inlier), whereas the
swamping happens when we detect some inliers as outliers
([14]). According to Barnett and Lewis (1994), the masking
is “the tendency for the presence of extreme observations
not declared as outliers to mask the discordancy of more
extreme observations under investigation as outliers” ([15]).
On the other hand, the errors corresponding to the outliers
may be very big, and this may lead to swamping problem.
It means that the clean observations are declared as outliers
by mistake. Hadi [13] suggested a single case deleted measure
called Potentials matrix. The diagonal elements of Potential
matrix denoted by “𝑝

𝑖𝑖
” are given by (see [1, 13, 16])

𝑝
𝑖𝑖
= 𝑥
𝑇

𝑖
(𝑋
𝑇

(𝑖)
𝑋
(𝑖)
)
−1

𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (6)

where 𝑋
(𝑖)

is the matrix 𝑋 excluding the 𝑖th row. We can
rewrite 𝑝

𝑖𝑖
as a function of ℎ

𝑖𝑖
as

𝑝
𝑖𝑖
=

ℎ
𝑖𝑖

1 − ℎ
𝑖𝑖

. (7)

Although the potential matrix is efficient to identify a single
outlier, it is not successful to identify multiple HLPs (see
[3, 17]). To remedy this problem, Imon [17] proposed the
Generalized Potentials denoted by “GP” as a diagnostic
method for multiple HLPs.The GP diagnostic method is able
to detect multiple HLPs, but it is not adequately effective
in identifying the exact number of HLPs. This is due to
the choice of the initial basic subset, which is prone to
masking effects. Habshah et al. [3] developed the Diagnostic
Robust Generalized Potential (DRGP) to improve the rate
of detection of HLPs. They divided data into two sets,
remaining data which contains clean data and deletion set
which contains all suspect data. Let us denote a set of good
cases (remaining in the analysis) by “𝑅” and a set of bad
cases (deleted from the analysis) denoted by “𝐷.” The DRGP
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consists of two steps, whereby in the first step the robust
method is used to identify the suspected HLPs. In the second
step, the generalized potential diagnostic approach is used to
confirm our suspicion. Habshah et al. [3] pointed out that the
low leverage points (if any) are put back into the estimation of
the remaining subset, sequentially (the observation with the
smallest 𝑝

𝑖𝑖
will be substituted first), and then recompute the

𝑝
𝑖𝑖
values. This process is continued until all members of the

deletion set have been checked to determine whether or not
they can be declared as HLPs.

The suspected HLPs are determined by the robust Maha-
lanobis distance (RMD), based on the minimum volume
ellipsoid (MVE) developed by Rousseeuw and Leroy [6] as

RMD
𝑖
= √[𝑋 − 𝑇 (𝑋)]

𝑇
[𝐶 (𝑋)]

−1
[𝑋 − 𝑇 (𝑋)],

𝑖 = 1, 2, . . . , 𝑛,

(8)

where 𝑇(𝑋) and 𝐶(𝑋) are robust locations and shape esti-
mates of the MVE, respectively. Habshah et al. [3] suggested
using the following cut-off value for the robust Mahalanobis
distance:

Median (RMD
𝑖
) + 3MAD (RMD

𝑖
) , (9)

where MAD is the median absolute deviation.
Suppose that “𝑅” contains (𝑛 − 𝑑) cases after 𝑑 < (𝑛 − 𝑝)

cases where “𝐷” have been deleted. Once the remaining set
has been determined, the second steps of DRGP are carried
out to confirm the suspected HLPs by using the GP, denoted
by 𝑝∗
𝑖𝑖
and defined as

𝑝
∗

𝑖𝑖
=

{{{

{{{

{

ℎ
(−𝐷)

𝑖𝑖
, for 𝑖 ∈ 𝐷,

ℎ
(−𝐷)

𝑖𝑖

1 − ℎ
(−𝐷)

𝑖𝑖

, for 𝑖 ∈ 𝑅,
(10)

where

ℎ
(−𝐷)

𝑖𝑖
= 𝑥
𝑇

𝑖
(𝑋
𝑇

(−𝐷)
𝑋
(−𝐷)
)
−1

𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (11)

Observations, in which the 𝑝∗
𝑖𝑖
values are larger than the

following threshold,

𝑝
∗

𝑖𝑖
> Median (𝑝∗

𝑖𝑖
) + 𝑐MAD (𝑝∗

𝑖𝑖
) , (12)

where 𝑐 can be taken as a constant value of 2 or 3, are declared
as HLPs. The studentized residuals (internally studentized
residuals) and 𝑅-studentized residual (externally studentized
residuals) are widely used measures for the identification
of outliers (see Cook and Weisberg [18]). The studentized
residuals are defined as follows:

𝑟
𝑖
=

𝜀
𝑖

�̂�√1 − ℎ
𝑖𝑖

, 𝑖 = 1, 2, . . . , 𝑛, (13)

where �̂� = [𝜀
𝑇
𝜀/(𝑛 − 𝑝 − 1)] is the standard deviation

estimator of the residuals.The special case of (13) is called the
𝑅-studentized (denoted by 𝑡

𝑖
), given by (Chatterjee and Hadi

[12])

𝑡
𝑖
=

𝜀
𝑖

�̂�
(𝑖)
√1 − ℎ

𝑖𝑖

, 𝑖 = 1, 2, . . . , 𝑛, (14)

where �̂�
(𝑖)
is the standard deviation estimator of the residuals

excluding the 𝑖th case. These two measures (𝑟
𝑖
and 𝑡

𝑖
)

are also not very successful in detecting multiple outliers
due to masking and swamping effects ([3, 17]). Imon [17]
suggested a Generalized Studentized Residual (denoted by
Gt
𝑖
) based on a group of deletions to identify multiple

outliers. The generalized version of regression diagnostics
first requires the selection of deletion group “𝐷” that contains
all suspected influential cases and the remaining cases “𝑅.”
The suspected influential cases consider outliers and HLPs
separately, whereby outliers andHLPs are identified using the
robust Reweighted Least Squares (RLS) residuals (Rousseeuw
and Leroy [6]) and GP (Imon [8]), respectively. The union of
the set of suspected outliers and the set of suspected HLPs
points forms the members of the deletion set, which has 𝑑
observations. However, the initial basic subset of Gt

𝑖
is not

very stable since it is based on the GP which suffers from
masking and swamping effects. In this regard, the DRGP is
employed to remedy this problem.TheModified Generalized
Studentized Residuals (MGti) are formulated based on the
RLS and the DRGP as initial estimators. Once the “𝑅” set
is identified, the vector of the estimated parameters in the
remaining groups, denoted by 𝛽

(𝑅)
, is defined as

𝛽
(𝑅)
= (𝑋
𝑇

𝑅
𝑋
𝑅
)
−1

𝑋
𝑇

𝑅
𝑦
𝑅
. (15)

The residual for 𝑖th deletion observation is given by

𝜀
𝑖(𝑅)
= 𝑦
𝑖
− 𝑥
𝑇

𝑖
𝛽
(𝑅)
, 𝑖 = 1, 2, . . . , 𝑛. (16)

The 𝑖th externally studentized residual 𝑡∗
𝑖
for the remaining

groups “𝑅” is given by

𝑡
∗

𝑖
=

𝑦
𝑖
− 𝑥
𝑇

𝑖
𝛽
(𝑅)

�̂�
𝑅−𝑖√1 − ℎ𝑖𝑖(𝑅)

=
𝜀
𝑖(𝑅)

�̂�
𝑅−𝑖√1 − ℎ𝑖𝑖(𝑅)

. (17)

Thus, the diagonal elements of the hat matrix are given by

ℎ
𝑖𝑖(𝑅)

= 𝑥
𝑇

𝑖
(𝑋
𝑇

𝑅
𝑋
𝑅
)
−1

𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (18)

By utilizing the results of Rao [19], an additional point 𝑖 in the
“𝑅” set is defined as

ℎ
𝑖𝑖(𝑅+𝑖)

= 𝑥
𝑇

𝑖
(𝑋
𝑇

𝑅
𝑋
𝑅
+ 𝑥
𝑖
𝑥
𝑇

𝑖
)
−1

𝑥
𝑖
=

ℎ
𝑖𝑖(𝑅)

1 + ℎ
𝑖𝑖(𝑅)

(19)

and the corresponding estimate is given by

𝛽
(𝑅+1)

= (𝑋
𝑇

𝑅
𝑋
𝑅
+ 𝑥
𝑖
𝑥
𝑇

𝑖
)
−1

(𝑋
𝑇

𝑅
𝑦
𝑅
+ 𝑥
𝑖
𝑦
𝑖
)

= 𝛽
(𝑅)
+
(𝑋
𝑇

𝑅
𝑋
𝑅
)
−1

𝑥
𝑖

1 + ℎ
𝑖𝑖(𝑅)

𝜀
𝑖(𝑅)
.

