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In traditional adaptive-weight stereo matching, the rectangular shaped support region requires excess memory consumption and
time. We propose a novel line-based stereo matching algorithm for obtaining a more accurate disparity map with low computation
complexity. This algorithm can be divided into two steps: disparity map initialization and disparity map refinement. In the
initialization step, a new adaptive-weight model based on the linear support region is put forward for cost aggregation. In this
model, the neural network is used to evaluate the spatial proximity, and the mean-shift segmentation method is used to improve
the accuracy of color similarity; the Birchfield pixel dissimilarity function and the census transform are adopted to establish the
dissimilarity measurement function. Then the initial disparity map is obtained by loopy belief propagation. In the refinement
step, the disparity map is optimized by iterative left-right consistency checking method and segmentation voting method. The
parameter values involved in this algorithm are determined with many simulation experiments to further improve the matching
effect. Simulation results indicate that this new matching method performs well on standard stereo benchmarks and running time
of our algorithm is remarkably lower than that of algorithm with rectangle-shaped support region.

1. Introduction

Stereo vision is a fundamental technique for extracting 3D
information of a scene from two or more 2D images. It
is widely applied in robot navigation, remote sensing, and
industrial automation. One of the key technologies of stereo
vision is stereo matching, which produces a disparity map.
The stereo matching algorithm can be classified into two
broad categories: global-based and local-based algorithms.

Global-based matching algorithms follow the energy
minimization principle. First, an energy function is establi-
shed, consisting of a data term and a smoothness term. Next,
this function is minimized with a global optimization
method.Dynamic programming [1], loopy belief propagation
(LBP) [2, 3], and graph cut [4, 5] are usually employed to
identify the minimum energy required for a global-based
algorithm. Comprehensive global constraint information can
produce a more accurate disparity map in a global-based
algorithm.

A local-based matching algorithm is a simple and effec-
tive method for stereo matching that is commonly used.
An important underlying principle of local-based matching
is that pixels in a support region have an approximately
equal disparity. To satisfy this principle, it is very important
to determine the support region size. The support region
must contain enough pixels for intensity variation, and the
support region must include only those pixels with the
same disparity. Thus, the traditional, local-based matching
method is prone to false matching for pixels from the depth
discontinuities region, since those pixels are from different
depths. To ensure that a local-based matching algorithm per-
forms well in practical applications, various approaches have
been proposed. For example, adaptive windows have been
used to improve matching results. These methods search an
appropriate support region for each pixel, greatly improve the
performance of matching results, and outperform standard
local-based methods [6–10]. However, it is difficult to search
a support regionwith an arbitrary shape and size, andmost of
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Figure 1: Block diagram of our algorithm.

these methods have a high computational complexity. Other
researchers assign different support-weights to the pixels in a
support region, keeping the size and shape of a support region
constant [11–13].

In recent years, several methods for acquiring satisfactory
effect of stereo matching have been adopted. Yang et al.
[17] presented a stereo matching algorithm which inte-
grates color-weight, belief propagation, left-right checking,
color segmentation, plane fitting, and depth enhancement.
Mei et al. [18] integrated the AD-census cost measurement
function, the cost aggregation method based cross-based
region, the scanline optimize method, the multistep refine-
mentmethod, and the accelerative algorithmbased onCUDA
into their algorithm.

The algorithm presented in this paper is inspired from
adaptive-weight matching algorithm. In this paper, the aim is
to propose a low computation complexity and high accuracy
stereo matching algorithm. So the rectangle-shaped support
region is substituted for the line-shaped support region.
Lacking of enough pixel information is a main weakness of
the line-shaped support region, which is easy to cause error
matching. Adaptive-weight can make full of limited pixel
information, by analyzing the characteristic of the adaptive-
weight model proposed in [13] on disparity accuracy, we
use neural network (NN) to determine the spatial proximity
and mean-shift based segmentation method to effectively
describe the color similarity.

