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The control problem for the networked suspension control system of maglev train with random induced time delay and packet
dropouts is investigated. First, Takagi-Sugeno (T-S) fuzzy models are utilized to represent the discrete-time nonlinear networked
suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The
controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked
suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller
gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments
on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed

method.

1. Introduction

Maglev train has been considered to be a popular type of track
transportation vehicle for its merits of low noise, no danger
of derailment, small turning radius, and easy maintenance,
which has extensively been studied in many countries [1, 2].
The suspension control system is the most pivotal part of
the maglev train. In traditional way, point-to-point cables are
used to connect the system components including sensors,
controllers, and actuators, which make the transmission cir-
cuits very complex. Besides, the complicated electromagnetic
interference which is derived from the electromagnets and
linear motor will affect the reliability of the data transmission
of the sensors and thus will deteriorate the stability of the
suspension control system. As the network technology is
developed rapidly, it is clear that the traditional control
system will be replaced by the networked control system [3].
With regard to the suspension control system, a real-time
network is adopted to construct the networked suspension
control system to avoid the electromagnetic interference with
wires and to improve the reliability of data transmission
[4]. By doing that, it brings the advantages of reducing sys-
tem complexity, realizing data sharing and communication
among the suspension control units of the maglev train.

However, network-induced delay and data packet dropouts
bring new challenges for the networked suspension control
system. Hence, it is necessary to pay attention to the control
problem on the networked suspension control system.

For the present, lots of the researches have been focused
on the modeling, stability, and controller design of the
networked control system and many important results have
been reported. Peng and Yang [5] study an event-triggered
communication scheme and an H control codesign method
for networked control systems with communication delay
and packet loss, which can both maintain the desired system
H_, performance and make better use of network resources.
Shi et al. [6] investigate robust step tracking control methods
for networked control systems, and the random time delay is
modeled by Markov chains. Pang et al. [7] study the stability
of output tracking for the networked control systems with
bounded packet loss. Besides, the design method of a two-
stage controller which can guarantee the stability and good
tracking performance has also been given. Surveys of the
main methodologies to cope with typical network-induced
constraints have been presented in [8]. However, most of
the mentioned researches are based on linear models, which
make applying those methods to the nonlinear networked
suspension control system difficult. Since the Takagi-Sugeno



(T-S) fuzzy modeling method can approximate the nonlinear
model by many local linear models in different state space
regions [9], it has been wildly adopted in the modeling,
analysis, and control synthesis of the nonlinear networked
control systems. Up until now, lots of valuable researches
on T-S fuzzy model based continuous nonlinear networked
control system have been reported. The T-S fuzzy modeling
and stability analysis for nonlinear networked control system
are investigated in [10-12]. The guaranteed cost networked
control method for T-S fuzzy systems with time delay was
presented in [13, 14]. To cope with the approximation errors
between the T-S fuzzy model and the nonlinear model, the
T-S fuzzy model based robust control design for nonlinear
networked control system is discussed in [15-17]. In practice,
the adopted digital controller in the CMS04 maglev train is
based on a discrete-time model. In recent five years, fuzzy
control of nonlinear discrete-time networked control system
with induced time delay and packet dropouts has also been
reported, but not frequently, such as [18, 19]. Moreover,
most of those researches are focused on how to reduce the
conservation of the conclusions theoretically, which have
been demonstrated only by numerical simulations. And little
research pays attention to the engineering application of the
developed methods. In addition, the networked suspension
control system is expected for the engineering applications
in CMS04 low speed maglev train. In view of that, stability
analysis and control synthesis for the networked suspension
control system from the viewpoint of engineering applica-
tions motivate this work. Firstly, the nonlinear networked
suspension control model is represented by discrete T-S fuzzy
models. Then, the sufficient condition for testing the stability
of the networked suspension control system is presented,
based on which the sufficient condition for controllers design
is also obtained. Finally, simulations and experiments are
finished to demonstrate the effectiveness of this method.