(20)

Hence, the formulation of the externally studentized residual
for 𝑖 ∉ 𝑅 is defined as

𝑡
∗

𝑖
=

𝑦
𝑖
− 𝑥
𝑇

𝑖
𝛽
(𝑅)

�̂�
𝑅√1 − ℎ𝑖𝑖(𝑅+1)

=
𝜀
𝑖(𝑅)

�̂�
𝑅√1 + ℎ𝑖𝑖(𝑅)

. (21)
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Subsequently, the Modified Generalized Studentized Residu-
als (MGt

𝑖
) for thewhole data set are formulated by combining

(17) and (21) as follows:

MGt
𝑖
=

{{{{{{

{{{{{{

{

𝜀
𝑖(𝑅)

�̂�
𝑅−𝑖√1 − ℎ𝑖𝑖(𝑅)

, for 𝑖 ∈ 𝑅,

𝜀
𝑖(𝑅)

�̂�
𝑅√1 + ℎ𝑖𝑖(𝑅)

, for 𝑖 ∉ 𝑅,
(22)

where �̂�
𝑅
is the standard deviation of 𝑅 group and �̂�

𝑅−𝑖
is the

standard deviation of 𝑅 group excluding the 𝑖th case.

3. New Diagnostic Plots for Classifying
Observations into Four Categories

Rousseeuw and Van Zomeren [2] proposed a robust diag-
nostic plot which is more effective than the nonrobust plot
for classifying observations into regular observations, vertical
outliers, GLPs, and BLPs. Rousseeuw and Van Zomeren plot
draws the standardized leastmedian of square residual (LMS)
against the robustMahalanobis distance (RMD) based on the
minimum volume ellipsoid (MVE); this plot is denoted by
(LMS-RMD).The nonrobust plot draws the Studentized OLS
residuals (𝑡

𝑖
) against the Mahalanobis distance (MD), and we

called this plot as (OLS-MD) plot. We suspect that the robust
LMS-RMD diagnostic plot is not very effective in classifying
the observations into respective categories since it is based on
the robust Mahalanobis distance, which suffers from swamp-
ing effects. Moreover, this plot uses studentized residual
which is not very successful in identifying multiple outliers.
Habshah et al. [3] showed that the DRGP was very successful
in detecting multiple HLPs. In addition, we anticipate that
the newly proposed MGti is able to detect multiple outliers.
As such, we proposed improving the classification method
of Rousseeuw and Van Zomeren [2] by plotting MGt

𝑖
versus

DRGP as shown in Table 1. Our proposed diagnostic plot is
called (MGt-DRGP) plot. The basic rules for classification
observation by using the new proposedmethod are as follows
(see Habshah and Mohammed [20]):

(i) regular observation (RO): an observation is declared
as a “RO” if |MGt

𝑖
| ≤ 2.5 and 𝑝∗

𝑖𝑖
≤ Median(𝑝∗

𝑖𝑖
) +

𝑐MAD(𝑝∗
𝑖𝑖
);

(ii) vertical outlier (VO): an observation is declared as
a “VO” if |MGt

𝑖
| > 2.5 and 𝑝∗

𝑖𝑖
≤ Median(𝑝∗

𝑖𝑖
) +

𝑐MAD(𝑝∗
𝑖𝑖
);

(iii) GLPs: an observation is declared as a GLP if |MGt
𝑖
| ≤

2.5 and 𝑝∗
𝑖𝑖
> Median(𝑝∗

𝑖𝑖
) + 𝑐MAD(𝑝∗

𝑖𝑖
);

(iv) BLPs: an observation is declared as a BLP if |MGt
𝑖
| >

2.5 and 𝑝∗
𝑖𝑖
> Median(𝑝∗

𝑖𝑖
) + 𝑐MAD(𝑝∗

𝑖𝑖
).

4. Monte Carlo Simulation Study

In this section, a Monte Carlo simulation study is designed
to evaluate the performance of our new proposed method,
MGt-DRGP plot in classifying observation into regular

Table 1: Scatter plot of DRGP againstModifiedGeneralized Studen-
tized Residuals.

DRGP

Modified
Generalized
Standard Residual

Vertical outliers Bad leverage points
Regular observations Good leverage points

Vertical outliers Bad leverage points

observations, vertical outliers, and good and bad HLPs.
Here, the MGt-DRGP plot is compared with some exist-
ing plots, namely, the OLS-MD and LMS-RMD plots. The
performances of these plots are evaluated based on the rate
of correct detection of BLPs and the rate of masking and
swamping effects. A good plot is the one that has a higher
percentage of correct detection of BLPs and smaller rate of
masking and swamping effects. The experiments consider
two explanatory variables, 𝑝 = 2 and 3. In each experiment,
four samples of size 𝑛 = 20, 40, 100, and 200 and different
percentages of BLPs (𝛼 = 0.05, 0.10, 0.15, and 0.20) are
considered.The regular observations are generated according
to a normal distribution with a mean equaling 0 and a
variance equaling 1. In order to generate HLPs in a data set,
the first “100 𝛼%” observations of the regular data in 𝑋 and
𝑦 variables are replaced with a certain percentage of BLPs. To
generate BLPs, the first value of a BLP is kept fixed at 10 and
sequential values are created by multiplying the values index,
𝑗, by 2. Each experimental run involves 5000 replications.The
results of the Monte Carlo simulation study are summarized
in Tables 2 and 3. They present the percentage of correct
detection of BLPs and the masking and swamping rates at
different levels of contamination and different sample sizes.

