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This study focuses on reservoir parameter estimation using extreme learning machine in heterogeneous sandstone reservoir. The
specific aim of work is to obtain accurate porosity and permeability which has proven to be difficult by conventional petrophysical
methods in wells without core data. 4950 samples from 8 wells with core data have been used to train and validate the neural
network, and robust ELM algorithm provides fast and accurate prediction results, which is also testified by comparison with BP
(back propagation) network and SVM(support vectormachine) approaches.Thenetworkmodel is then applied to estimate porosity
and permeability for the remainingwells.The predicted attributesmatchwell with the oil test conclusions. Based on the estimations,
reservoir porosity and permeability have been mapped and analyzed. Two favorable zones have been suggested for further research
in the survey.

1. Introduction

In geosciences, reservoir is defined as the underground
accumulation of oil or natural gas in sedimentary basins,
and it is of great importance for petroleum exploration and
development. Among the steps for well planning decisions,
reservoir characterization is the essential one, and physical
parameters estimation, including porosity and permeability,
is the basic requirement in the characterization workflow.

As for the two geophysical parameters, porosity describes
the fraction of void space in the sedimentary rocks, where the
void may contain fluids, such as oil or natural gas. The more
porous the rock is, the more the oil or gas may be preserved
in the void spaces. And permeability describes the ability of
rocks to transmit fluids. The more permeable the rock is, the
easier the oil or gas could flow through. These two types of
reservoir parameters are to some extent determining factors
for reserve estimation and oil or gas production.

Practically, it is very complex and difficult for porosity
and permeability estimation since lots of factors could affect
the estimation accuracy, such as depositional formations,
lithologic mineral components, measurement tools, data
quality, and computational method.

There are mainly two types of approaches that have been
used to acquire porosity and permeability data in reservoir
research workflow. The first one is laboratory core analysis.
Cores are obtained from drilled wells. Porosity and perme-
ability can be determined precisely under strict core test prin-
ciples. The results are reliable and are often used as reference
for further estimation using mathematical ways. Due to the
expensive cost, cores are often few in numbers for most of the
oilfields. The second one is borehole log interpretation. The
logs data are physical measurements performed by electric
instruments lowered into the borehole. Specific physical char-
acteristics of the rocks surrounding the borehole are recorded
by logs with depth variations. Conventional logs include
gamma ray (GR), acoustic slowness (AC), density (DEN),
compensated neutron logs (CNL), and deep resistivity (RT).
Among these logs, GR is often used to predict rock lithology,
and the three logs of AC, DEN, and CNL have largely been
used to estimate rock porosity. Permeability is estimated by
combination of RT log and the former-estimated porosity.
Empirical mathematical equations are often used when car-
rying out log interpretations. These equations are regression
models built based on the correlation between geophysical
logs and core-measured reservoir parameters. Since logs are
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run for all wells in oilfield and the mathematical empirical
equations are feasible to be used, log interpretation becomes
the most used method in porosity and permeability estima-
tion. But the estimation results rely greatly on the equations
or the correlation models. Meanwhile, the relations between
logs and geophysical parameters of rocks are nonlinear and
very complicated. It is hard to get a universal solution for
all wells in one survey or for all oilfields. So some nonlinear
numerical method and artificial intelligence are brought into
the log interpretation process andproposed as supplementary
approach, so that more reliable and precise estimation data
could be obtained for further reservoir evaluation.

Artificial neural networks have been proved to be capable
of approximating any nonlinear function to any degree of
accuracy provided that there are sufficient number of samples
for network training and learning and have some successful
applications in petroleum engineering, such as sedimentary
microfacies prediction [1], lithology classification [2, 3], and
reservoir prediction [4–6].

In petrophysical analysis, the neural network models
have always acted as a predictor or estimator of deriving
geophysical parameters, such as porosity and permeability
where no core data is available [7–12]. Among the neural
networks, BP network and SVM are the two commonly used
learning algorithms in porosity and permeability estimation.
BP neural network is a typical full-connected neural network
with forward and error backpropagation part. The error
could be backpropagated by adjusting weights in the learning
process until it converges to a targeted value, which is very
effective in solving nonlinear problems [13]. Support vector
machine (SVM) is a network based on statistical learning
theory and is especially designed for classification problems
with different convolution kernel functions [14]. Satisfactory
accuracy of estimations has been achievedwhen the networks
are optimized with appropriate model parameters [15–19],
although there still are some shortcomings in the applica-
tions, such as time-consuming and overfitting problems [20].