Notation. The superscript “T” stands for matrix transposition;
R" denotes the n-dimensional Euclidean space, and the
notation X > 0 (<0) means that X is real symmetric
and positive definite (negative definite). In symmetric block
matrices or complex matrix expressions, we use an asterisk
# to represent a term that is induced by symmetry, and
diag{- - - } stands for a block diagonal matrix. If not explicitly
stated, matrices are assumed to be compatible for algebraic
operations.

2. Problem Formulation and Modeling

The low speed EMS (electromagnetic suspension) train con-
sists of car body, levitation bogies, air springs, and levitation,
and guidance magnets. Figure 1 shows a lateral view of the
CMS04 low speed maglev train, from which it can be founded
that there are ten suspension units distributed on each side of
the vehicle. The suspension unit is the basic element of the
maglev train. Therefore, the research of this paper focuses
on the single suspension unit. Figure 2 shows the scheme
of networked suspension control system (single node), from
which it can be seen that the system consists of a suspension
controller, a sensors group, the CAN bus network, the wave
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FIGURE 1: Lateral view of the CMS04 low speed maglev vehicle.
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FIGURE 2: The scheme of the networked suspension control system
(single node).

chopper, and the electromagnetic suspension system. The
sensors group contains gap sensors, current sensors, and
acceleration sensors. In the networked suspension control
scheme, CAN bus network frame is adopted to realize the
transmission of sensors message including the gap sensors,
the current sensors, and the acceleration. The ten suspension
units of one side are linked to a CAN bus frame, which means
that each suspension unit becomes a network node. Each net-
work node samples the information of sensors with specified
frequency and transmits them to corresponding controller
node through CAN bus network. Once the sensors signals are
transmitted to the controller, the controlling quantity can be
computed immediately. Then, a PWM wave is also generated
to drive the wave chopper, which generated the desired
current to adjust the movement of the electromagnets. By
doing those, the closed control loop is formed.

The total electromagnetic force generated by the electro-
magnet can be given by

AN i)
Fm(t)—T(m>, &)

where N is the number of turns of the electromagnet, A is
the pole area, i(t) is the current through the electromagnet,
z(t) is the suspension gap of the system, and g is the space
permeability.
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Suppose that u is the control voltage and that R is the DC
resistance of the electromagnet. The relationship between the
current and the voltage of the electromagnet can be derived
as

#OASNZ : (
2z (t)

AN

u)=i(t)R+ 220 z(@). (2

t)

According to Newton’s law, the motion equation of the
electromagnet can be described as follows:

m% =-F,, (t) + myg, (3)
where m is the total mass which a single suspension unit
supports and g is the acceleration of gravity.

Define that the state vector of the system is x(tf) =
(xl(t),xz(t),x3(t))', where x,(t) = z(t), x;(t) = i(t), and
x,(t) is the velocity in the vertical direction that can be
obtained by integration of the acceleration. Here, the state
equations of the suspension control system can be obtained
directly as follows:

x() = f(x(®)+gx@)ut),

£x®)
) k2 050 Ra®x®]
- [xz W9 ew  x@®  2k :
T 2
g(x)=[0 0 le_k(t)] , k;@.

(4)

It is obvious that the magnetic suspension system is a
nonlinear system. Here, due to the terrific approximation
quality of the T-S fuzzy model between the linear system
and the nonlinear system, we introduce it into the modeling,
analysis, and control synthesis of the networked suspension
control system. From [9], the nonlinear system can be
represented by a T-S fuzzy plant model with some simple local
linear dynamic systems. In this paper, the local linear model
at the static equilibrium point x, = (x,, X5, X3,) is obtained
using Taylor’s series. By neglecting the higher order terms, the
local linear model is given as follows:

x(t) = Ax (t) + Bu(t), (5)
where
0 1 0
of 2kex§0 B 2k, x5
A= a x=x, = mx?o mx%o >
u=u, 0 @ _Rxm
X1g 2k, (6)
_ 0
OF 0
B= — ,
ou | x=x, X10
“=to 2k

where x,, = 0, x5 = x,0Vmg/k,, x,, is the given suspension
gap.

