
Research Article
Research on the Complex Dynamic Characteristics and RLS
Estimation’s Influence Based on Price and Service Game

Junhai Ma and Zhanbing Guo

College of Economics and Management, Tianjin University, Tianjin 300072, China

Correspondence should be addressed to Junhai Ma; mjhtju@aliyun.com and Zhanbing Guo; zhanbinggu0@163.com

Received 10 January 2015; Revised 5 May 2015; Accepted 21 May 2015

Academic Editor: Laura Gardini

Copyright © 2015 J. Ma and Z. Guo. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Considering that the real competitions in service market contain two important factors, price and service, we build a dynamical
price and service gamemodel and study the complex dynamics of this bivariate game. Some special properties about the adjustment
of service are noted by comparing our innovative bivariate game model with previous univariate game model. Besides, we discuss
the stabilities of fixed points and compare the price and service game with price game. What is more, the recursive least-squares
(RLS) estimation is introduced to substitute naive estimation; then the impacts of RLS estimation are studied by comparing it with
naive estimation.

1. Introduction

Over the past several decades, bounded rational players’
dynamical competitions have attracted quite some attention.
Scholars have carried out their researches from multiple
angles and have got abundant achievements. Zhang et al. [1]
studied the Bertrand model with bounded rational players;
they found that adjustment speed can change the stability of
the Nash equilibrium point. Agiza and Elsadany [2] inves-
tigated the dynamics of a nonlinear discrete-time duopoly
output game with heterogeneous players; they indicated that
bifurcation, chaos, and other complex phenomenamay occur
if some parameters are changed. Li et al. [3] studied the
impact of delay on the system and found that delay can
expand the stable region of Nash equilibrium. Ma and Guo
[4] analysed the complex dynamics of a duopoly Cournot
game model with heterogeneous players, where one player
adopts “one-period look-ahead” behavior. Considering the
specific situation in different markets, scholars built the
dynamic game models in Chinese cold rolled steel market
[5], Chinese property insurance market [6], Chinese 3G
telecommunication market [7], and advertising competition
market [8]; they studied the stability of Nash equilibrium and
showed the influence of adjustment speed on the evolution of
dynamic systems. Besides above researches, Ma et al. [9, 10]

studied the complex characteristics of Cournot-Bertrand
mixed model, where one firm sees price as decision variable
and one firm sees output as decision variable. Bischi and
Naimzada [11] and Fanti et al. [12] studied the global dynam-
ics of dynamical systems.

These studies play important roles for us to understand
the dynamical games among limited rational players, but they
are based on the assumption that each player has only one
decision variable; this assumption limits their applications.
In the real market, customers take many things into consid-
eration and firms usually adjust many aspects to meet the
heterogeneous needs of customers.

In multifactor markets, the optimal policies for rational
decision makers have been studied by many scholars. Mat-
subayashi and Yamada [13, 14] considered a price and quality
competition between two firms, in which consumers buy a
product in consideration of both its price and its quality
level and firms compete with each other in determining
their prices and quality levels to maximize their profits.
Qian [15] modeled product (or service) demand as a linear
function of attributes including price, guaranteed deliv-
ery time, service level, or other quality-like performances
and proposed a market-based strategy for joint decisions.
Dubovik and Janssen [16] considered an oligopolistic market
where firms compete in price and quality and consumers are
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heterogeneous in their knowledge of the prices and quality
of products; they derived a perfect indicator equilibrium
for this setting. In these papers mentioned above, price,
quality, and other variables (if exist), as decision variables,
are endogenously chosen by firms.There are alsomany litera-
tures [17, 18]; they considered the uninformed consumers and
investigated firms’ policies under price-quality relationship,
where the uninformed consumers do not know the real
quality of product but see price as a signal of it.

As far as we know, the analysis of the dynamical compe-
tition with both bounded rational players and multidecision
variables is rare. To fill this gap, in this paper we build a
bivariate (price and quality of service) game model based
on the fact that price and quality of service are the most
vital factors in service market. We assume that consumers,
who have different preferences, are well informed about all
product characteristics; both price and quality of service
are endogenous decision variables for firms; other product
characteristics are different between different firms and are
unchanged during the competition.

