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This paper describes a fully automatic adaptive refinement procedure performed in conjunction with the generalized finite
difference method (GFDM) for solving a second-order partial differential equation (PDE) frequently encountered in engineering
practice. A quadtree structure is used to organize the clouds of points. The adaptive procedure is based on the existing differences
between the gradients of close points.The relative error between two successive adaptation processes is taken as the criterion to stop
the algorithm. Using this adaptive procedure, the high gradient regions are easily detected and refined. Some benchmark examples
are presented showing the accuracy of the method.

1. Introduction

Considerable research in computational mechanics has been
devoted to the development of meshless methods (see Liu [1],
Li and Liu [2], and Nguyen et al. [3]). In these methods, the
domain of interest is discretized by a scattered set of points.
Meshless or meshfree methods can be classified according to
the method of solution as weak, local weak, or strong form.

Some meshfree methods have used the weak form. The
diffuse element method developed by Nayroles et al. [4] was
the first meshless method based on the Galerkin method.
Belytschko et al. [5] developed an alternative implementation
using moving least squares approximation as defined by Lan-
caster and Salkauskas [6]. Several other meshless methods
such as Partition of Unity Finite Element Method (PUFEM)
by Babuška and Melenk [7], h-p cloud by Duarte and Oden
[8], and natural elementmethod (NEM) by Sukumar et al. [9]
and Cueto et al. [10] have also been published.

Another possibility is to integrate the weak local formu-
lation as in the meshless Petrov-Galerkin method (MLPG),
reported by Atluri and Zhu [11, 12].

Another solution is to use the strong form. One of the
earliest developments was the SPH method, introduced by

Monaghan [13, 14]. Liu et al. [15] proposed a different kind
of gridless multiple scale method (RPKM) to improve the
accuracy of the SPH method for finite domain problems.
Another possibility is to solve the strong form using collo-
cation method as in Oñate et al. [16].

Another important path in the evolution of the strong
form has been the development of the generalized finite
difference method (GFDM), also called meshless finite dif-
ference method. The bases of the GFDM were published by
Jensen [17] and Perrone and Kao [18]. Liszka and Orkisz [19]
andOrkisz [20] usedmoving least squares (MLS) in arbitrary
irregular grids. Benito et al. [21] developed an implementa-
tion of the GFDM showing that the results obtained depend
on the number of nodes in the cloud, the relative coordinates
of the nodes with respect to the star node, and the weight
function employed. Gavete et al. [22] reported improvements
of GFDM and compared it with other meshless methods.

Adaptive methods based on the point density increase
have been described in Benito et al. [23] and Benito et al.
[24, 25] using a posteriori error indicators. A higher order
approximation technique based on a modified multipoint
approach has also been considered by Jaworska and Orkisz
[26].
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A totally different adaptive and fully automatic method
is proposed in this paper. By combining the GFDM and an
adaptive numerical procedure the method can be used to
analyze more complicated problems. The method proposed
is based on the use of quadtree and on the computations
of the gradients, using the differences between the gradients
in each quadtree as a simple error indicator. The present
approach provides certain restrictions on the location of the
nodes due to the use of a quadtree structure. However, the
clouds of points generated have an irregular shape. Different
partial differential equations of second order are solved in the
restrictive case of considering functions with high gradients.

The paper is organized as follows. Section 1 is Intro-
duction. Section 2 describes the GFDM. Section 3 describes
the quadtree method used to organize the clouds of points.
Section 4 describes the adaptive algorithm and shows the
a posteriori error indicator used. Section 5 illustrates the
performance of the adaptive method presented for solving
second- order different partial differential equations with
known analytical solutions. Finally, in Section 6 some con-
clusions are given.

2. Generalized Finite Difference Method

For any sufficiently differentiable function𝑈(𝑥, 𝑦), in a given
domain, the aim is to obtain explicit linear expressions for
the approximation of partial derivatives at the points of the
domain. First of all, an irregular grid or cloud of points is
generated in the domain Ω ∪ Γ, where Γ is the boundary
of the domain. On defining the central node with a set of
nodes surrounding that node, the star then refers to a group of
established nodes in relation to a central node. Each node in
the domain has an associated star assigned to it. Following [21,
23–25], the explicit finite difference formulae for the first and
second spatial derivatives with second-order approximation
for the derivatives are obtained:
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By including the explicit expressions for the values of the
partial derivatives 𝜕2𝑢0/𝜕𝑥

2, 𝜕2𝑢0/𝜕𝑦
2 in the equation
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the star equation is obtained
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Equation (4) is formed at each point, including the explicit
expressions of these derivatives (1) in the Poisson partial
differential equation (3). All points in the control scheme
are called a star of nodes. The number and the position of
nodes in each star 𝑖 (𝑖 = 1, . . . , 𝑁) are the decisive factors
affecting GFD formula approximation. The choice of these
supporting nodes is constrained as particular patterns lead
to degenerated solutions (Syczewski and Tribillo [27]).