Extreme learningmachine (ELM) is a single-hidden layer
feedforward neural network (SLFN) proposed by Huang et
al. [21, 22]. The ELM approach to training SLFN consists in
the random generation of the hidden layer weights, followed
by solving a linear system of equations by least squares for
the estimation of the output layer weights. This learning
strategy is very fast and gives good prediction accuracy.
Theoretically and practically, this algorithm can produce
good generalization performance inmost cases and the speed
has been proved to be much faster than conventional pop-
ular learning algorithms for feedforward neural networks.
Till now, ELM has been widely studied and accepted by
researchers and has demonstrated good generalization and
prediction performance in many real-life applications [23–
26]. But in petroleum reservoir prediction, there are still few
applications.

In this paper, we examine the potential of ELM to predict
porosity and permeability parameters in a heterogeneous
sandstone reservoir in Permian formation, Yanqi survey
of Ordos basin, China. Prediction models are established
by SLFN trained with ELM and optimally pruned ELM
(OP-ELM). OP-ELM is a variation of the ELM introducing

an optimal selection of the number of hidden units and
variablesmodeling the problem [27, 28]. It ismore robust and
generic than conventional ELM [26]. In the study, reservoir
parameters measured from cores and logs value at the same
depth are paired as samples. Optimal prediction models
for porosity and permeability estimation are established,
which are finally used to interpret reservoir porosity and
permeability for all wells in the survey.

The outline of this paper is as follows: Section 2 is the
geologic background of the survey and brief introduction
about the sandstone reservoir. Section 3 gives a short review
of ELM and OP-ELM. Section 4 describes the preparation
for the network model establishment. Section 5 gives the
prediction results. Finally, Section 6 gives the conclusion of
this work.

2. Geological Background

Yanqi survey is located in eastern Ordos basin, China. In the
survey, there are 15 wells that encountered Permian sandstone
reservoir. Oil has been discovered in 6 wells, which are
marked with red color-filled circles in Figure 1.

According to the comprehensive study of Permian for-
mation, the structure is monoclinal and west-dipping with
few faults developed.The Permian formation is dominated by
calcareous quartz sandstone, interbedded with organic-rich
mudstone and thin-layer coal.

Owing to the complex depositional process and variable
diagenesis, the sandstone reservoir is heterogeneous and
changes fast spatially, which is controlled by the fluvial
sedimentary microfacies. Core analysis shows that the main
pore type is intragranular pore (Figure 2(b)), with proportion
more than 55%, and the rest include secondary intergranular
pore (Figure 2(c)), matrix pore, and microcrack. And the
measured permeability varies greatly both horizontally and
vertically.

Figure 3 is the cross-plot of actual porosity and perme-
ability measured from core samples. It shows that porosity
ranges from 2% to 14% and permeability value has large
span from 0.0001md to 10md. The two parameters have
highly positive correlation. Exponential regression has been
executed for porosity and permeability, which is

Permeability = 0.0009𝑒

0.6567Porosity (1)

and the correlation coefficient (𝑅) is 77.9%. In conventional
log interpretation, this statistical regression model can be
recommended for permeability estimation if porosity is
determined, but practically porosity is hard to be accurately
calculated using current empirical formula.What ismore, the
correlation coefficient is not good enough, and the error of
porosity calculation can also be brought into the permeability
estimation process and affect its accuracy. So the model may
not be suitable for all wells of the survey.

According to the petroleum industry criteria, the sand-
stone reservoir in Yanqi survey hasmediumporosity and per-
meability. In the survey, 6% is set as the threshold of porosity
for sandstone reservoir, whichmeans if porosity is lower than
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Figure 1: Well location and base map of the Yanqi 3D survey.
There are totally 15 wells, with 7 wells encountering oil in Permian
sandstone reservoir, while the rest are dry.

the threshold, the sandstone reservoir is considered tight and
uneconomic.

3. Extreme Learning Machine

In this section we review the fundamental definitions of the
two learning algorithms applied in the experiments reported
below to predict porosity and permeability parameters in
Permian sandstone: the ELM and the OP-ELM.

3.1. ELM. Extreme Learning Machine (ELM) is a simple
supervised learning algorithm proposed by Huang et al.
[21] for Single-hidden Layer Feedforward Neural Network
(SLFN). Comparing with the conventional neural networks,
ELM has better performance in learning efficiency and uni-
versal approximation capability. Different from BP network,
the input weights and biases of ELM are randomly assigned
and need not be adjusted within the training phase, and the
output weights can be determined analytically by finding
the least squares solution. Therefore the neural network is
obtained after a few steps with very low computation cost.