In addition, several approaches are applied to complete
the algorithm.We develop a new pixel dissimilarity measure-
ment function which combines Birchfield pixel dissimilarity
measurement function and census transform to compute
the matching cost. The loopy belief propagation method
proposed in [2] is employed to estimate the initial disparity
map, which is optimized with min convolution and image
pyramid. There are several measurable improvements for the
initial disparity map. To further improve the accuracy of the
initial disparity map, iterative left-right consistency (LRC)
checking and segmentation voting are used to refine the
disparity map by analyzing the features of the initial disparity
map.

2. Algorithm Description

The algorithm presented in this paper can be divided into
two steps: a disparity map initialization step and a refine-
ment step. The framework of the algorithm is shown in

p

Figure 2: The assumption of segmentation-based stereo matching.
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Figure 3: Spatial proximity described by neural network.

Figure 1. A detailed description of this algorithm is given
in the following sections.

2.1. Adaptive-Weight BasedCost AggregationMethod. Assum-
ing the two pixels𝑝 and 𝑞, the disparity of center pixel𝑝wants
to be computed. 𝑆(𝑝) is the support region of pixel 𝑝, while 𝑞
is a neighboring pixel of𝑝 in the support region.The support-
weight of 𝑞 is assigned by the following according to [12]:

𝑤 (𝑝, 𝑞) = 𝑓
𝑐
(Δ𝑐
𝑝𝑞
) 𝑓
𝑐
(Δ𝑔
𝑝𝑞
) , (1)

where 𝑓
𝑐
(Δ𝑔
𝑝𝑞
) represents the spatial proximity, 𝑓

𝑐
(Δ𝑐
𝑝𝑞
)

represents the color similarity, and 𝑤(𝑝, 𝑞) is the support-
weight. Our algorithm is designed on the basis of this
framework. The list of variables used in this paper is shown
in the end of the paper.

2.1.1. The Model of Line-Based Adaptive-Weight. Wang et al.
[13] noted that when the support region is large enough, color
similarity plays a major role in computing the center pixel
disparity within a certain range. As shown in Figure 2, red
represents the support region 𝑆(𝑝). We used the pixels in 𝑆(𝑝)
to compute the disparity of 𝑝. The effects of spatial proximity
can be neglected in the pale blue region according to [13]. We
call this region the transition area, represented by 𝑇(𝑝). To
satisfy this principle, the neural network can be applied in the
design of this spatial proximity model.

Figure 3 shows the spatial proximitymodel established by
neural network.The position of a pixel is the input, the spatial
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Figure 4: Spatial proximity proposed in this paper when 𝛼 = 1, 𝛽 = 8, and 𝐿
𝑠
= 15.

proximity is the output, and the connect weights are shown as
in the figure. In fact, the distance 𝑥−𝑥

𝑝
is the input of neural

network. To simplify the notations, suppose that the center
point 𝑝 is at 𝑥

𝑝
= 0, the distance 𝑥−𝑥

𝑝
can be simplified into

𝑥 which represents the position of a pixel. The concrete form
of the spatial proximity is expressed by

𝐼
𝑀1
= 𝑥 + 𝛽,

𝐼
𝑀2
= −𝑥 + 𝛽,

𝑂
𝑀𝑖
= 𝑓 (𝐼

𝑀𝑖
) ,

𝐼
𝑇
=

2

∑

𝑖=1

𝑂
𝑀𝑖
− 1.5,

𝑓
𝑐
(Δ𝑔
𝑝𝑞
) = 𝑓 (𝐼

𝑇
) ,

(2)

where 𝑓(𝑥) = 1/(1 + 𝑒−𝛼𝑥) is the sigmoid function. Figure 4
demonstrates the varied trend of the spatial proximity
according to the position of a pixel.