In this paper, the presented approach is focused on the
discrete-time case, so the discrete model of (5) with the
sampling time T is obtained as follows:

x(k+1) = Ax (k) + Bu (k), (7)

where A = ¢*T, B = jOT e Bdt.

For maglev train, the desired suspension gap between
the electromagnets and the track is 9mm when it is levi-
tated steadily, and the initial gap is set to be 20 mm. The
levitating procedure is to adopt the suspension controller to
produce a desired electromagnetic force which can change
the suspension gap from 20 mm to 9 mm. Besides, a 3 mm
thick copper billet is embedded on the electromagnets pole
to prevent that the electromagnets trash into the track. So,
the smallest suspension gap is set to be 3 mm. To build the T-
S fuzzy model of the networked suspension control system,
this paper denotes three rules which represent the dynamics
around the static equilibrium point x; = 3mm, x; = 9mm,
and x; = 20 mm, respectively. The three rules are with the
following formats:

Plant Rule 1: IF x, (k) is about 3 mm, then x(k + 1) =
A, x(k) + Byu(k);

Plant Rule 2: IF x, (k) is about 9 mm, then x(k + 1) =
A,x(k) + Byu(k);

Plant Rule 3: IF x, (k) is about 20 mm, then x(k + 1) =
A,x(k) + Byu(k),

where A; and B; (i = 1,2,3) are the known parameter
matrices from the system (7), when the equilibrium position
of x,, is supposed at 3 mm, 9 mm, and 20 mm accordingly.

Due to the fact that the state variable x, (k) is measurable,
the fuzzy membership function can be chosen as

hy (%, (k) =0,

k) - 9)°
manﬂ—&%%Jﬂ
(xR -9)°
s (1 (0) = =2,
if 20mm > x, (k) > 9mm,
(8)
k) —9)
hl (xl (k))= (x1(3)6 ) ,
(x, (k) - 9)°

hy (e () = 1= 2

hy (xl (k)) =0,

if 3mm < x; (k) < 9mm,



where h;(x, (k) > 0, Z?zl h;(x,(k)) = 1. The whole T-S fuzzy
model of the magnetic suspension system can be written as
follows:

3
x(k+1) = Y hi(x (0) (Aix () + Bu (k). (9)

i=1

Because model (9) is obtained by linearization, non-
linearities and unmodeled dynamics may cause parametric
uncertainties in the practical control system. Assume that
AA\i and A1§i are the bounded matrixes which can represent
the time varying parametric uncertainties of the system
model. Inspired by [20], we make the following supposition:

[AA,, AB;| = D;H, (k) [E,;, Ey) (10)

where D,, E,;, E,; are known real constant matrices with
appropriate dimensions and H;(k) is the unknown time
varying matrix function with Lebesgue measurable elements
and it satisfies H;(k)" H,(k) < I. Then, the T-S fuzzy model of
suspension control system with parametric uncertainties can
be rewritten as

3
x(k+1) = Yh(x, (k) (A; + AA,) x (k) + (B; + AB;) u (k)

i=1
3

= Y b (x, (k) (A; + D;H, (k) E,;) x (k)
i=1

+ (B, + D;H; (k) Ey; ) u (k).
(11)

In this paper, the parallel distributed compensation
(PDC) is utilized to construct a networked T-S fuzzy model
based state feedback controller [21]. For the networked
suspension control system, the network framework is placed
between the sensors and the controller. According to the
data stream path in the CAN bus network, the network-
induced delay from sensors to controllers contains transform
processing delay, CAN bus access waiting delay, and receiving
processing delay. Besides, packet dropouts also happen when
the band of the network is congested. The problems such as
induced delay and packet dropouts in the sensors informa-
tion transmission will degrade the performance of the sus-
pension control system and even cause instability under some
extreme circumstances. Hence, the mathematical model of
the suspension control system must take those issues into
consideration. Throughout this paper, some assumptions are
given below.

Assumption 1. Both the sensors and the controller are time-
driven and synchronized. Considering that the computa-
tional delay is very small, it is omitted in this paper.