Given a dataset containing 𝑁 training samples (x
𝑖
, t
𝑖
),

𝑖 = 1, 2, . . . , 𝑁, where x
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wherew
𝑖
is the weight vector connecting the 𝑖th hidden node

with the input nodes, 𝛽
𝑖
is the weight vector connecting the

𝑖th hidden nodewith the output nodes, and b
𝑖
is the threshold

of the 𝑖th hidden node. 𝑔(⋅) denotes the nonlinear activation
function of the hidden node. It can be the identity sigmoid
or Gaussian function, among a large collection of polynomial
functions.

Equation (2) can be written in a more compact format as
follows:

H𝛽 = T, (3)

whereH is the hidden layer output matrix of the network:
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, (4)

𝛽 is the matrix of hidden-to-output weights, and T is the
target matrix.

In (4), weights (w
𝑖
) and biases (b

𝑖
) are randomly assigned

and 𝑔(⋅) is known to be selected as sigmoid function, so the
output of hidden nodes could be determined, which is H in
(3).The remaining problem becomes a set of linear equations
and can be solved by minimum square error estimation:

Min
𝛽

󵄩
󵄩
󵄩
󵄩

H𝛽 − T󵄩
󵄩
󵄩
󵄩

. (5)

According to the definition of the Moore-Penrose gener-
alized inverse, the smallest norm least squares solution of (3)
is given as

̂
𝛽 = H−1T, (6)

where H−1 is the Moore-Penrose generalized inverse of
matrixH.

For (6), once the H and T are set, it is not difficult to
get the 𝛽 matrix. The process has proved several advantages:
(1) the training error is minimized; (2) the generalization
performance is optimal; (3) the solution is unique.

Totally, the ELM algorithm can be summarized as follows
[24].

Given a training set {(𝑥
𝑖
, 𝑡
𝑖
) | 𝑥
𝑖
∈ R𝑛, 𝑡

𝑖
∈ R𝑚, 𝑖 = 1, . . . ,

𝑁}, an activation function𝑔, and the number of hidden nodes
𝑀,

(1) randomly set input weights w
𝑗
and biases b

𝑗
;

(2) calculate the hidden layer output matrixH;
(3) calculate the output weight matrix ̂

𝛽.

3.2. OP-ELM. The optimally pruned extreme learning
machine (OP-ELM) is a variation of ELM algorithm for
SLFN. The OP-ELM algorithm is made of three main steps
summarized as follows [27, 28].

Given a training set {(𝑥
𝑖
, 𝑡
𝑖
) | 𝑥
𝑖
∈ R𝑛, 𝑡

𝑖
∈ R𝑚, 𝑖 = 1, . . . ,

𝑁}.
(1)Build a regular ELMmodel with initially large number

of neurons.
(2) Rank the hidden layer neurons by their contribution

to the linear explanation of the ELM output by the multire-
sponse sparse regression (MRSR), which was proposed by
Similä and Tikka in 2005 [29].
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Figure 2: Photo and microscope slice of core samples from Permian formation of well Yq3 in Yanqi survey: (a) actual core photo, (b)
intragranular pore, and (c) intergranular pore. Small pores can be recognized on the side of core. In the microscope slices, pore spaces
are colored and the grey part is the matrix.
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Figure 3: Cross-plot of core-measured porosity and permeability.

MRSR is used to get rid of the useless neurons of the
hidden layer. Its main idea is as follows: add columns of the
regressor matrix H in H ̂

𝛽 = T and corresponding nonzero

rows in ̂
𝛽 and thus obtain a series of approximations H𝑘 ̂𝛽 =

T𝑘. Then hidden nodes are ordered by the corresponding
decrease in the prediction error ‖T𝑘 − T‖ obtained in the
model. More specific details of the MRSR algorithm can be
found in [29].

(3) Decide the optimal number of neurons by the leave-
one-out (LOO) validation method. Compute the LOO using
the PRESS (prediction sum of squares) statistic in the linear
case:

𝜀

PRESS
=

𝑡
𝑖
− h
𝑖
b
𝑖

1 − h
𝑖
Ph𝑇
𝑖

, (7)

where h
𝑖
and b

𝑖
are the 𝑖th column and 𝑖th row of H and ̂

𝛽,
respectively. The process is greedily incremental, and units
are added in order until the LOO method decreases below
a preset threshold.