In Figure 4, the space between the two blue lines is the
transition area and the support region is represented by the
whole 𝑥-axis. It can be seen from Figure 4 that (1) the spatial
proximity of pixel in the transition area is significantly greater
than that of pixel in other area, which accords with the spatial
proximity model of traditional adaptive-weight theory; (2)
there is not much difference between these pixels in the
transition area for the spatial proximity, whichmeans that the
influence of spatial proximity can be neglected.

According to the segmentation-based stereo matching
principle [14, 19], a new model of color similarity is estab-
lished by the following in [20]:

𝑓
𝑐
(Δ𝑐
𝑝𝑞
) =

{{{

{{{

{

1 if seg (𝑞) = seg (𝑝)

exp(−
Δ
2

𝑐
𝑝𝑞

𝛾
𝑐

) otherwise.
(3)

Equation (3) shows that color similarity contributes
enormously tomeasure the dissimilarity between center pixel

𝑝 and its neighbor pixel 𝑞 when 𝑝 and 𝑞 belong to the same
segmentation.

That color similarity model based on image segmentation
can achieve good performance, as introduced in [13]. Mean-
shift is a nonparametric estimation iterative technique, and
its application domains include computer vision, clustering,
and image processing [21]. In this work, we use mean-shift as
the segmentation method.

2.1.2. Cost Aggregation. The matching cost of pixel 𝑝 with
disparity 𝑑 is represented by

𝐸 (𝑝, 𝑑) =

∑
𝑞∈𝐿𝑝,𝑞𝑑

∈𝐿𝑝𝑑

𝑤 (𝑝, 𝑞)𝑤 (𝑝
𝑑
, 𝑞
𝑑
) 𝑒 (𝑞, 𝑞

𝑑
)

∑
𝑞∈𝐿𝑝,𝑞𝑑

∈𝐿𝑝𝑑

𝑤 (𝑝, 𝑞)𝑤 (𝑝
𝑑
, 𝑞
𝑑
)

, (4)

where 𝑝
𝑑
and 𝑞

𝑑
are the corresponding pixels of 𝑝 and 𝑞,

respectively, when the disparity of the center pixel is 𝑑.
The pixel dissimilarity measurement function 𝑒(𝑞, 𝑞

𝑑
)

in (4) is very important for cost aggregation. The absolute
difference and Birchfield function [22] are widely used in
cost aggregation. To improve the matching accuracy of the
textureless and repetitive regions, the pixel dissimilarity
measurement function is described by combing Birchfield
function and census transform:

𝑒 (𝑞, 𝑞
𝑑
) = min (𝐶Birch (𝑞, 𝑞𝑑, 𝐼𝑅, 𝐼𝐿) , 𝑇Birch)

+min (𝐶Census (𝑞, 𝑞𝑑) , 𝑇Census) .
(5)

To validate the effect of this cost aggregation method,
simulation results on Teddy and Cones with Birchfield
method and our method are shown in Figure 5.

2.2. Initial Disparity Determination. The winner-take-all
(WTA) searching strategy is a commonmethod for determin-
ing disparity, which can be expressed by

𝐷(𝑝) = argmin
𝑑

𝐸 (𝑝, 𝑑) . (6)
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(a) (b) (c)

Figure 5: (a) Part of the origin image. (b) Disparity results which are computed with our cost aggregationmethod. (c) Disparity results which
are computed with Birchfield pixel dissimilarity measurement function.

(1) Computing matching cost 𝐸 by (4)
Initializing pyramid level 𝑙 and down sampling factor 𝜂 = 0.5

(2) Pyramid initialization
Pyramid(1).cost = 𝐸

(3) Establishing pyramid structure with 𝑙 and 𝜂
(4) For each level 𝑖
(5) For each iteration 𝑗
(6) Updating left, right, up and down direction message for each pixel
(7) End
(8) End
(9) Determining disparity for each pixel by max-product principle

Algorithm 1: The procedure of initial determination procedure.