Assumption 2. When packet dropouts occur, the latest packet
will be used again, which is equal to the increment of the time
delay [22]. Once the new packet reaches the controller before
the old one, the old one will be discarded.
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Assumption 3. The network induced time delays and the
number of packet dropouts are commonly bounded [23].

Based on the assumptions on the induced time delay
and packet dropouts mentioned above, one can merge the
networked induced time delay and packet dropouts into a
time-varying random input delay 7;.. From [18, 24], it can also
be concluded that the time-varying input delay 7, will have a
limit of [z, T,,]. Hence, the designed T-S fuzzy controllers are
given as follows.

Rules:

IF x, is about 3mm, then u(k) = K;x(k — 1), k €
[km + Tk>km+1 + Tk+1);

IF x, is about 9 mm, then u(k) = K,x(k — 1), k €
[km + Tk’km+1 + Tk+1);

IF x, is about 20 mm, then u(k) = Kyx(k — 1), k €
[km + Tk’km+1 + Tk+1);

where K; (i = 1,2,3) are the controller gains to be deter-
mined and k,, (m = 0,1,2,...) is the transmitting instant
from sensors to the controller. Hence, the overall control laws
with time delay is given as follows:

3
u (k) = Zhi (x1 (k= 7)) Kix (k = 7).,
i=1 (12)

ke [km + Tp km+1 + Tk+1) .

It is assumed that output of the controller is 0 before the first
control signal reaches the system. For convenience, h;(x, (k))
and h;(x,(k — 1)) are denoted by h; and h,;, respectively.
Substituting (12) into (11) yields to the closed loop model of
the networked suspension control system with time-varying
input time delays:

3 3
x(k+1) =Y Y mh,[(A +AA;) x (k)

i1 j=1
+ (Ei + AE,-) Kjx (k- Tk)] ,

ke [km + T km+1 + Tk+1) ’
(13)

x (k) = x,, ke [-1,,0], (14)

where x, is the given initial condition of the networked
suspension control system.

3. Main Results

The main aim of this section is to develop the stability
analysis and control synthesis approach for the system model
(13). Firstly, we introduce some lemmas which are useful in
following derivation.
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Lemma 4 (see [13]). For any real matrices X;Y;, 1 < i < r,

and S > 0 with appropriate dimensions, we have

2

1p=11

M%

2

1

r r
T
hihih, b X;;SY

1j 1

(15)
< 2 Xk (XSXy + Y 8Y;).
i=1 j=1

Lemma 5 (see [25]). For any matrix T, € R™", T, € R™",

and S = ST > 0, a positive scalar T < T,, and vector function
x(k) € R", e(k) = x(k + 1) — x(k) such that the following
integration is well defined; then, the following inequality holds:

k-1

> e ()Se()

I=k-,,

[, ([ e

T, +T] -T,+T] (k)
B I R [x(k—r)]'
(16)

3.1. Stability Analysis of the Networked Suspension Control
System. In the stability analysis of networked suspension
control system, it is assumed that the state feedback gain
matrices K; have been well designed. Rewrite the networked
control system described by (13) as

x(k+1)

3
= Z Zhihfj [A\ix (k) + Einx (k—7) + D;v;; (k)] >

=1 j=1

ke [km + Tk’km+1 + Tk+1)

17)
subject to uncertain feedback
w;j (k) = Egx (k) + EpKx (k- 1),
(18)
v;j (k) = H; (k) wy; (k) .
In view of (10) and (18), we have
vi; () v;; (k)
< [Bux (0) + EyKix (k- 7,)] (19)

x [Egix (k) + EyK jx (k= 7).

The following theorem gives the sufficient condition to
guarantee the stability of the networked suspension control
system (13).