For robustness and more generality, the OP-ELM algo-
rithm has the suggestion of using a combination of three
types of kernels: linear, sigmoid, and Gaussian kernel, while
the original ELM proposed to use only sigmoid kernels
[21]. Problems discussed in this paper are not linear, and
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Figure 4: Experimental flow diagram of the estimation experiments.

the experiments conducted belowwill compare the efficiency
using different kernel types and choose the optimal one for
both ELM and OP-ELM.

4. Experimental Design

The experimental analysis is conducted to find the best
model for predicting porosity and permeability from log
data. Figure 4 shows the flow diagram of the computational
experiments carried out. Rectangle boxes correspond to
data, while rounded boxes correspond to process. For the
experiment, the first step is to prepare the input data,
including the original log data and core-measured porosity
and permeability data. The datasets are divided into training
set and testing set. The second step is to set up the network
model with the training dataset.Model parameters, including
kernel types and neuron numbers of hidden layers, are
determined. The third step is to validate the model using the
testing dataset. If the error is below the threshold, the model
is feasibly and appropriately built; thereafter it can be used in
reservoir parameters prediction for the remaining wells.

4.1. Data Preparation. In the survey, all of the wells in
the survey have run the conventional logging, and the five
types of logs for reservoir parameters estimation are well
prepared. About 8 wells have cores from Permian sandstone
formation. Most of the cores have laboratory analysis results,
including the measured porosity and permeability values.
Unlike the continuously recorded well logs data, the core
data are sparsely sampled (as shown in Figure 5). So when
collecting input data for the network, each core-measured
data matches with the log data at the same depth.

Five types of logs including AC, DEN, GR, CNL, and
RT are used as input for the networks, and porosity (POR)
and permeability (PERM) measured from cores are the two
output targets. Two parts are prepared using the datasets,
including training part and test part.The training part is used
to train the model, while the test part is used to compute
predictions and compare them with the measured values.
Mean square error (MSE) is computed as evaluation of the
prediction accuracy and quality of the trained model.

The total number of samples in Permian sandstone of 8
wells of the survey is summed up to 4950, 90% of which will
be used as the training data for the ELM network, while the
remaining 10% will be used as test samples.

Data normalization is a necessary preprocessing step for
network data analysis. So all of the logs and core-measured

parameters are normalized before formally inputting into the
network. The normalized variable has the following form:

𝑋new =

𝑋old −min𝑋

max𝑋 −min𝑋

, (8)

where 𝑋 stands for logs of GR, AC, DEN, CNL, and RT. The
new normalized variable𝑋new takes the range from 0 to 1 for
all the parameters.

4.2. Network Architecture. For porosity and permeability
estimation, five logs including GR, AC, DEN, CNL, and RT
are physically related to petrophysical properties. So these five
logs are fed to the ELM network as input with each node
denoting one log. Porosity and permeability are to be taken
as the two network neurons at the output layer. The network
architecture is shown as Figure 6.

4.3. Network Parameter Selection. For ELM network, appro-
priate kernel and number of hidden nodes are the two critical
parameters to be determined.

In the study, four types of kernels have been tested using
training dataset, and they are sigmoid function, radial basis
function, hardlim function, and triangular function. At the
same time, numbers of hidden nodes are tested accordingly.
When selecting one of the kernels, number of hidden nodes
will start from 5, with 10 as incremental step. Figure 7 is the
accuracy comparison by using different kernels and node
numbers.TheMSE between prediction results and measured
properties decreases rapidly as node number of the hidden
layer gradually increases. Among the four kernels, sigmoid-
based model comes to the threshold first when node number
is set as 55, while overfitting problem appears as the node
number is bigger than 65. Triangular-based and radial-basis-
based models have the same trend, and it seems that the
node number might exceed 100 when the minimum errors
are close to the threshold. For the hardlim-based model, the
MSE reaches the lowest point at 3.26% when node number is
set as 75.

Based on the experimental tests, sigmoid kernel is opti-
mal and when node number of the hidden layer is set as 55,
the network model can obtain the best prediction accuracy.