WTA tends to produce a low accuracy disparity map.
Therefore, we adopt an efficient LBP algorithm proposed in
[2] in this paper. In this LBP algorithm, FFT convolution and
image pyramid are integrated into LBP, which can effectively
decrease the complexity of LBP and increase the matching
effect. The flowchart of the initial determination procedure
is shown in Algorithm 1.

2.3. Disparity Refinement. It is inevitable that initial disparity
maps will contain many error-matched pixels. To refine
the disparity map, a two-step postprocessing method is put
forward in this section.

2.3.1. Left-Right Consistency Check. The disparity map𝐷
𝐿
for

the left image is computed by previous steps. The disparity
map𝐷

𝑅
for the right image is computed in a similar manner.

In [15, 17], pixels are classified into several types according to
𝐷
𝐿
, 𝐷
𝑅
, and 𝐸

𝑅
to remove outliers. Then different strategies

are designed for different type of pixels to determine its
disparity.

In this work, we analyzed the property of initial disparity
map. Figure 6 shows the distribution of bad pixels after
executing the disparity initialization step of our algorithm
for Tsukuba. It can be seen from this figure that most of the
bad pixels concentrate in the occluded region. According to
this result, most of the pixels match correctly and the initial
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(1) Establishing the table of pixel type 𝑆
𝑡𝑖
according to (7)-(8)

(2) 𝑆
𝑡
← 𝑆
𝑡𝑖

(3) For each iteration 𝑘
(4) For each undependable pixel 𝑝

𝑖
which is determined by 𝑆

𝑡

(5) Searching the nearest dependable pixel 𝑝𝐿
𝑖
and 𝑝𝑅

𝑖

(6) 𝑑(𝑝
𝑖
) ← min(𝑑

𝑜
(𝑝
𝐿

𝑖
), 𝑑
𝑜
(𝑝
𝑅

𝑖
)) //where 𝑑

𝑜
(⋅) represents initial disparity of pixel

(7) If 𝑑(𝑝
𝑖
) ̸= 𝑑
𝑜
(𝑝
𝑖
)

(8) Set 𝑝
𝑖
as dependable pixel in 𝑆

𝑡

(9) End
(10) End
(11) End
(12) End

Algorithm 2: The disparity map after execution of left-right consistency checking.

Table 1: The error percentages in different region for disparity
refinement step.

Nonocc All Disc
Initial disparity map 1.21% 3.20% 6.42%
Left-right consistency 1.17% 2.40% 6.30%
Segmentation voting 0.95% 1.62% 5.07%

Figure 6: The distribution of bad pixels for initial disparity map of
Tsukuba. Bad pixels are marked with red points.

disparity in the nonocc region should be trusted.Therefore an
iterative left-right consistency check is proposed for handling
this.

Pixels can be divided into two types: undependable pixels
and dependable pixels. Pixel 𝑝 is classified as dependable
when it meets the following condition:

𝐷
𝐿
(𝑝) = 𝐷

𝑅
(𝑝 − 𝐷

𝐿
(𝑝)) . (7)

Pixel 𝑝 is considered to be undependable if it fits the
following condition:

𝐷
𝐿
(𝑝) ̸= 𝐷

𝑅
(𝑝 − 𝐷

𝐿
(𝑝)) . (8)

Thenewdisparity of the undependable pixel can be computed
as in Algorithm 2.

Figure 7 shows the result after the execution of iterative
left-right consistency checking. Table 1 shows the detailed
data for the role of iterative left-right consistency checking.

Figure 7:The disparity map after execution of left-right consistency
checking.

p

Figure 8: Pixelwise region for segmentation voting.

2.3.2. Segmentation Voting. The pixelwise region shown in
Figure 8 is established according to color consistency. This
region can be represented by 𝑈(𝑝). Pixels in 𝑈(𝑝) satisfy the
following condition:

󵄨󵄨󵄨󵄨󵄨
𝐼
𝑞
− 𝐼
𝑝

󵄨󵄨󵄨󵄨󵄨
< 𝜏, 𝑞 ∈ 𝑈 (𝑝) ,

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑞
− 𝑥
𝑝

󵄨󵄨󵄨󵄨󵄨
< 𝐿 sv,

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑞
− 𝑦
𝑝

󵄨󵄨󵄨󵄨󵄨
< 𝐿 sv.