The results clearly indicate that the MGt-DRGP plot has
a superior ability to identify the correct number of BLPs
compared to OLS-MD and LMS-RMD plots regardless of the
number of regressor variables, contamination rate, and size of
samples. At a low level of contamination (𝛼 = 0.05), theMGt-
DRGP plot has perfectly identified the BLPs without any
masking or swamping effects. The LMS-RMD plot has a high
percentage of detection of BLPs. However, it also has a high
percentage of swamping due to the weakness of the RMD
method, which tends to swamp some low leverage points.
Although the OLS-MD has a small low rate of swamping, its
performance is very poor for detection of BLPs due to the
masking effects.

At moderate and high levels of contamination “𝛼 =

0.10, 0.5, and 0.20,” the MGt-DRGP plot still outperforms
other plots. On the other hand, the performance of LMS-
RMD plots decreases in terms of having a smaller percentage
of correct detection and increasing rate of masking and
swamping effects. It can be seen that the performance of
the OLS-MD plot is very bad as the level of contamination
increases. The MGt-DRGP plot consistently has a higher
percentage of correct detection and the lowest rate of swamp-
ing and masking, irrespective of the number of independent
variables 𝑝, level of contamination, and sample size.
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Table 2: Percentage of correctly identified BLPs, masking, and swamping for simulation data (𝑝 = 2).

Cont. level 𝑛
% Correct detection % Masking % Swamping

OLS-MD LMS-RMD MGt-DRGP OLS-MD LMS-RMD MGt-DRGP OLS-MD LMS-RMD MGt-DRGP

5%

20 75 100 100 25 0.0 0.0 5.0 15.5 0.0
40 50 100 100 60 0.0 0.0 2.2 14.8 0.0
100 56 100 100 44 0.0 0.0 0.0 6.40 0.0
200 40 100 100 60 0.0 0.0 0.9 4.60 0.0

10%

20 50 100 100 50 0.0 0.0 5.0 10.0 0.0
40 50 90 100 60 10 0.0 0.0 17.5 0.0
100 30 87.3 100 70 12.7 0.0 0.0 5.0 1.2
200 30 92.3 100 70 7.7 0.0 1.0 4.0 1.0

15%

20 0.0 100 100 100 0.0 0.0 5.0 10.0 0.0
40 16.7 66.7 97.0 83.3 33.3 3.0 0.0 15.0 0.0
100 13.3 70 96.2 86.7 30.0 3.8 0.0 7.30 1.1
200 23.3 85 99 76.7 15.0 1.0 0.0 2.0 1.5

20%

20 0.0 50 100 80 50 0.0 5.0 23.0 0.0
40 12.5 62.5 95.7 81.5 38.5 4.3 0.0 15.0 2.1
100 15 67 97.1 85 33.0 2.9 0.0 8.20 0.8
200 20 82 98.1 80 18 1.9 1.0 3.70 0.5

Table 3: Percentage of correctly identified BLPs, masking, and swamping for simulation data (𝑝 = 3).

Cont. level 𝑛
% Correct detection % Masking % Swamping

OLS-MD LMS-RMD MGt-DRGP OLS-MD LMS-RMD MGt-DRGP OLS-MD LMS-RMD MGt-DRGP

5%

20 50 100 100 50 0.0 0.0 0.3 32.3 0.0
40 45 95.6 100 55 4.4 0.0 0.0 19.2 0.0
100 20 95.2 100 80 4.4 0.0 1.0 18.7 0.0
200 20 96 100 80 4.0 0.0 2.4 13.6 0.0

10%

20 0.0 90 100 100 10 0.0 0.0 26.7 1.5
40 25 82 99 75 18 1.0 0.0 17.5 1.0
100 30 84.4 97.4 70 13.6 2.6 1.0 17.0 1.0
200 30 88 98 70 12 2.0 2.0 9.4 1.5

15%

20 0.0 77.2 100 100 22.8 0.0 0.0 26.7 0.0
40 14 84.2 94 86 15.8 6.0 0.0 18.6 2.5
100 14 79 94.2 86 21 5.8 0.0 15.0 2.0
200 7 82.1 98 93 17.9 2.0 1.5 6.5 2.0

20%

20 0.0 75.3 99 100 24.7 1.0 0.0 16.7 0.0
40 12 67.9 93.3 88 32.1 6.7 0.0 11 2.5
100 10 63 93.1 90 37 6.9 0.0 10.0 2.0
200 8 70 97.1 92 30 2.9 1.0 8.0 1.5

5. Example and Discussion

In this section, three examples are considered to assess the
performance of our proposed diagnostic method.