As star selection criterium we follow the denominated
cross criterium: the area around the central nodal point, 0,
is divided into four sectors corresponding to quadrants of the
Cartesian coordinates system originating at the central node.
In each sector two or more nodes are selected, the closest to
the origin. If this is not possible, for example, at the boundary,
missing nodes can be added to provide the total number of
nodes necessary in each star.

Having calculated the values of 𝑢
𝑖
in the nodes of

the domain, we calculate derivatives using formula (1). It
is possible to control the precision of GFD solutions by
calculating the residual at each point of the interior of the
domain using (1) and (2). In order to provide the required
and controlled precision of the GFD method, residuals of (2)
may be very small and with smoothed distribution over the
entire domain.The existence of ill-conditioned stars of nodes
depends on the weighting function 𝑤

𝑖
employed and on the

number of nodes by quadrant in each star of nodes, but it
can be avoided using the quadtree method shown in the next
section.

3. Quadtree Method

A quadtree is a method of organizing data in four quadrants.
It is a hierarchical data structure based on the principle of
recursive decomposition. A quadtree structure requires each
internal node to have exactly four children nodes. When
illustrating most quadtree structures, a node that has four
child nodes hanging from it is shown, with lines connecting
the parent node with its children nodes. The illustration can
continue, with four more child nodes hanging from each of
the original four child nodes.

The GFDM is a meshfree method; however, it is easy to
create an initial simple quadrilateral data structure, as shown
in Figure 1(a), as an initial quadtree for the cloud of points.
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(a) (b)

Figure 1: ((a) and (b)) The quadtree method with quadrilaterals.

Note that the only restriction used in this paper is that all the
quadrilaterals used are convex.

An adaptive method using a quadtree can be imple-
mented using an error indicator. Note that the GFDM uses
the quadtree structure only to refine the cloud of points; see
Figures 1(a) and 1(b) where two quadtree cells are refined.The
GFDM with quadtree structure is a fully meshless method.
The nodes of each star are selected using the previously
defined cross criterion, so there is no relation between the
nodes in the quadtree and the nodes in a star of GFDM.

The reason for combining the GFDM and an adap-
tive numerical procedure is to ameliorate the accuracy of
this meshless method for analyzing problems governed by
second-order partial differential equations in 2D.

It is interesting to note that not only the number but
also the location of the nodes influences the FD operators
precision. At the same time it is necessary to take into account
that increasing the number of nodes of a cloud of points may
decrease the solution error, but it does not change precision
of the FD operators.

This organization of a cloud of points using a quadtree
structure forces the stars of points used in the GFDM to be in
equilibrium; therefore the existence of ill-conditioned stars
of nodes is restricted. Also, it all depends on the PDE to be
solved.

We can decrease the error by increasing the number of
nodes in the cloud. It is well known that the error decreases
when the number of nodes is increased in a regular mesh.
However, in the case of an irregular mesh, the addition of
nodes must be selective, and a solution to this problem is
to use the adaptive algorithm described in the following
paragraph.

4. Adaptivity Strategy

As is well known, mesh refinement is important in order
to capture an accurate solution of a problem. In meshless

integral-free methods, a cloud refinement procedure based
on gradients can be important and suitable for implemen-
tation. Previous gradient based methods have been used
by Stein and Rust [28] for finite elements and by Luo and
Häussler-Combe [29] for the element-free Galerkin method.
The basic idea of the gradient based methods is simple: a
larger variation of the gradients needs a richer cloud of nodes.

In this paper a procedure like the one used by Luo and
Häussler-Combe [29] has been adapted to the GFDM, but
with the following differences:

(1) In each one of the points of the domain, the first
derivatives are calculated using (1) and then the gradients at
the point are calculated:
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(2) In each quadrilateral cell, we calculate the average
of the differences of the gradients between the nodes of
each quadtree cell (taking into account the distances between
the nodes) and we multiply the result by the area of the
corresponding cell, to obtain a measure of the gradient
intensity in each cell:
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(3) Then we obtain the maximum (max) and minimum
(min) values of the cell intensities for the entire domain.
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(4) Cells with intensity values greater than 𝛼 (0.75 max
intensity + 0.25 min intensity) are selected to be refined,
where

𝛼
𝑖+1 = 𝛼

𝑖
+𝛽× 𝑖; (𝑖 = 1, . . . , nas) ;

𝛼0 = 1
(9)

with 𝛽 ∈ [0.05, 0.2] and nas = number of adaptation
stages. Parameter 𝛽 is related to the number of adaptation
stages. Note that when using (9) 𝛼

𝑖
increases slowly in each

refinement step. The quadrilateral cells to be refined are
divided into four new cells. A new node is introduced in the
midpoint of each nodeless corner of the new cell, respectively
(see Figures 1(a) and 1(b), e.g.).The successive clouds of nodes
obtained in the refinement process present a smooth nodal
density transition.