(9)

Let𝐻(𝑑) represent the frequency distribution of disparity
𝑑 in 𝑈(𝑝). The new disparity is updated by Algorithm 3.
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Figure 9: The disparity map of Tsukuba obtained by segmentation voting.
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Figure 10: (a) Performance evaluation of the proposed method when varying 𝐿
𝑠
(Tsukuba and Venus). (b) Performance evaluation of the

proposed method when varying 𝐿
𝑠
(Teddy and Cones).

(1)𝐻(𝑑) ← 0

(2) For each 𝑞 ∈ 𝑈(𝑝)
(3) For each 𝑑 ∈ [𝑑min, 𝑑max]

(4) If 𝑑 == 𝐷
𝐿
(𝑞)

(5) 𝐻(𝐷
𝐿
(𝑞)) ← 𝐻(𝐷

𝐿
(𝑞)) + 1

(6) End
(7) End
(8) End
(9)𝐷

𝐿
(𝑝) = argmax

𝑑

𝐻(𝑑)

Algorithm 3: Disparity determination of segmentation voting.

The 3 × 3 median filter is applied to the left disparity
map. Figure 9 shows the effect of segmentation voting on the
accuracy of the disparity map.

3. Results and Discussion

3.1. Parameters Determining. The parameters involved in our
algorithm greatly affect the performance of the algorithm. In
this section, we present the parameter settings.

We considered eight main parameters: 𝐿
𝑠
, 𝛼, 𝛽, 𝛾

𝑐
, ℎ
𝑆
, ℎ
𝐼
,

𝐿 sv, and 𝜏, which are kept constant for all benchmarks.
Figure 10 shows the influence of 𝐿

𝑠
on the accuracy of

disparity map obtained by our algorithm. When 𝐿
𝑠
varies

from 35 to 65, our algorithm is insensitive to 𝐿
𝑠
.

Figure 11 demonstrates that the performance of our algo-
rithm varies with 𝛼 and 𝛽. From these figures, it can be
noted that (1) generally speaking when 𝛽 is larger than 15,
the influence of 𝛼 over algorithm performance is small for
Tsukuba, Venus, and Teddy. (2) Our algorithm shows good
performance for Tsukuba and Teddy when 𝛽 ∈ [0, 45] and
𝛼 ∈ [0.3, 1]. (3)The error percentage tends to decrease with a
decreasing𝛼when𝛽 is smaller than 15. (4) In regard toCones,
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Figure 11: (a) Performance evaluation of the proposedmethod according to 𝛼 and 𝛽 for Tsukuba. (b) Performance evaluation of the proposed
method according to 𝛼 and 𝛽 for Venus. (c) Performance evaluation of the proposedmethod according to 𝛼 and 𝛽 for Teddy. (d) Performance
evaluation of the proposed method according to 𝛼 and 𝛽 for Cones.
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Figure 13: (a) Performance evaluation of the proposed method according to ℎ
𝑆
and ℎ

𝐼
for Tsukuba. (b) Performance evaluation of the

proposed method according to ℎ
𝑆
and ℎ

𝐼
for Venus. (c) Performance evaluation of the proposed method according to ℎ

𝑆
and ℎ

𝐼
for Teddy.

(d) Performance evaluation of the proposed method according to ℎ
𝑆
and ℎ

𝐼
for Cones.

the performances of this algorithm improve as 𝛼 increases,
and when 𝛽 lies between 15 and 30.