Theorem 6. For a given controller gain matrix K; € R™",
(j = 1,2,3), system (13) is asymptotically stable, if there exist
real symmetric positive definite matrixes P € R™", Q € R™",
and R € R™" and real matrixes T, € R¥" and T, € R™"
satisfying the following matrix inequality:

Yu Y2 Yis
= [V ¥2 Vs | < (20)
Vi Vs Vs
where
Y =APA,-P+(1,-1,+1)Q
+ 2 (A, - 1) R(A, - 1) +7,, (T, + T7)

2 ~1-T
+TmT1R T

Y1, = ATPBK; +72(&, - 1) RBK; - 7,, (T, - TY)

+ 7. T\R™'T};
(21)
2T 2 (3T
13 = A, PD; + 1, (A] —I)RD;;

THT po 2 -TRT pp T
Y5, = K; B/ PBK; +7,,K{ B RBK; - 7,, (T, + T} )
- Q+ LR
Y,5 = K; B/ PD; + 7, K B{ RD;;

¥s3 = D] PD; + 7., D] RD;.

Proof. For convenience, the following symbols are defined at
first:

ek)=x(k+1)-x(k),
$) = [x7 (), (k- 7) v (0] (22)

) = [ (). (k- 7))
Then, we have

e (k)

3 3
- Z > ke [(A; = 1) x (k) + BK;x (k = 7) + Dy ()]

ke [km + Tp km+1 + Tk+1) .
(23)

Define a Lyapunov-Krasovskii functional as follows:

Vi(x(k) =V (x (k) + V, (x (k) + V3 (x (k) + V, (x (k) ,
(24)



where
V, (x (k) = x" (k) Px (K),

k-1

Vo (x(k) = Y x'(j)Qx(j),

Jj=k=;

0
Vi(x(k) =1, Y Z

i=—T,,+1 j=k-1+i

(25)
j)Re(j)

-7

> S

i==Ty ] k+i
Define AV; = V,(k + 1) — V;(k), firstly; one obtains
AV, =V (k+1) -V (k)

Vy (x (k) =1, 7)Qx(j).

(26)
=x"(k+1)Px(k+1) - x' (k) Px (k).

According to Lemma 4, we have
x' (k+1)Px(k+1) < ZZhh ST (k) PS, (K),
i=1 j=1 (27)
S, (k) =
So,

Ax (k) + BK, % (k=1) + Dyv;; (k).

I/\

i i he {ST (k) PS, (k) - x" (k) Px (k)} .

o (28)
Secondly,

AV, =V, (k+1) =V, (k)

k-1

= Y x(j)Qx(j)

j=k-7

=xT (k) Qx (k) - x* (k- 1) Qx (k - 7)

k-1 k-1

oy Y- X

J=k+1-11 J=k+1-1;

x"(j)Qx (j)

< x" (k) Qx (k) - x" (k- 1) Qx (k — T)

k-1,
+ ) % ()x()).
j=k+1-1,,
(29)

Thirdly,

0
AV, =1,

i=—1,,+1

ST ()Re()= T & ()Re (j)}

Jj=k+i j=k—1+i

k-1
=72e’ (KRe(k) -7, Y e ()Re(i).
i=k—T,

(30)
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Applying Lemma 4 again, the following inequality is
obtained:

3 3
eT(k)Re(k)sZZ

S, (k) = (A, - I) x (k) + B.K;x (k - 7)) + D, (k).

) ()RS, (k),
(31)

Besides, applying Lemma5, the following can be

obtained:
k-1
- ) e ()Re(i)
i=k-1,,
T T Ty| pot [ or
<E®" | 5| | R [1] 1] (32)
T, +T5 T, +TF
1T, -1, -7 & 0.
Hence,
AV,

S,

i=1
x {sf (k) T2 RS, (k)

N4 <k>< (7] [ 2]

T, + T, -T,+T,
R I B

(33)
In the end, we get
AV, =V, (k+1) -V, (k)
k-1,
=(tu-1)x MQx (k) - Y X (jQx()).
j=k+1-1,,
(34)

Based on the derivations, one obtains

AV = AV, + AV, + AV, + AV,

3 3
SZZ «ls (k) PS, (k) + x" (k)

x [(z,, — 15 +1)Q - P] x (k)
—xT(k—T)Qx(k—T)
+$; (k) (12,R) S, (k) + &" (k)
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x| 7, [Tl] R[1T 17 ]