For the ELM network model, node number of hidden
layer can also be optimally determined by OP-ELM training
process instead of time-consuming and arbitrary testing.The
very first step of OP-ELM methodology is to construct the
SLFN network using the original ELM structure with 100
neurons at the hidden layer and sigmoid kernel. Both of
training dataset and testing dataset are input to the model,
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Figure 5: Part of logs and corresponding core-measured porosity and permeability in Permian formation of well Yq12. The measured
parameters are sparsely distributed along the borehole, while logs are continuously sampled, and the sampling interval of logs is 0.5m.
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M
SE

 (%
)

Node number of hidden layers

0

2

4

6

8

10

12

5 15 25 35 45 55 65 75 85 100

Triangular
Sigmoid

Radbas
Hardlim

Figure 7: Comparison of mean squared error (MSE) obtained from
different kernel-based ELM models with increasing node numbers
at the hidden layers.

and MSEs are computed for looking for the best accuracy.
Throughneuron contribution sorted by MRSR and optimal

nodes selected by LOO validation, the optimal neuron at the
hidden layer is finally determined as 62, which is close to the
original ELM test.

4.4. Accuracy Analysis. When the parameters for the network
model are finally settled, the following step is to validate the
model using testing dataset. Core porosity and permeability
are set as targets to the network predictor. Figure 8 is
the validation result for the well Yq12 with depth ranging
from 3450m to 3490m (mentioned in Figure 5). The model
outputs are superimposed on the core data. Regression plots
in Figures 9(a) and 9(b) reflect the accuracy of the OP-
ELM network estimator. Coefficients of 0.9932 and 0.9917 are
obtained for porosity and permeability estimation, respec-
tively. The accuracy is satisfactory. Comparison analysis of
the results from all of the testing datasets demonstrates
good performance using the network predictor for the two
geophysical parameters, especially for permeability, which is
more sensitive to the rocks heterogeneity [30].

Furthermore, in order to testify the advantages of OP-
ELM, BP network and support vector machine (SVM) algo-
rithm are used in the model training and testing process
for comparison with OP-ELM. Backpropagation feedforward
network (BP) is the most commonly used ANN approach,
and it is also criticized for having difficulty to decide
learning rates, being easy to be stuck on local minimums,
having overfit problems, and being time consuming [6].
SVM is a competitive technique which has been intensively
used for nonlinear modeling. It has two advantages over
traditional deterministic methods: strong nonlinear approx-
imation capabilities and good generalization effectiveness.
Experiments have been performed to porosity and perme-
ability prediction in [15–17], which shows better prediction
performance than multilayer perceptron (MLP). References
[20, 31] have compared performances of BP, ELM, and
SVM models, and the experimental results show that ELMs
outperform SVMs on reliabilities, while SVMs are better on
output distributions. So, it is interesting to compare them in
this research.

In the BP network model, the typical structure is used,
with three layers including one input layer, one hidden layer,
and one output layer. At input layer, 5 neurons stand for the
five input logs, and 2 neurons for the output layer. Sigmoid
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kernel function is also adopted for the network model. 33
neurons at the hidden layer are finally determined after
dozens of testing in the training process.

As for the SVM predictors, when using the same dataset
for model training and testing, minor difference could be
created for the SVM models with different kernel function,
especially for such numerical approximation problems [31].
But accuracy always needs to be guaranteed, so three types
of kernel function have been tested and compared using the
dataset of the survey. The three common kernel functions
include (1) polynomial function, (2) radial basis function
(RBF), and (3) sigmoid function. Here, grid and pattern
searchmethods are used to determine the optimal set of SVM
input parameters. Table 1 shows the final results. Gaussian
RBF function seems better than the others in performing the
estimation, so the final SVM model uses RBF as the kernel
function.

Table 2 shows the comparison result using the three types
of network predictorswith the same testing dataset. Accuracy,
MAE, and training time are three factors in comparisons,
and the values are obtained by averaging estimations of
the samples in well Yq8. The table shows the accuracy,
mean absolute error (MAE), and total time in seconds for
the three processing approaches, respectively. Good perfor-
mances have been done using the three optimized network
estimators, and best results are achieved by OP-ELM with
an accuracy of 95.6%, mean absolute error of 0.205, and fast
learning speed of 23 seconds.

Figure 10 shows the prediction porosity and permeability
in Permian sandstone of Yq8 by using the three algorithms:
BP, SVM, andOP-ELM. All three approaches have conducted
good prediction performance for the sandstone reservoir
parameters estimation, and the model predictions are very

Table 1: Comparison of capabilities of SVM with different kernel
functions.

Kernel
function

Kernel
parameters

Training
accuracy (%)

Validation
accuracy

(%)
Gaussian
RBF

𝑐 = 0.125,
𝑟 = 0.125

100 97.93

Sigmoid 𝑐 = 1,
𝑟 = 0.0625

100 97.86

Polynomial
𝑐 = 0.125,
𝑟 = 0.125,

𝑑 = 1

100 96.85

Table 2: Comparison of porosity prediction performance results
on OP-ELM against BP and SVM methodology for well Yq8. The
comparison strata belong to the Permian reservoir.