Figure 12 shows the influence of 𝛾
𝑐
on performance. The

trend of the error percentage is U-shaped for Tsukuba when
𝛾
𝑐
is smaller than 20.The error percentage bottomoutwhen 𝛾

𝑐

is between 7 and 13. The error percentage for Venus follows a
downward trend. For Teddy and Cones, the error percentage
is inversely proportional to 𝛾

𝑐
. When 𝛾

𝑐
is larger than 12, the

error percentage is insensitive to 𝛾
𝑐
.

Figure 13 shows the performance of our algorithm
according to ℎ

𝑆
and ℎ
𝐼
. From these figures, our algorithm has

a good ability of robustness with different values of ℎ
𝑆
. When

ℎ
𝐼
∈ [3, 8], the error percentage of the disparitymap obtained

by our algorithm is still fairly low.
For the disparity map refinement step, two main parame-

tersmust be set.𝐿 sv and 𝜏 are previously introduced. Figure 14
shows the influence of 𝐿 sv and 𝜏 on performance.When 𝐿 sv ∈
[5, 20] and 𝜏 ∈ [7, 10], all data sets show good performance.

Table 2: Parameter setting for Middlebury benchmark.

𝐿
𝑠

𝛼 𝛽 𝛾
𝑐

ℎ
𝑆

ℎ
𝐼

𝐿 sv 𝜏

40 1 15 8 15 5 7 12

3.2. Experimental Results. We evaluate our algorithm on
Middlebury benchmarks [23] with error threshold 1. The test
platform hardware consists of T9600CPU and 5GBmemory.
Software consists of MATLAB 2014a and VS2012. Parameters
are shown in Table 2.

Simulation results on Middlebury data sets are presented
in Figure 15. The quantitative performance of our algorithm
is shown in Tables 3 and 4. Our algorithm ranks 5th in the
Middlebury data set (July 1, 2014).

These results demonstrate our algorithm has a good per-
formance. However, it is difficult to decrease the error per-
centages in the three regions (nonocc, all, and disc) at the
same time.This is because many pixels with correct disparity
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Figure 14: (a) Performance evaluation of the proposed method according to 𝐿 sv and 𝜏 for Tsukuba. (b) Performance evaluation of the
proposed method according to 𝐿 sv and 𝜏 for Venus. (c) Performance evaluation of the proposed method according to 𝐿 sv and 𝜏 for Teddy.
(d) Performance evaluation of the proposed method according to 𝐿 sv and 𝜏 for Cones.

Table 3: Quantitative evaluation results for Middlebury benchmark.

Algorithm Tsukuba Venus Teddy Cones
Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc

AdaptingBP 1.1122 1.379 5.7924 0.104 0.217 1.448 4.2217 7.0615 11.818 2.4822 7.9228 7.3227
CoopRegion [14] 0.875 1.162 4.614 0.115 0.215 1.5414 5.1630 8.3120 13.025 2.7939 7.1814 8.0147
Our algorithm 0.898 1.5923 4.789 0.115 0.3624 1.4911 4.3318 9.9332 11.217 2.8141 8.4645 7.8540
RDP [15] 0.9711 1.3911 5.0011 0.2139 0.3829 1.8924 4.8422 9.9433 12.622 2.5325 7.6920 7.3828
MultiRBF [16] 1.3347 1.5620 6.0232 0.1311 0.172 1.8421 5.0928 6.368 13.429 2.9048 6.768 7.1024

Table 4: The results of whole performance evaluation for Middlebury benchmark.

Algorithm Average rank Average percent bad pixels
AdaptingBP 16.5 4.23
CoopRegion 12.2 4.41
Our algorithm 22.8 4.48
RDP 22.9 4.57
MultiRBF 23.2 4.39
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(a) (b) (c)

Figure 15: (a) The final disparity map obtained by our algorithm. (b) Error maps. (c) Ground truth.
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Table 5: Comparison between standard LRC checking and iterative LRC checking presented in Section 2.3.1.

Algorithm Nonocc All Disc
Initial disparity 1.21% 3.20% 6.42%
Standard LRC checking 1.43% 2.10% 7.54%
Iterative LRC checking 1.17% 2.40% 6.30%

Table 6: The average running time of each part of our algorithm for Tsukuba.