TZ
T, +T" ~T,+T)
| gty gy g7 | )80
3 3
=3 Y k(" () ¥l (k).
i=1 j=1
(35)

According to the Lyapunov stability theory, it can be con-
cluded from (35) that system (13) is asymptotically stable if
the matrix inequality (20) holds. The proof is completed. [

Applying S-procedure [26], the matrix inequality (20) is
satisfied if the following matrix inequalities hold:

1T 15T
lEqum lE Eszz 0
¥, + * ‘IK]TEZ,Eb,K, 0 |<o. (36)
* * —el

Using Schur complement lemma, the matrix inequality
(36) holds if and only if the following matrix inequality holds:

T =

, -1, (T,-17) o 1, A i-10"
1 Tm 1 2 ) Tl Tm( i ) ai
* -Q-1,(T,+T;) 0 =7,T, KjB] t,K]B] K]E
* * —-el 0 D,T TmDiT 0
* * * -R 0 0 0
* * * * -p! 0 0
% * % * % —R7! 0
* * * * * * —el
<0,
(37)
where I, = ~P + (1,, — 7, + 1)Q + 7,,(T; + T}). Hence,

the matrix inequality (20) can be guaranteed if the matrix
inequality (37) holds. Based on the Theorem 6 and the matrix
inequality (37), the procedure of the controller design can be
given in Section 3.2.

3.2. Controller Design. In the following, we will give the
design procedure of state feedback controllers based upon
Theorem 6.

Theorem 7. Considering system (13), it is asymptotically stable
with K = YX', if there exist a scalar ¢ > 0, symmetric
positive definite matrices X € R”™, Q € R™, R € R™,
real matrixes T, € R™", T, € R™", Y€ R™" (j =1,2,3),
such that

r=
- A - —~ T
, -r,(0,-T)) o 7,T, XA" ©,X(A,-1) XE|
+ Q-1,(+T) o 7T, Y/B 1,Y/Bl Y E,
* * —el 0 DiT TmD,.T 0
* * * -R 0 0 0
* * * * -X 0 0
* * * * * a’R - 20X 0
* * * * * * —el
<0,

(38)

whereT, = =X + (1, — 7 + DQ + Tm(f“1 + TIT).

Proof. Defining X = P!, Q = XQX, R = XRX, T, =
XT,X, T, = XT, X, and pre- and postmultiplying the matrix
inequality (37) by diag{X, X, I, X, I, I, I}, the matrix inequal-
ity (37) is further equivalent to the following expression:

I'=

r, -,(0,-7,) o T, XA" 7,X(4- 1)T XE"
* -Q-1,(,+17) o 7, Y/B] 1,Y/B Y/E,
* * -l 0 DT TmD;F 0

* * * -R 0 0 0

* * * * -X 0 0

% * * * * ~XR'Xx 0

* * * * * * —el
<0,

(39)

where I} = —X + (z,, — 7 + 1)Q + 7,,,(T, + T7).

Due to the nonlinear term —XR'X in the matrix
inequality (39), it cannot be solved directly by MATLAB LMI
TOOLBOX. So the work at hand is to find an approach to
transform the nonlinear term to be linear. The developed
cone complementarily linearization type algorithms are an
alternative scheme to solve this problem. However, a more
directly approach described in [25, 27] is also efficient and
convenient to deal with the nonlinear term. Note that (X —
aR)R™1(X — aR) > 0 can be obtained if & > 0, which implies
—XR'X < «®R - 2aX, and the matrix inequality (38) can be
guaranteed. Hence, the proof procedure is completed. O

Because of the introduction of the parameter «, the
first work before finding the feasible solution of the matrix
inequality (38) is to choose an appropriate value of the
parameter «. In view of that, a searching algorithm is
presented to find an appropriate value of the parameter a.
Inspired by [18], the procedure of the searching algorithm is
given below.

Step 1. For the given 7, and sufficiently big «,,, choose a
sufficiently small initial value of the upper bound as 7, =
Tno 2 To- Generally, 2aX — «’R < XR'X can be reduced
to 2X — R < XR'X when a = 1, which is widely used in
[25, 27]. Hence, « is initially set to 1. If it needs, the initial

value of « can also be a positive number less than 1.