Themain contributions are listed as follows. (1)We study
the evolution characteristics of bivariate game under differ-
ent adjustment mechanisms. Some well-known adjustment
mechanisms under limited rationality hypothesis contain
best reply with naive expectation, adaptive adjustment, and
bounded rational adjustment (see [19, 20]). In this paper, we
assume the three adjustment mechanisms mentioned above
are adopted by three firms to see their respective evolution
characteristics. (2) We analyze the stabilities of the fixed
points, study the impacts of different parameters on complex
dynamics, and compare the price and service gamewith price
game. (3) We study the impacts of recursive least-squares
(RLS) estimation on system. The evolution characteristics
of system under RLS (or recursive weighted least-squares)
estimation have been studied by [4, 21], but they did not
investigate the difference between RLS (or recursive weighted
least-squares) estimation and naive estimation; in this paper,
we study the difference between RLS estimation and naive
estimation by comparing their stable regions, basin of attrac-
tions, and profits.

The remainder of this paper is organized as follows.
In Section 2, the price and service competition model with
heterogeneous players is built. The evolution characteristics
of heterogeneous players, fixed points’ stabilities, complex
dynamics features, and the differences between bivariate
game and univariate game are discussed in Section 3. In
Section 4, the differences between RLS estimation and naive
estimation are analyzed. Finally, the conclusion of this paper
is provided in Section 5.

2. Price and Service Competition Model

We assume there are three players (firms) in the market; they
offer similar products and services (firm 𝑖 offers product 𝑖
and service 𝑖). Let 𝑝

𝑖
(𝑡) denote the price of product 𝑖 and let

𝑠
𝑖
(𝑡) denote the quality of service offered by firm 𝑖 at discrete-

time period 𝑡 (𝑡 = 1, 2, . . .). Services, which are free of charge
for customers, can be seen as attachment of products; if one

customer buys firm 𝑖’s product in one period, then he also can
enjoy the free service promised by firm 𝑖 at the beginning of
that time period.

We hypothesize that customers have different preferences
and they consider 𝑝

𝑖
and 𝑠
𝑖
as well as the average values of the

other two firms (𝑝
𝑘
+ 𝑝
𝑗
)/2 and (𝑠

𝑘
+ 𝑠
𝑗
)/2 when they decide

whether to purchase product 𝑖 or not.When 𝑝
𝑖
(or (𝑠
𝑘
+𝑠
𝑗
)/2)

increases, the demand of product 𝑖will decrease; on the other
hand, if (𝑝

𝑘
+ 𝑝
𝑗
)/2 (or 𝑠

𝑖
) increases, the demand of goods 𝑖

will rise.The demand of product 𝑖 at time period 𝑡 is assumed
to be a linear function in this paper:

𝑄
𝑖 (𝑡) = 𝑎𝑖 − 𝑏𝑖𝑝𝑖 (𝑡) + 𝑑𝑖

𝑝
𝑗 (𝑡) + 𝑝𝑘 (𝑡)

2
+ 𝑒
𝑖
𝑠
𝑖 (𝑡)

− 𝑓
𝑖

𝑠
𝑗 (𝑡) + 𝑠𝑘 (𝑡)

2
,

(1)

where 𝑖, 𝑗, 𝑘 = 1, 2, 3, 𝑖 ̸= 𝑗 ̸= 𝑘, and 𝑎
𝑖
, 𝑏
𝑖
, 𝑑
𝑖
, 𝑒
𝑖
, 𝑓
𝑖
> 0, 𝑏
𝑖
> 𝑑
𝑖
,

𝑒
𝑖
> 𝑓
𝑖
. 𝑎
𝑖
can be viewed as the size of market base, which

is large enough so that 𝑄
𝑖
(𝑡) will always be nonnegative;

𝑏
𝑖
, 𝑑
𝑖
, 𝑒
𝑖
, 𝑓
𝑖
denote the impacts of prices or services.