Mean-shift Cost aggregation LBP Iterative LRC Segmentation voting
7.37 19.23 0.78 0.24 0.30

Table 7: The variation of average running time of cost aggregation of our rectangle-based algorithm under different size of support region.

The size of support region 11 × 11 15 × 15 19 × 19 23 × 23 27 × 27

Running time 37.02 69.81 106.53 154.41 213.94

Figure 16: Erroneous disparity distribution determined by (7)-(8)
for the Tsukuba image.

are classified as undependable, according to (8). Tsukuba can
be used as an example. Figure 16 represents the bad pixels
detected by (7)-(8).

Figure 6 shows the bad pixels obtained by comparing the
initial disparity map and ground truth. Figure 6 indicates
that true bad pixels are distributed in the occlusion region.
However, it can be inferred from Figure 16 that many pixels
in nonocc and disc regions are mistakenly classified as
undependable. When standard LRC checking is used, mis-
classified pixels in the disc region may be assigned a wrong
disparity, as shown in Figure 17. Table 5 shows quantitative
comparison results for standard LRC checking and iterative
LRC checking.

Thus, it can be seen that the error percentage in the disc
region greatly increases after applying standard LRC check-
ing. Because the disc region is part of the nonocc region, the
error percentage in the nonocc region also increases. Our
iterative LRC checking method can effectively improve the
performance of our stereo matching algorithm.

3.3. Running Time of Our Algorithm. In this section, we
investigate the computation running time of our algorithm.
The running time directly reflects computational complexity.
Without a loss of generality, our algorithm runs 50 times and

Figure 17: Erroneous disparity distribution after executing standard
LRC checking for Tsukuba.

average running time was calculated. Results are shown in
Table 6.

The new rectangle-based adaptive-weight method can
be obtained by imposing the 𝑦-direction constraint on the
new weight model. Table 7 displays the running time of
cost aggregation of our algorithm with the rectangle-shaped
support region under different sizes of support region. The
rectangle-based algorithm also runs 50 times under each size
of support windows.

Our algorithm with the rectangle-shaped support region
performed best when the size of the support region is 27 ×
27; the error percentages of the initial disparity map in
nonocc, all, and disc regions are 1.45%, 3.42%, and 7.08%,
respectively. Tables 5–7 show that our algorithm produced
notable results in decreasing computation complexity and
improving performance.

4. Conclusions

In this work, we proposed a new line-based adaptive-weight
stereo matching algorithm that integrates several methods.
The main conclusions that can be drawn from our results are
as follows.
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(1) Cost aggregation is the most time-consuming part
of stereo matching algorithm. Using a line-shaped
support region can dramatically reduce the elapsed
time of cost aggregation.

(2) The adaptive-weight model proposed in this paper
can produce a rather satisfactory initial disparity map
in the absence of enough pixel information.

(3) Experimental results show that the algorithm pro-
posed in this paper can attain a better matching effect
with less running time.

Although our algorithm has a good performance onMid-
dlebury data sets, there is still much room for improvement.

(1) There are too many parameters in our algorithm
to accommodate different image pairs. In further
research, we will analyze the intrinsic relationship
among the parameters and reduce the number of
parameters.

(2) Figure 13 indicates that image characteristics have a
significant impact on the optimum values of 𝛼 and 𝛽.
In future studies, we will explore how the optimum
values of 𝛼 and 𝛽 vary according to the texture of
image.

List of Variables

𝐿
𝑠
: The half-length of support region

𝛼: Shape controlling parameter
𝛽: The half-length of transition region
ℎ
𝑆
: Spatial radius of mean-shift

ℎ
𝐼
: Color radius of mean-shift

𝐿 sv: The half-length of segment for
segmentation voting

𝜏: Confidence level of color similarity for
segmentation voting.
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