Step 2. For the parameters « and 7,,,, if there exists a feasible
solution satisfying LMIs described in (38), go to Step 3;
otherwise, go to Step 4.

Step 3. Set 1, = T,, + At,,, where At,, is the step increment
of 7,,, and go to Step 2.

Step 4. Set ¢ = o + Aat, where A« is the step increment of «.
If e < «,,, go to Step 2; otherwise, denote the current « by «,
and go to Step 5.

Step 5. Output the value of parameter & = &, + Aa and the
corresponding value of 7,,,.



4. Simulations and Experimental Results

In this section, considering the full-scale single bogie of
CMS-04 maglev train developed by National University of
Defense Technology as the controlled object, we illustrate
the effectiveness of the proposed approach by numerical
simulations and physical experiments. The parameters are
shown in Table 1.

Due to the fact that the magnetic suspension control
system needs quick response to the variation of the levitation
gap, the sampling time T of the sensors message is set to be
0.25 ms in the simulations and experiments. The transmission
speed of the CAN bus is set at 1 Mbps. Data frame with eight
bytes can contain the total sensors sampling values, and it
will be transmitted within the interval of 100 ys. Considering
that there exist network conflicts and packets lost, the actual
random time varying delay will be much greater than this
theoretical value. So, 0.25 < T < 3ms is assumed. With
the parameters in Tablel, the local linear models of the
magnetic suspension system are obtained by using (5) when
the equilibrium suspension gap is supposed at 3 mm, 9 mm,
and 20 mm accordingly. Then, we discrete the system with

T = 0.25ms, and the corresponding state matrixes are
obtained as follows:
_ 1 0.0002 0 ] R [0 ]
A,=|1635 1 -00005|, B =| 0 |,
0.6012 0.7353  0.9995 | | 0.0003 |
N 1 00002 0 ] [0 ]
A,=|0545 1 -00002|, B,=| 0 |,
0.2003 0.7351  0.9990 | [ 0.0009 |
_ 1 0.0002 0 R 0
Az =10.2453 1 0.0001 |, B; = 0
0.0901 0.7347 0.9979 0.0021
(40)

As for the magnetic suspension system, the parametric
uncertainties are mainly affected by the parameter k,. This
paper considers an additive uncertainty on the parameter k,
which can be described as |Ak,| < 0.2k,. By this way, one
obtains the matrixes in (10) approximately as follows:

00 0
D,=|002 0 |,
0 0 02
0 0 0
E,=|05% 0 0 |,
0.2027 0 —0.0007
(41)
0
E,=| o |,
0.0002

F; (k) = diag {rand (k) , rand (k) , rand (k)},
i=1,2,3,

where rand(k) represents the random number in the range of
[-1,1].
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TABLE 1: Parameters of single suspension control point.

Parameter Value

m 1020 kg

A, 0.0186 m*

g 9.81m/s”

N 320

R 0.5Q

Ho 471 x 107 H/m
0.01 -

X1 0.005

0 i r T :
0 0.05 0.1 0.15 0.2 025 03 0.35 0.4

Time (s)

T

Xy —0.05 1
_01 ; ; ; ; ; ; ;
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s)
50 r r r r
X3 0 [\
_50 ; ; ;

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s)

FIGURE 3: Initial state response of the networked suspension control
system.

The aim of this paper is to design paralleled state feed-
back controllers to make the networked suspension system
asymptotically stable. Based upon Theorem 7, one can obtain
the feedback gains as K; = [622000,5639.5,-177.3], K, =
(184800, 3230.6,-49.57], and K; = [66180,1779,-17.54]
with « = 10. In the simulations, the levitation procedure
that the levitation gap changes from 20 mm to 9 mm and
the current changes form 0A to 26.48 A is shown. For
normalization, we assume the initial condition to be x, =
[0.011, 0, —26.48]. The state responses of the closed loop sus-
pension control system are shown in Figure 3. And Figure 4
shows the distribution of the random transmission time
delay and the control input of the closed loop system. The
results illustrate that the presented method can guarantee that
the networked suspension control system is asymptotically
stable.