We assume that each firm’s marginal cost of further
improvement in service rises as service increases and the cost
function of each firm at period 𝑡 takes the form: 𝐶

𝑖
(𝑡) =

𝑐
𝑖
𝑠2
𝑖
(𝑡) + ℎ

𝑖
, where 𝑐

𝑖
, ℎ
𝑖
> 0, ℎ

𝑖
represents the fixed cost, and 𝑐

𝑖

is a coefficient connecting 𝑠2
𝑖
and cost.

Therefore, the total profit function of firm 𝑖 is given by

𝜋
𝑖
= (𝑎
𝑖
− 𝑏
𝑖
𝑝
𝑖
+𝑑
𝑖

𝑝
𝑗
+ 𝑝
𝑘

2
+ 𝑒
𝑖
𝑠
𝑖
−𝑓
𝑖

𝑠
𝑗
+ 𝑠
𝑘

2
)

⋅ (𝑝
𝑖
− 𝑐
𝑖
𝑠
2

𝑖
− ℎ
𝑖
) .

(2)

The adjustment mechanisms play important roles in the
dynamical game; some well-known adjustment mechanisms
under limited rationality hypothesis contain best reply with
naive expectation, adaptive adjustment, and bounded ratio-
nal adjustment (see [19, 20]). Elabbasy et al. [20] consid-
ered these adjustment mechanisms in a Cournot game and
studied their evolution characteristics and the impacts of
different adjustment parameters. In this paper, in order to
compare the evolution characteristics of each adjustment
mechanism in bivariate game with that in univariate game
thoroughly, we consider heterogeneous players instead of
homogeneous players; that is, players adopt different adjust-
ment mechanisms. In particular, we extend the model in [20]
to bivariate game (price and service); we assume the three
adjustment mechanisms mentioned above are adopted by
three firms, respectively; this makes it feasible for us to study
their respective evolution characteristics and compare these
characteristics in bivariate gamemodelwith that in univariate
game model.

We assume the first player is a bounded rational player;
he builds his decisions based on marginal profit (see [1, 2, 5,
6, 20, 22]); when the marginal profit 𝜕𝜋1/𝜕𝑝1 (or 𝜕𝜋1/𝜕𝑠1) is
positive, he will increase 𝑝1 (or 𝑠1) in the next time period; on
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the other hand, if marginal profit is negative he will decrease
𝑝1 (or 𝑠1) in the next time period:

𝑝1 (𝑡 + 1) = 𝑝1 (𝑡) + 𝛼1𝑝1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑝1 (𝑡)
,

𝑠1 (𝑡 + 1) = 𝑠1 (𝑡) + 𝛽1𝑠1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑠1 (𝑡)
,

(3)

where 𝛼1 (𝛼1 > 0) and 𝛽1 (𝛽1 > 0) are adjustment parameters
(or adjustment speeds); the marginal profits are

𝜕𝜋1
𝜕𝑝1

= 𝑎1 − 𝑏1𝑝1 +𝑑1
𝑝2 + 𝑝3

2
+ 𝑒1𝑠1 −𝑓1

𝑠2 + 𝑠3
2

− 𝑏1 (𝑝1 − 𝑐1𝑠
2
1 − ℎ1) ,

𝜕𝜋1
𝜕𝑠1

= 𝑒1 (𝑝1 − 𝑐1𝑠
2
1 − ℎ1) − 2𝑐1𝑠1 (𝑎1 − 𝑏1𝑝1

+𝑑1
𝑝2 + 𝑝3

2
+ 𝑒1𝑠1 −𝑓1

𝑠2 + 𝑠3
2

) .