(5) In the refinement process the algorithm stops when
new cells to be refined are not detected. Also the relative error
(%) calculated between two successive adaptation processes
(10) can be taken as a criterium to stop the algorithm:
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where 𝑢𝑗
𝑖
is the GFDM solution in node 𝑖 at the adaptive step

𝑗, 𝑢𝑗+1max is the maximum of the values in the cloud of nodes at
the adaptive step 𝑗 + 1, and𝑁 is the total number of interior
nodes of the domain at the adaptive step 𝑗.

By using this adaptive algorithm in the GFDM, it is
possible to decrease the error in the domain by selectively
increasing the number of nodes. A fundamental point in
using the adaptive procedure is the detection and refinement
of the regions with high gradients; to illustrate the procedure
some examples have been solved in cases with high gradients
in solution.

5. Numerical Results

In this section the previously described h-adaptive method
is used to solve various second-order partial differential
equations, with the objective of checking the quality of the
algorithm.The efficiency of the algorithmhas been illustrated
analyzing the reduction in the error value of the second-
order PDEs with constant or variable coefficients as nodes are
added.

The examples have been chosen so that high gradients are
present. The potential weighting function used is
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Parameter 𝛽 = 0.05 has been used in Examples 1–4 and 𝛽 =

0.2 in Example 5.
As the idea is to analyze the efficiency of the algorithm,

it shows that the high gradient regions are well detected and
that the adaptive algorithm then adds new nodes selectively,
if necessary.

Figure 2: Initial cloud of 50 nodes.

The global exact error is evaluated using the following
global error formula:
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× 100, (12)

where 𝑢𝑗
𝑖
is the GFDM solution in node 𝑖 at the adaptive step

𝑗, 𝑢ex
𝑖

is the exact value of the solution in the 𝑖, 𝑢exmax is the
maximum value of the exact values in the cloud of nodes
considered, and 𝑁 is the total number of interior nodes of
the domain considered.

The following examples show how the h-adaptivemethod
is applied several times, progressively adding new nodes.The
nodes added in each step serve as a reference for the following
step, in order to obtain more balanced clouds of points at the
end of the process. All the examples correspond to different
cases with high gradients corresponding to partial differential
equations frequently encountered in engineering problems.

5.1. Example 1. For application to solve Poisson equation (13),
with Dirichlet boundary conditions being the exact solution
(14),

𝜕
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+
𝜕
2
𝑈

𝜕𝑦2
= 𝑔 (𝑥, 𝑦) , (13)

𝑈 (𝑥, 𝑦) =
1
𝑥𝑦

(14)

𝑔(𝑥, 𝑦) can be calculated by substituting exact solution (14) in
the partial differential equation (13).

The domain Ω is given in Figure 2 (initial cloud with 50
nodes (32 interior nodes)). After seven refinement stages the
final cloud in Figure 3 has 276 nodes (210 interior nodes).The
limit used to stop the refinement steps using (10) is 1.5%.

In Figure 4 we can see the successive % global error
calculated using the formula in (12) versus the number of
interior nodes.

The error displayed in the logarithmic scale is shown in
Figure 5.
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Figure 3: Final cloud of 276 nodes.
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Figure 4: % global error versus the number of interior nodes.

5.2. Example 2. The adaptive GFDM is tested in the case of
the following partial differential equation:
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with Dirichlet boundary conditions.
The exact solution is given by

𝑈(𝑥, 𝑦) =
1

𝑥 + 𝑦
. (16)

Thedomain is defined by Figure 6 (initial cloudwith 25 nodes
(9 interior nodes)). Note that in (16) there is a singular point
in (0, 0), not included in the domain. After eight refinement
stages the final cloud in Figure 7 has 65 nodes (33 interior
nodes). The limit used to stop the refinement steps using (10)
has been 0.5%.

We can see in Figure 7 how the region with high gradient
is detected and refined.

In Figure 8 we can see the successive global errors
calculated using formula in (12). The analytical solution
corresponds to the case of a function with high gradients in
the function and the derivatives.

The error displayed in the logarithmic scale is shown in
Figure 9.
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Figure 6: Initial cloud of 25 nodes.

Figure 7: Final cloud of 65 nodes.
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Figure 8: % global error versus the number of interior nodes.
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Figure 10: Initial cloud of 43 nodes.

5.3. Example 3. TheadaptiveGFDM is testedwith the follow-
ing partial differential equation with variable coefficients:

𝑥
𝜕
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𝜕𝑥2
+𝑦

𝜕
2
𝑈

𝜕𝑦2
= 𝑔 (𝑥, 𝑦) (17)

with Dirichlet boundary conditions.
The exact solution is given by (16) and 𝑔(𝑥, 𝑦) can be

calculated by substituting the exact solution (16) in the partial
differential equation (17).