To show the effectiveness of the proposed method on
dealing with the random time delays in the networked
suspension control system, the simulations with a common
state feedback controller designed in [28] have also been
finished. Firstly, considering no time delay in the suspension
control system, the response of the state of x; is given in
Figure 5, from which it is shown that the suspension control
system is stable. Then, a random time delay 7 < 1.5ms
is added and the response of the state of x, is given in
Figure 6. The curve shows that the system becomes unstable
as a consequence of random time varying delay. From the
comparison between the proposed method and the common
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7 (ms)
[3S]

—

0 ; ; ; ) ;
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s)

4000 T T T T T T T

2000 R B - [ E

Control input

~2000 ; ; ; ; ; i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s)

FIGURE 4: Distribution of the time delay and control input of the
closed loop system.

0.012 . - - T
0.01
0.008

X1 0.006
0.004

0.002

0.4 0.6 0.8 1
Time (s)

FIGURE 5: Initial state response of the suspension control system
without time delay under a common state feedback controller.

state feedback controller designed in [28], it is illustrated that
the proposed method can deal with the random time delays
in the networked suspension control system effectively.
Besides, experiments also have been carried out on the
tull-scale single bogie of CMS-04 maglev train in our lab
which is shown in Figure 7. In the experiments, the controller
adopts the T-S fuzzy PDC state feedback controller designed
in this paper. The experiment focuses on the procedure that
the vehicle is levitated from the initial levitation gap to 9 mm.
Because of the track limit in our lab, the initial levitation
gap is 15.7 mm. Firstly, without the time delay, the vehicle
can be levitated steadily with good performance. Then, by
introducing the random time varying delay of 0.25 < 7 <
3ms into the sensors message, the levitation procedure is
repeated. The plot of levitation gap is given in Figure 8, from
which it can be seen that the levitation procedure is still

0.012 T ; i i
0.01
0.008

X1 0.006

0.004

0.002

0 ; : :
0 0.2 0.4 0.6 0.8 1

Time (s)

FIGURE 6: Initial state response of the suspension control system
with time delay under a common state feedback controller.

FIGURE 7: Full-scale single bogie of CMS-04 maglev train.

stable with good performance. Here, the longer time of the
levitation procedure than the simulations turns up because
slow levitation technology is adopted in the controller to
make the levitation procedure more comfortable. Besides, to
test the capacity of the presented method on coping with the
random time delays, the attempts to increase the upper limit
of the random time delay 7,, have been done. And the results
show that the vehicle can be levitated steadily until the upper
limit of the random time delay 7,, is set to be 5ms. When
T,, > 5ms vibrations occur in the levitation procedure and
the system becomes unstable when 7,, > 8 ms. Figure 9 gives
the curve of the levitation gap in the levitation procedure
when 7, = 6 ms.

From the experimental results, it can be illustrated that
the proposed T-S fuzzy control approach can guarantee the
stability of the networked suspension control system with a
bounded random induced time delay and meet the control
need of the networked suspension system.

5. Conclusions

In this paper, we have addressed the stability and control
synthesis of the networked suspension control system with
induced time delays and packet dropouts. The nonlinear
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FIGURE 8: The curve of levitation gap when the random time delay
is 0.25 < 7 < 3ms.

0.016

0.015

0.014

0.013

0.012

Levitation gap

0.011

0.01

0.009 |

0.008

Time (s)

FIGURE 9: The curve of levitation gap when 7, = 6 ms.

networked suspension control system is modeled as discrete
T-S fuzzy control models with random input time delay. Then,
by using Lyapunov-Krasovskii functional, delay dependent
stability conditions for the existence of fuzzy controllers
have been derived. The final control gains are given in
terms of strict LMIs, which can be solved by MATLAB LMI
Toolbox conveniently. Finally, simulation and experimental
results indicate that the proposed method is effective on the
application of the networked suspension control system in
maglev train.
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