(4)

Let player 2 be a naive player; he assumes his rivals will repeat
their last step decisions in the next time period; he makes his
decisions based on his assumption and best reply adjustment
mechanism (see [19, 20, 22]). His reaction function can be
determined by solving the following equation:

(𝑝
∗

𝑖
, 𝑠
∗

𝑖
) = argmax

(𝑝𝑖 ,𝑠𝑖)

𝜋
𝑖
(𝑝
𝑖
, 𝑠
𝑖
, 𝑝
𝑗
, 𝑠
𝑗
, 𝑝
𝑘
, 𝑠
𝑘
) . (5)

Then the dynamical adjustment of player 2 is given by

𝑝2 (𝑡 + 1) = 𝑝
∗

2 (𝑡) ,

𝑠2 (𝑡 + 1) = 𝑠
∗

2 (𝑡) .
(6)

We assume the third player is an adaptive player; he makes
his decisionswith considering both last period’s decisions and
his reaction function (see [19, 20, 22]); hence the dynamical
adjustment of player 3 is

𝑝3 (𝑡 + 1) = (1−𝛼3) 𝑝3 (𝑡) + 𝛼3𝑝
∗

3 (𝑡) ,

𝑠3 (𝑡 + 1) = (1−𝛽3) 𝑠3 (𝑡) + 𝛽3𝑠
∗

3 (𝑡) ,
(7)

where 𝛼3, 𝛽3 ∈ (0, 1] are adjustment parameters.
To get the reaction functions of firms 2 and 3, we take firm

2 for example. We first look at the first-order condition of (5):

𝜕𝜋2
𝜕𝑝2

= − 𝑏2 (𝑝2 − 𝑐2𝑠
2
2 − ℎ2) + 𝑎2 − 𝑏2𝑝2 +

𝑑2 (𝑝1 + 𝑝3)

2

+ 𝑒2𝑠2 −
𝑓2 (𝑠1 + 𝑠3)

2
= 0,

𝜕𝜋2
𝜕𝑠2

= 𝑒2 (𝑝2 − 𝑐2𝑠
2
2 − ℎ2) − 2𝑐2𝑠2 (𝑎2 − 𝑏2𝑝2

+
𝑑2 (𝑝1 + 𝑝3)

2
+ 𝑒2𝑠2 −

𝑓2 (𝑠1 + 𝑠3)

2
) = 0.

(8)

By solving the first-order condition, we can get 𝑄2 = 0 or
𝑠2 = 𝑒2/2𝑏2𝑐2. Obviously, player 2 will ensure 𝑄2 > 0 to get
a positive profit in the real market, so in the paper we only
consider the following solution:

𝑠
∗

2 =
𝑒2

2𝑏2𝑐2
,

𝑝
∗

2

=
𝑏2𝑐2𝑠

2
2 + 𝑏2ℎ2 + 𝑎2 + 𝑑2 ((𝑝1 + 𝑝3) /2) + 𝑒2𝑠2 − 𝑓2 ((𝑠1 + 𝑠3) /2)

2𝑏2
.

(9)

It is easy to prove the Hessian matrix of this solution is
negative definite, so it is the optimal solution (reaction
function) if it meets the conditions 𝑄2(𝑝

∗

2 , 𝑠
∗

2 ) > 0 and
𝜋2(𝑝
∗

2 , 𝑠
∗

2 ) > 0; in fact, these conditions usually can be
satisfied in the real market. The solution of the reaction
function of firm 3 is similar to that of firm 2:

𝑠
∗

3 =
𝑒3

2𝑏3𝑐3
,

𝑝
∗

3

=
𝑏3𝑐3𝑠

2
3 + 𝑏3ℎ3 + 𝑎3 + 𝑑3 ((𝑝1 + 𝑝2) /2) + 𝑒3𝑠3 − 𝑓3 ((𝑠1 + 𝑠2) /2)

2𝑏3
.

(10)

Thenwe can get the price and service dynamical gamemodel:

𝑝1 (𝑡 + 1) = 𝑝1 (𝑡) + 𝛼1𝑝1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑝1 (𝑡)
,

𝑠1 (𝑡 + 1) = 𝑠1 (𝑡) + 𝛽1𝑠1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑠1 (𝑡)
,

𝑝2 (𝑡 + 1) = 𝑝
∗

2 (𝑡) ,

𝑠2 (𝑡 + 1) = 𝑠
∗

2 (𝑡) ,

𝑝3 (𝑡 + 1) = (1−𝛼3) 𝑝3 (𝑡) + 𝛼3𝑝
∗

3 (𝑡) ,

𝑠3 (𝑡 + 1) = (1−𝛽3) 𝑠3 (𝑡) + 𝛽3𝑠
∗

3 (𝑡) .