The domain Ω is given in Figure 10 (initial cloud with 43
nodes (17 interior nodes)). Then, after six adaptation stages
the refined final cloud with 137 nodes (88 interior nodes)
has been obtained; see Figure 11. The limit used to stop the
refinement steps using (10) has been 0.75%.

In Figure 12 we can see the successive global errors
calculated using formula in (12). We can see how the region
with high gradient is detected and refined.

The error displayed in the logarithmic scale is shown in
Figure 13.

5.4. Example 4. The adaptive GFDM is tested with the
following solution of the Poisson equation (18) with Dirichlet
boundary conditions.

Figure 11: Final cloud of 137 nodes.
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Figure 12: % global error versus the number of interior nodes.

The exact solution is

𝑈 (𝑥, 𝑦) =
1

2000
𝑥
2
(1−𝑥2) (𝑒10𝑥

2
− 1) 𝑦2 (1−𝑦2)

⋅ (𝑒
10𝑦2

− 1)
(18)

and 𝑔(𝑥, 𝑦) can be calculated by substituting the exact
solution (18) in the partial differential equation (13).

The domain Ω is given in Figure 14 (initial cloud with
55 nodes (35 interior nodes)). Then, after three adaptation
stages, the refined final cloud with 82 nodes (56 interior
nodes) is obtained; see Figure 15. The limit used to stop the
refinement steps using (10) has been 3.5%.

We can see in Figure 15 how the region with high
gradients is detected and refined in three adaptation steps.

In Figure 16 we can see the successive global errors
calculated using formula in (12). The analytical solution
corresponds to the case of a function with high gradients.

The error displayed in the logarithmic scale is shown in
Figure 17.

5.5. Example 5. For application to solve a problem taken from
the engineering context, a torsion problem defined by the
PDE,

𝜕
2
Φ

𝜕𝑥2
+
𝜕
2
Φ

𝜕𝑦2
= − 4 (19)
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Figure 14: Initial cloud of 55 nodes.

Figure 15: Final cloud of 82 nodes.
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Figure 18: Circular shaft with a circular keyway.

to calculate the Prandtl stress function Φ in the case of a
circular shaft with a circular keyway, see Figure 18.

The exact solution of this problem as given by Saad [30]
is

Φ = (𝑏
2
− 𝑟

2
) (1− 2𝑎 cos 𝜃

𝑟
) . (20)

The domain Ω with 𝑎 = 12, 𝑏 = 4 is shown in Figure 19
(initial cloud with 86 nodes (60 interior nodes)). After four
refinement stages the final cloud of Figure 20 has 1481 nodes
(1297 interior nodes). The limit used to stop the refinement
steps using (10) is 0.075%.

This case is different from the other four abovementioned
since the singular strength is lower but it is more widespread
in the domain. 𝛽 parameter has been taken as 0.2.

In Figure 21 we can see the successive % global error
calculated using the formula in (12) versus the number of
interior nodes.

The error displayed in the logarithmic scale is shown in
Figure 22.

All the examples have been solved using a low initial
number of nodes. The h-adaptive method is applied several
times progressively adding new nodes, so a smooth transition
area is created between zones with different nodal density. As
has been shown, the numerical results obtained (see Figures
5, 9, 13, 17, and 22) show a good convergence in a few
refinement steps.
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Figure 19: Initial cloud of 86 nodes.

Figure 20: Final cloud of 1481 nodes

6. Conclusions

The use of the GFDM using irregular clouds of points is an
interesting way of solving a partial differential equation. This
paper shows how a fully automatic adaptive algorithm can be
used with the GFDM. The h-adaptive algorithm consists of
selectively adding nodes around the areas where the greater
errors are located, using a quadtree method to refine the
successive clouds of nodes.The algorithm efficiency has been
checked analysing the reduction in the solution error value as
well as the situation of the added nodes for different partial
differential equations, defined in several domains including
the cases of a PDE with variable coefficients and a torsion
problem.

The computer program developed automatically gives the
global estimated error between two successive refinement
steps, the number of quadrilaterals with a gradient intensity
over the limit, and the number of nodes to be added in
each adaptive step. It is then possible to adjust the gradient
intensities in the new adaptive steps in order to decrease the
error.

Several cases of different second-order partial differential
equations, with high gradients in their solutions, have been
solved. This shows how the algorithm can detect the high
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Figure 21: % global error versus the number of interior nodes.
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Figure 22: log (% global error) versus log (number of interior
nodes).

gradient regions and refine them to decrease the error; thus
a very good improvement of the accuracy can be obtained by
adding a few nodes in each refinement step. All of this can
improve the efficiency of the GFDM in future applications.
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