5.1. Artificial Data Set. Our first example is an artificial data
set given by Kamruzzaman and Imon [11]. This data set
has three variables and contains 20 observations that are
generated independently as “uniform (0, 1).”We suppose that
the third variable is the response variable and the rest are the
predicted variables. The boxplot in Figure 1 shows that this
artificial data set does not have any outlier or high leverage
point. We would like to evaluate the performance of our

proposed diagnostic method in two situations. Firstly, we
modified the data to see the effect of one BLP on the plots.
To create BLP, the 𝑖th case of the response and predictor
variables (𝑥

1
, 𝑥
2
, and 𝑦) are replaced by outliers, where clean

observations are replaced by arbitrary large values displayed
in the brackets in Table 4. In this regard, the original data is
modified by substituting one good observation with one BLP
(case 20). In the second situation, we would like to observe
the combined effect of VO, GLP, and BLP. In this situation,
the original data ismodified by replacing 2 good observations
with 2 VO (cases 1 and 2), 2 GLPs (cases 3 and 4), and 1 BLP
(case 20). To create VO, only the 𝑖th observation of response
variable (𝑦) is replaced by arbitrary large value and to create
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Table 4: Original and modified (in the brackets) artificial data set
by Kamruzzaman and Imon [11].

Ind. 𝑥
1

𝑥
2

𝑌

1 0.9917 0.7067 0.9820 (5)
2 0.7006 0.8301 0.6167 (5)
3 0.3949 (5) 0.7586 (5) 0.8862
4 0.9618 (7) 0.5460 (7) 0.6400
5 0.0042 0.0504 0.7311
6 0.3044 0.3952 0.5180
7 0.3521 0.3140 0.8409
8 0.0993 0.9953 0.8676
9 0.4072 0.4604 0.5702
10 0.1105 0.8435 0.8864
11 0.8282 0.9434 0.2216
12 0.0859 0.3367 0.3921
13 0.9283 0.6090 0.4289
14 0.4926 0.8648 0.6607
15 0.4069 0.2590 0.2028
16 0.0227 0.1896 0.6677
17 0.4129 0.6420 0.3723
18 0.8919 0.8459 0.0634
19 0.1397 0.5453 0.3354
20 0.6295 (5) 0.5354 (5) 0.5630 (5)

0.0

0.2

0.4

0.6

0.8

1.0

x2x1 y

Figure 1: Boxplot for artificial data set.

GLP; the 𝑖th case of predicted variables (𝑥
1
and𝑥
2
) is replaced

by arbitrary large values. Table 4 exhibited the original and
the modified artificial data

The three plots (OLS-MD, LMS-RMD, and MGt-DRGP)
were then applied to both modified artificial data sets. The
values of the diagnostic methods and preceding plots are
displayed in Table 5 and Figure 2, respectively. Since only
a single BLP is present in the first modified data, we can
clearly see that all the classical and robust diagnostic plots
are able to correctly detect the BLP (case 20) as shown in
Figures 2(a), 2(b), and 2(c). However, for second modified
data, it is interesting to observe that only the MGti-DRGP

plot is able to detect and classify the 5 outlying observations
(cases 1, 2, 3, 4, and 20) into VO, GLPs, and BLPs correctly
(see Figure 2(f)). Although the LMS-RMS plot is able to
detect and classify those 5 outlying observations correctly,
its swamped 4 observations (cases 8, 10, 15, and 18) are as
shown in Figure 2(e).The classical OLS-MD can only detect 1
outlying observation (case 2) and mask 4 observations (cases
1, 3, 4, and 20) as shown in Figure 2(d).

Next, we would like to justify which plot has identified
or has classified the suspect observations correctly. Since
removing suspect observations leads to a drastic change in
the coefficient estimates, a good classification plot is the
one which corresponds to the highest percentage changes
for various estimates. The percentage of change in estimate
(PCE) is computed as

PCE =


𝜃Proposed − 𝜃Original

𝜃Original



× 100%, (23)

where 𝜃Original is the OLS parameter estimates of the original
data and 𝜃Proposed is the OLS estimate for data set excluding
suspected cases (VO and BLPs) and the “| ⋅ |” is the
absolute value. Another criterion of a good plot is that, after
deleting the suspect bad influential observations, there is a
significant reduction in the standard error of the estimates.
Table 6 presents the regression coefficients, standard error
for coefficients, coefficient of determination, 𝐹-test, and
the PCE values for the second modified data in different
situations, when we remove a single outlier (case 2) that is
detected by OLS-MD plot and when we remove the outlying
observations (cases 1, 2, 8, 10, 15, 18, and 20 and cases 1, 2,
and 20) that are detected by LMS-RMD and MGt-DRGP
plots, respectively.The results of Table 6 clearly show that the
suspected influential observations that are detected by MGt-
DRGP plot are removed, resulting in the smallest standard
error for coefficients and having the largest PCE values.