(11)

3. Analysis and Numerical Simulation of
Bivariate Game

In this section the evolution characteristics of bivariate game
with heterogeneous players, fixed points’ stabilities, complex
dynamics features, and the differences between bivariate
game and univariate game will be discussed.

3.1. The Evolution Characteristics of Heterogeneous Players
in Bivariate Game Model. Comparing with the univariate
game models with heterogeneous players, where all variables
have the same stability (see [2, 20, 22, 23]), we show some
special properties about the bivariate game system (11) by the
following remark.

Remark 1. Nomatterwhat their initial values are andwhat the
state of system is, the quality of service offered by the player,
who uses best reply with naive expectation mechanism, is
fixed after one period and the quality of service offered by the
player, who uses adaptive adjustment, is convergent.
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Proof. From the expressions of 𝑠∗2 (𝑡) and 𝑠
∗

3 (𝑡) we can know
that both 𝑠∗2 (𝑡) and 𝑠

∗

3 (𝑡) are constants, so we can get that 𝑠2(𝑡)
is fixed after one period and 𝑠3(𝑡) is always convergent.

Noting that 𝑠∗2 (𝑡) and 𝑠
∗

3 (𝑡) are constants and the services
offered by player 2 and player 3 are convergent, we set
𝑠
∗

2 (𝑡) and 𝑠
∗

3 (𝑡) as the initial values of 𝑠2 and 𝑠3 respectively
to simplify this model. Then the dynamical system can be
simplified as

𝑝1 (𝑡 + 1) = 𝑝1 (𝑡) + 𝛼1𝑝1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑝1 (𝑡)
,

𝑠1 (𝑡 + 1) = 𝑠1 (𝑡) + 𝛽1𝑠1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑠1 (𝑡)
,

𝑝2 (𝑡 + 1) = 𝑝
∗

2 (𝑡) ,

𝑝3 (𝑡 + 1) = (1−𝛼3) 𝑝3 (𝑡) + 𝛼3𝑝
∗

3 (𝑡) .

(12)

3.2. Fixed Points and Stability Analysis. In the following part,
we will study the fixed points of system (12) and investigate

their stabilities. By setting 𝑝
𝑖
(𝑡 + 1) = 𝑝

𝑖
(𝑡) and 𝑠

𝑖
(𝑡 + 1) =

𝑠
𝑖
(𝑡), we can get the fixed points of system (12). To simplify the

expressions of fixed points and the analyses, one numerical
example is utilized in this paper by setting 𝑎1 = 17, 𝑏1 = 2.0,
𝑐1 = 0.22, 𝑑1 = 1.5, 𝑒1 = 1.6, 𝑓1 = 1.1, ℎ1 = 1.3, 𝑎2 = 14,
𝑏2 = 2.2, 𝑐2 = 0.22, 𝑑2 = 1.6, 𝑒2 = 1.7, 𝑓2 = 1.2, ℎ2 = 1.2,
𝑎3 = 16, 𝑏3 = 2.1, 𝑐3 = 0.23, 𝑑3 = 1.55, 𝑒3 = 1.8, 𝑓3 = 1.2,
and ℎ3 = 1.1. Then we can get four nonnegative fixed points
𝐸(𝑝1, 𝑠1,𝑝2, 𝑝3):

𝐸1 = (8.3392, 1.8182, 7.2546, 7.9242) ,

𝐸2 = (0, 0, 5.7016, 6.3586) ,

𝐸3 = (7.2754, 0, 7.3229, 8.0002) ,

𝐸4 = (22.3613, 9.0412, 9.7032, 9.7843) .