Algorithm Accuracy MAE Training time (s)
BP 0.901 0.827 72
SVM 0.935 0.639 51
OP-ELM 0.956 0.205 23

close to the core-measured parameters, which shows the
advantages in generalization and prediction of the neural
network method. But for the three network predictors, OP-
ELM has better accuracy than the other two methods. In the
interval of 3375–3390m, the lithology is dominated by porous
and permeable sandstone, with average porosity of about 10%
and permeability of more than 1md.

5. Reservoir Parameters Prediction

The above analysis has shown the reliability and accuracy of
the OP-ELM prediction model. Therefore the model is then
used to estimate porosity and permeability for the remaining
wells in the survey. Log data of 7 wells without core data have
been input into the model, and porosity and permeability
of the Permian reservoir have been estimated. Figure 11 is
the plot of original logs and predicted reservoir parameters
of well Yq4 from 3560 to 3600m. This interval belongs to
the Permian formation, and oil show exists at the depth of
3591–3598m. According to the predicted result, porosity of
the oil-bearing interval is about 10.78% and permeability
is about 3md, which means the sandstone reservoir from
3590m to 3598m has good petrophysical properties and can
be recommended for further evaluation.

Since all wells have been processed using the ELM-based
model, statistical reservoir analysis is then to be carried out
in the survey.According to the geological correlation analysis,
tops of target sandstone reservoir in the wells are determined.
Thereafter under the constraints of tops boundaries of the
reservoir, average porosity and permeability of the target
reservoir interval have been calculated for all of 15 wells in
the survey.Then flex gridding algorithm is used to interpolate
the attributes between wells. Figure 12 is the average porosity
map for target reservoir. In the map, red-yellow color stands
for high porosity with values bigger than 9.5%. It is obvious
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Figure 9: Regression analysis of the predicted and core-measured parameters: (a) porosity plot, with correlation coefficient about 0.9932,
and (b) permeability plot, with correlation coefficient about 0.9917.

3340

3380

GR (API) AC (m/s) Lithology

0 150 2000 7000

150

0

0

3350

3360

3370

D
ep

th
 (m

)

3390

Mud Sand

BP model (%)

SVM model (%)

OP-ELM model (%)

Core porosity (%)

15

15

150

0.01 10
BP model (md)

SVM model (md)

OP-ELM model (md)

Core permeability (md)

0.01 10

0.01 10

0.01 10

Figure 10: Porosity and permeability prediction comparison by three neural networkmodels, BP, SVM, andOP-ELM, for Permian sandstone
in Yq8.

that approximate semicircular zones of wells Yq12 and Yq13
at the northeast part of the survey have porosity higher than
10% and also for the triangle zone including wells Yq15,
Yq8, Yq4, Yq3, and Yq7 at the western part in the survey.
These two areas have better porous and permeable sandstone
reservoir, and the six wells included in the two zones have

encountered oil in Permian sandstone reservoir. Since there
is no direct structural trap in the survey, stratigraphic trap
is the dominant type of traps. Fluvial reservoir is the critical
factor for well planning and economic assessment. Therefore
the above-mentioned two favorable areas are proposed as
potential for next-round well selections in the Yanqi survey.
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Figure 12: Average porosity map for the target reservoir of Yanqi
survey. Values near well symbols are the average porosity of Permian
sandstone based on the ELM network output.

6. Conclusions

The prediction of porosity and permeability is an essential
but complex research problem in reservoir characterization
of petroleum exploration. In this paper, the authors adopt
the ELM-based predictors for solving such crucial problem
in heterogeneous sandstone reservoir of Permian formation
in Yanqi survey.The proposed ELMandOP-ELMapproaches
have been reviewed and applied to build estimationmodels to
predict reservoir parameters. Logs data and core-measured
porosity and permeability are input into the network model.
Sigmoid kernel is used in the network, and the node number
of hidden layer is determined by OP-ELM.The advantages of
estimation accuracy and learning speed have been testified
for ELM methodology in the research. Reliable network
prediction models have been established in the study, and
porosity and permeability are estimated for Permian sand-
stone reservoir of all wells in the survey. Potential areas are
suggested finally, including two favorable zones: the northeast
approximate semicircular zone of wells Yq12 and Yq13 and

western triangle zone includingwells Yq15, Yq8, Yq4, Yq3, and
Yq7.
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