5.2. Phosphorus Data Set. The second example is the phos-
phorus data set, which is taken from Snedecor and Cochran
[21].The concentrations of phosphorus in parts permillion in
each of 18 soils were measured to investigate the source from
which the corn plants obtain their phosphorus. This data
set has two predictor variables; 𝑥

1
is the concentrations of

inorganic phosphorus in the soil and 𝑥
2
is the concentrations

of organic phosphorus in the soil. The response variable 𝑦 is
the phosphorus content of corn grown in the soil at 20∘C.
Chatterjee and Hadi [1] showed by using the Studentized
OLS residuals that this data set has a single outlier (case 17).
Table 7 shows the absolute values for MD, RMD, DRGP, 𝑡

𝑖
,

Studentized LMS residuals, andMGt
𝑖
.TheMDdid not detect

any HLP, whereas the RMD detected 2 HLPs (cases 1 and
6) and the DRGP detect 3 HLPs (cases 1, 6, and 10). The 𝑡

𝑖

detected only one outlier (case 17), whereas the Studentized
LMS residuals and MGti detected 2 outliers (cases 10 and 17).

Next, we would like to see the classificationmade byOLS-
MD, LMS-RMD, and MGt-DRGP plots. From Figures 3, 4,
and 5, we can see clearly that the OLS-MD plot identified
one vertical outlier (case 17). However, the LMS-RMD plot
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Figure 2: The OLS-MD, LMS-RMD, and MGt-DRGP plots for the first situation (plots a, b, and c) and the second situation (plots d, e, and
f) of modified artificial data set.
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Table 5: Values of MD, RMD, DRGP, 𝑡
𝑖
, MLS residuals, and MGt

𝑖
and their cut-off points (in the brackets) for the second modified Artificial

data set.

Case number |MD
𝑖
| (3.058) |RMD

𝑖
| (3.397) |DRGP

𝑖
| (0.792) |𝑡

𝑖
| (2.5) |Stand. MLS res.

𝑖
| (2.5) |MGt

𝑖
| (2.5)

1 1.50 1.83 0.37 2.30 15.04 18.69
2 0.27 1.11 0.15 3.52 20.51 24.81
3 1.92 16.38 18.60 0.69 0.48 0.29
4 2.95 23.70 38.86 1.34 0.48 0.26
5 0.77 1.76 0.40 0.23 0.15 0.05
6 0.54 0.52 0.09 0.35 0.48 0.01
7 0.84 0.92 0.14 0.24 0.23 0.19
8 2.57 4.16 0.72 0.30 4.08 1.33
9 0.57 0.27 0.08 0.35 0.44 0.06
10 2.02 3.27 0.83 0.20 3.50 1.47
11 0.22 1.50 0.25 0.55 1.52 0.03
12 0.62 1.16 0.16 0.33 0.32 0.11
13 1.63 1.87 0.36 0.71 2.48 0.09
14 0.82 1.82 0.23 0.16 1.19 0.20
15 1.17 1.38 0.21 0.68 2.64 0.20
16 0.60 1.37 0.24 0.21 0.40 0.03
17 0.46 0.84 0.09 0.38 0.48 0.03
18 0.69 1.30 0.23 0.74 2.77 0.14
19 0.96 1.59 0.18 0.29 0.09 0.12
20 1.92 16.38 18.60 2.09 16.13 6.42

Table 6: The regression estimates, standard errors (in the brackets), and PCE for the second modified Artificial data set.

Variables Full data

Regular data
Remove only the suspect BLP
detected by OLS-MD plot

[cases 20]

Remove only the suspect BLP
detected by LMS-RMD plot
[cases 1, 2, 8, 10, 15, 18, and 20]

Remove only the suspect BLP
detected by MGt-DRGP plot

[cases 1, 2, and 20]
Estimate PCE Estimate PCE Estimate PCE

𝑋1
1.026
(1.412)

0.889
(1.292)

13.35
8.50

0.217
(0.319)

78.85
77.41

−0.377
(0.196)

136.74
86.12

𝑋2
−0.865
(1.457)

−0.934
(1.332)

7.98
8.58

−0.190
(0.326)

78.03
77.63

0.421
(0.203)

148.67
86.07

Constant 1.185∗
(0.549)

1.243∗
(0.502)

4.89
8.56

0.545∗∗
(0.080)

54.01
85.43

0.431∗∗
(0.078)