(13)

In order to investigate the local stabilities of these fixed points,
we assume 𝐽 is the Jacobianmatrix of system (12); thenwe can
get 𝐽:

𝐽 =

[
[
[
[
[
[
[
[
[
[
[

[

𝐽11 𝛼1𝑝1 (2𝑏1𝑐1𝑠1 + 𝑒1)
1
2
𝛼1𝑝1𝑑1

1
2
𝛼1𝑝1𝑑1

𝛽1𝑠1 (2𝑏1𝑐1𝑠1 + 𝑒1) 𝐽22 −𝛽1𝑐1𝑑1𝑠
2
1 −𝛽1𝑐1𝑑1𝑠

2
1

𝑑2
4𝑏2

−
𝑓2
4𝑏2

0
𝑑2
4𝑏2

𝑑3
4𝑏3

−
𝑓3
4𝑏3

𝑑3
4𝑏3

1 − 𝛼3

]
]
]
]
]
]
]
]
]
]
]

]

, (14)

where 𝐽11 = 1 + 𝛼1(𝜕𝜋1/𝜕𝑝1 − 2𝑏1𝑝1) and

𝐽22 = 1+𝛽1
𝜕𝜋1
𝜕𝑠1

− 2𝛽1𝑠1𝑐1 (2𝑒1𝑠1 + 𝑎1 − 𝑏1𝑝1

+𝑑1
𝑝2 + 𝑝3

2
+ 𝑒1𝑠1 −𝑓1

𝑠2 + 𝑠3
2

) .

(15)

Further analyses about these fixed points give us some
conclusions about 𝐸2, 𝐸3, and 𝐸4.

Remark 2. The fixed points 𝐸2, 𝐸3, and 𝐸4 of system (12) are
unstable fixed points.

Proof. According to the stability condition for fixed point,
The modules of all characters’ roots should be <1 (see [24]).
At point 𝐸2, its corresponding Jacobian matrix is

[
[
[
[
[
[
[
[

[

𝐽11 0 0 0

0 𝐽22 0 0

𝑑2
4𝑏2

−
𝑓2
4𝑏2

0
𝑑2
4𝑏2

𝑑3
4𝑏3

−
𝑓3
4𝑏3

𝑑3
4𝑏3

1 − 𝛼3

]
]
]
]
]
]
]
]

]

, (16)

where 𝐽11 = 1 + 𝛼1[𝑏1ℎ1 + 𝑄1(𝑡)], 𝐽22 = 1 − 𝛽1𝑒1ℎ1. We can
get one eigenvalue of this Jacobian matrix: 𝜆 = 1 + 𝛼1[𝑏1ℎ1 +

𝑄1(𝑡)]. For 𝛼1, 𝑏1, ℎ1 > 0 and 𝑄1(𝑡) ≥ 0, we can get 𝜆 > 1, so
𝐸2 is unstable. In a similar way, we can get the Jacobianmatrix
at point 𝐸3 has one eigenvalue: 𝜆 = 1+𝛽1𝑒1(𝑝1 −ℎ1); because
𝛽1, 𝑒1 > 0, 𝑝1 > ℎ1, we can know 𝐸3 is unstable for 𝜆 > 1.
It is also easy to understand that 𝐸4 is unstable; because if we
assume a point (22.3613, 9.0412 + 𝜀, 9.7032, 9.7843), which is
sufficiently close to 𝐸4 (where 𝜀 > 0), then we have 𝜕𝜋1/𝜕𝑠1 ≈
7.44 ≫ 0, so 𝑠1(𝑡+1) > 𝑠1(𝑡) > 9.0412 and 𝑠1(𝑡+1) gets farther
away from 9.0412. Above all 𝐸2, 𝐸3, and 𝐸4 are unstable fixed
points. This completes the proof of this remark.

𝐸1 is the Nash equilibrium point of system (12), which
satisfies 𝜕𝜋1/𝜕𝑝1 = 0 and 𝜕𝜋1/𝜕𝑠1 = 0; its stability
can be judged by Jury stability criterion. We assume the
characteristic equation of 𝐽 is𝑓(𝜆) = 𝜆4+𝐴𝜆3+𝐵𝜆2+𝐶𝜆+𝐷 =

0. According to Jury stability criterion (see [6]), the sufficient
condition for asymptotic stabilization of 𝐸1 is

1+𝐴+𝐵+𝐶+𝐷 > 0,

1−𝐴+𝐵−𝐶+𝐷 > 0,

1−𝐷2
> 0,

(1−𝐷2
)
2
− (𝐶−𝐴𝐷)

2
> 0,
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[(1−𝐷2
)
2
− (𝐶−𝐴𝐷)

2
]
2

− [𝐵 (1−𝐷)3 − (𝐴−𝐶𝐷) (𝐶−𝐴𝐷)]
2
> 0.