63.63
85.79

Observation 20 19 13 17
𝑅
2 0.067 0.030 55.22 0.149 122.39 0.264 294.03

Residual SE 1.817 (df = 17) 1.661 (df = 16) 8.59 0.204 (df = 10) 88.77 0.236 (df = 14) 87.01
𝐹-statistics 0.614 0.246 59.93 0.874 42.35 2.513 309.28
Note: ∗𝑝 < 0.05; ∗∗𝑝 < 0.01.

identified 2 vertical outliers (cases 10 and 17) with 2 GLPs
(cases 1 and 6), whereas the MGt-DRGP plot can classify the
observations into their respective categories, where cases 1
and 6 are classified as GLPs with one vertical outlier (case
17) and one BLP (case 10). Similar to the artificial data, we
would like to assess the performance of our proposed plot.
The results of Table 8 demonstrate the standard deviation
for regression coefficients in different situations, when we
remove a single outlier (case 17) that is detected by OLS-MD
plot and when we remove influential observations (cases 10

and 17) which are detected by LMS-RMD and MGt-DRGP
plots. Also, we discussed the effect of removing BLPs (cases 10
and 17) and removing GLPs (cases 1 and 6) that are identified
by both LMS-RMD and MGt-DRGP plots. The results of the
analysis indicate that omitting influential observations (cases
10 and 17) has the greatest effect on the standard error of the
parameter estimates. It is interesting to observe that keeping
the GLPs (cases 1 and 6) has reduced the standard error of
estimates compared to removing these two observations from
the data set.
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Table 7: Values of MD, RMD, DRGP, 𝑡
𝑖
, MLS residuals, and MGt

𝑖
and their cut-off points (in the brackets) for Phosphorus data set.

Case number |MD
𝑖
| (3.058) |RMD

𝑖
| (4.551) |DRGP

𝑖
| (0.519) |𝑡

𝑖
| (2.5) |Stand.MLS res.

𝑖
| (2.5) |MGt

𝑖
| (2.5)

1 1.88 6.02 0.89 0.13 0.71 0.78
2 1.51 1.55 0.24 0.05 0.10 0.21
3 1.70 1.61 0.34 0.40 0.90 0.05
4 1.12 2.73 0.28 0.04 0.25 0.07
5 1.33 1.17 0.20 0.66 0.74 0.92
6 2.62 7.86 1.58 0.78 0.25 1.00
7 0.38 2.23 0.16 0.20 0.24 0.55
8 0.84 0.66 0.12 0.80 1.61 0.82
9 1.07 1.16 0.18 0.68 1.56 0.67
10 1.28 4.02 0.77 1.86 2.88 2.81
11 0.38 0.69 0.07 0.14 0.01 0.02
12 1.13 0.98 0.17 0.28 0.25 0.12
13 1.10 0.83 0.15 1.32 1.38 0.86
14 1.01 0.88 0.15 0.29 0.21 0.05
15 1.24 1.52 0.20 0.38 0.21 0.30
16 0.99 2.73 0.26 0.44 0.97 0.42
17 1.56 1.44 0.26 5.36 5.12 6.22
18 1.78 1.90 0.39 0.83 0.25 0.27

Table 8: The regression estimates, standard errors (in the brackets), and PCE for Phosphorus data set.

Variables

Original data Regular data

Remove suspect observations
detected by OLS-MD plot

[case 17]

Remove suspect GLP and BLP
detected by both MGt-DRGP

and LMS-RMD plots
[cases 1, 6, 10, and 17]

Remove only the suspect BLP
detected by MGt-DRGP and

LMS-RMD plots
[cases 10, 17]

Estimate SE Estimate SE Estimate SE Estimate SE
Inorg. 1.790 0.557 −1.290 0.343 1.720 0.505 1.211 0.285
Organic 0.087 0.415 −0.111 0.249 −0.394 0.440 0.088 0.218
Constant 56.251 16.311 66.465 9.850 72.230 12.117 60.910 8.398
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Figure 3: The studentized OLS residual against MD for the Phos-
phor Data Set.
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Figure 4: The standardized LMS residual against RMD for the
Phosphor Data Set.
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Table 9: RMD, DRGP, 𝑡
𝑖
, MLS residuals, and MGt

𝑖
and their cut-off points (in the brackets) for Aircraft data set.

Case number |MD
𝑖
| (3.582) |RMD

𝑖
| (4.640) |DRGP

𝑖
| (0.365) |𝑡

𝑖
| (2.5) |Stand. MLS res.

𝑖
| (2.5) |MGt

𝑖
| (2.5)

1 1.76 1.70 0.05 0.89 0.06 0.37
2 1.53 2.52 0.05 1.26 0.14 0.79
3 1.55 1.59 0.05 1.32 0.66 1.46
4 1.57 1.52 0.05 0.72 0.08 1.71
5 1.11 1.43 0.11 0.17 0.08 0.69
6 2.17 2.54 0.24 0.94 0.18 0.24
7 1.42 2.22 0.09 0.56 0.19 0.83
8 1.91 2.43 0.07 0.94 0.08 0.35
9 2.09 1.93 0.04 0.05 0.79 0.16
10 1.96 2.53 0.29 0.96 1.61 0.87
11 1.64 1.68 0.08 0.29 1.62 1.04
12 0.64 1.22 0.13 1.97 0.14 1.62
13 0.88 1.24 0.11 0.15 0.42 0.01
14 4.29 26.51 0.12 0.03 1.96 0.17
15 0.78 4.16 0.04 0.06 0.19 0.01
16 1.66 3.64 0.24 0.09 3.56 4.74
17 2.09 2.41 0.17 1.97 0.08 0.19
18 1.19 1.53 0.11 0.24 1.64 1.77
19 2.29 2.01 0.41 0.65 1.66 4.35
20 1.55 7.96 0.01 1.09 0.08 0.37
21 2.42 2.15 0.45 0.48 0.84 2.12
22 3.42 7.47 0.50 4.78 9.61 11.73
23 1.11 1.34 0.08 0.28 0.16 0.68

Table 10: Standard errors of regression coefficients for Aircraft data set.

Variables

Original data Regular data
Remove only the suspect BLP
detected by OLS-MD plot

[case 22]

Remove only the suspect BLP
detected by LMS-RMD plot

[cases 16, 22]

Remove only the suspect BLP
detected by MGt-DRGP plot

[cases 16, 19, and 22]
Estimate SE Estimate SE Estimate SE Estimate SE

Aspect. ratio −3.853 1.763 −3.272 1.191 −3.049 0.919 −3.287 0.850
Life to drag
ratio 2.488 1.187 1.873 0.808 1.210 0.649 1.404 0.602

Weight of the
plane 0.003 0.0005 0.002 0.0004 0.001 0.0004 0.001 0.0004

Max. thrust −0.002 0.0005 −0.001 0.0004 −0.001 0.0003 −0.001 0.0003
Constant −3.791 10.116 4.621 7.023 9.501 5.578 10.804 5.148

5.3. Aircraft Data Set. The last example is the Aircraft data
set, which is taken from Gray [22]. This data set contains 23
cases with four predictor variables (aspect ratio, life to drag
ratio, weight of the plane, and maximal thrust); the response
variable is the Cost. From the results of Table 9, we can see
that the 𝑡

𝑖
identified one outlier (case 22), whereas the Stan-

dardized LMS residuals and MGti identified cases 16, 22 and
cases 16, 19, and 22 as outliers, respectively.Moreover, theMD
identified one HLP (case 14) while RMD and DRGP detected
cases 14, 20, and 22 and cases 19, 22 as HLPs, respectively.

The classification of data into regular data, vertical out-
liers, and good and bad leverage points is shown in Figures 6,

7, and 8. It can be observed from Figure 6 that the nonrobust
plot (OLS-MD) identified one vertical outlier (case 22) and
one GLP (case 14). The LMS-RMD plot in Figure 7 detected
one vertical outlier (case 16), BLP (case 22), and 2 GLP (cases
14, 20), while the MGt-DRGP plot in Figure 8 identified one
vertical outlier (case 16), two BLPs (cases 19 and 22), and one
GLP (case 21).

It can be seen from Table 10 that the standard errors
of the estimates when removing observations 16, 22, and
19 (identified by MGt-DRGP) are smaller than those when
removing case 22 and cases 16 and 22, which are identified by
OLS-MD and LMS-RMD, respectively.
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Figure 5: The Modified Generalized Standard Residual against
DRGP for Aircraft data.
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Figure 6:The Studentized OLS residual against MD for the Aircraft
data set.

6. Conclusion

In this paper, we proposed a new method for the identifi-
cation of BLPs by means of a diagnostic plot. Most of the
time, the classical OLS-MD plot fails to correctly identify the
BLPs. The robust LMS-RMD plot is also not very successful
in classifying observations into four categories. In this regard,
we propose a new MGt-DRGP plot which is very successful
in classifying observations into regular observations, vertical
outliers, and good and bad leverage points. The Monte Carlo
simulation study clearly shows that the MGt-DRGP plot can
detect BLPs correctly with very low rates of masking and
swamping. It is interesting to observe that the OLS-MD
suffers from the masking problem and LMS-RMD suffers
from the swamping problem.
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Figure 7: The Standardized LMS residual against RMD for the
Aircraft data.
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DRGP for Aircraft data.
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