(17)

Jury stability criterionmeans that if condition (17) holds,𝐸1 is
an asymptotically stable fixed point; these points in the small
neighborhood of 𝐸1 will converge to 𝐸1 after a few periods;
if condition (17) does not hold, 𝐸1 may be not asymptotically
stable; then bifurcation or even chaos may happen.

3.3. The Complex Dynamics Features of System (12). The
dynamical behaviors of this complicated system are hard to
be studied by analytical method because of the complicated
expressions. In order to obtain a deeper understanding of
this bivariate dynamical system, some dynamic behaviors of
system (12) with the given parameter values are simulated in
the following text.

Figures 1 and 2 show the stable region of adjustment
parameters; from them we can see that system (12) is asymp-
totically stable when bounded rational player’s adjustment
speeds are small; with the increase of either 𝛼1 or 𝛽1, system
(12) will lose its stability; however, the influence of 𝛼3 relies
on 𝛼1 and 𝛽1; the value of 𝛼3 influences system’s stability only
when 𝛼1 and 𝛽1 are close to the boundary of their stable
region.

Figure 3 shows system’s bifurcation diagram of prices and
the corresponding maximal Lyapunov exponent with respect
to 𝛼1 when 𝛽1 = 0.02, 𝛼3 = 0.5. Figure 5 shows system’s
bifurcation diagramof prices and the correspondingmaximal
Lyapunov exponent with respect to 𝛽1 when 𝛼1 = 0.02, 𝛼3 =
0.5. The maximal Lyapunov exponent is used to test chaos;
system is in chaos when it has positive maximal Lyapunov
exponent. We can see from Figures 3 and 5 that the Nash
equilibrium point is locally stable when the values of 𝛼1 and
𝛽1 are small; the increase of price or service adjustment speed
of the bounded rational player will lead to the appearance of
bifurcation and chaos. What is more, Figures 4 and 6 give the
strange attractors, which show the finial states of player 1 in
different situations.

Figure 7 shows system’s bifurcation diagrams of prices
with respect to the parameter 𝛼3 with different 𝛼1 and 𝛽1.
From Figure 7, we can see that the influence of 𝛼3 on the
system relies on the values of 𝛼1 and 𝛽1; this is consistent with
Figures 1 and 2.

From the bifurcation diagrams and attractors showed
above, we can know that different kinds of adjustment
parameters have different impacts on the system. A big
value of 𝛼1 or a big value of 𝛽1 can lead to the appearance
of bifurcation and chaos, but two situations have different
attractors. The influence of 𝛼3 on the system relies on 𝛼1 and
𝛽1; 𝛼3 has no influence on system when 𝛼1 and 𝛽1 are small;
𝛼3 influences system’s stability only when 𝛼1 and 𝛽1 are close
to the boundary of their stable region.

3.4. Price and Service Game versus Price Game. In this section
we will compare price and service game with price game; we
set 𝑠1 = 1.8182 as the initial value of service to make them
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0.10
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Figure 1: The 3D stable region of (𝛼1, 𝛽1, 𝛼3).

comparable, because then price game has same equilibrium
point with price and service game.

Figure 8 shows the bifurcation diagrams of 𝑝1 and the
corresponding maximal Lyapunov exponents with respect to
𝛼1 when 𝛼3 = 0.5, where blue orbit represents the price
game (𝛽1 = 0) and red orbit represents the price and service
game (𝛽1 = 0.02). We can see from Figure 8 that the stable
region of price adjustment speed in price and service game is
smaller than that in price game, but the appearance of chaos
is delayed. Figure 9 shows the average profits in both price
game and price and service game; we can know that player 1’s
profit in price game is larger than (or is equal to) that in price
and service gamewhen𝛼1 is small, but with the increase of𝛼1,
no one is always larger than the other one; price and service
game brings more profit when chaos is serious.

We can know that price and service game will reduce the
stable region of price adjustment parameter but can delay the
appearance of chaos comparedwith price game; what ismore,
if the initial service is its equilibrium value, which one can
bring more profit depends on the value of price adjustment
parameter.

4. The Influence of RLS Estimation

Recursive least-square algorithm is a popular and practical
algorithm used extensively in signal processing, communica-
tions, and control (see [25]). It can reduce the computation
complexity of the conventional least-squares method and
is usually implemented in a recursive manner. In [21], one
estimation was carried out by using linear regression and
recursive weighted least-squares method. Simulation results
showed that the estimation errors converge to 0 after just
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Figure 3: Bifurcation diagram of prices (a) and corresponding maximal Lyapunov exponent (b) with respect to 𝛼1 when 𝛽1 = 0.02, 𝛼3 = 0.5.
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Figure 4: Strange attractor of system (12) when 𝛼1 = 0.085, 𝛽1 =
0.02, and 𝛼3 = 0.5.

a few periods. In [4] the complex dynamics of game with
RLS estimation is studied, but the difference between RLS
estimation and naive estimation is not investigated. In the
following part, we assume that player 2 uses RLS estimation
instead of naive estimation, compared with naive estimation;
the impact of RLS estimation on stable region of parameters
and profit and basin of attractions will be analyzed.

We suppose that the second player uses the following
models to estimate the other players’ behaviors:

𝑝
𝑖 (𝑡 + 1) = 𝑥

𝑇

𝑖
(𝑡) ⋅ 𝜃𝑖 (𝑡) , 𝑖 = 1, 3,

𝑠1 (𝑡 + 1) = 𝑥
𝑇

2 (𝑡) ⋅ 𝜃2 (𝑡) ,
(18)

where 𝑥
𝑖
denotes the regression vector and 𝜃

𝑖
denotes param-

eter estimate vector. According to the profit functions and
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Figure 5: Bifurcation diagram of prices (a) and corresponding maximal Lyapunov exponent (b) with respect to 𝛽1 when 𝛼1 = 0.02, 𝛼3 = 0.5.
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Figure 6: Strange attractor of system (12) when 𝛼1 = 0.02, 𝛼3 = 0.5,
and 𝛽1 = 0.185.

the decision-making strategies of player 1 and player 3, we set
𝑥
𝑖
and 𝜃
𝑖
as the following forms:

𝑥
𝑇

1
(𝑡) = [1, 𝑝1 (𝑡) , 𝑝2 (𝑡) , 𝑝3 (𝑡) , 𝑠1 (𝑡) , 𝑝

2
1 (𝑡) , 𝑝1 (𝑡)

⋅ 𝑝2 (𝑡) , 𝑝1 (𝑡) 𝑝3 (𝑡) , 𝑝1 (𝑡) 𝑠
2
1 (𝑡)]
𝑇

,

𝑥
𝑇

2
(𝑡) = [1, 𝑝1 (𝑡) , 𝑝2 (𝑡) , 𝑝3 (𝑡) , 𝑠1 (𝑡) , 𝑠1 (𝑡) 𝑝1 (𝑡) ,

𝑠1 (𝑡) 𝑝2 (𝑡) , 𝑠1 (𝑡) 𝑝3 (𝑡) , 𝑠
2
1 (𝑡)]
𝑇

,

𝑥
𝑇

3
(𝑡) = [1, 𝑝1 (𝑡) , 𝑝2 (𝑡) , 𝑝3 (𝑡) , 𝑠1 (𝑡) , 𝑝1 (𝑡) 𝑝3 (𝑡) ,

𝑝2 (𝑡) 𝑝3 (𝑡) , 𝑝
2
3 (𝑡) , 𝑝3 (𝑡) 𝑠

2
1 (𝑡)]
𝑇

,

𝜃
𝑖 (𝑡) = [𝜃𝑖1 (𝑡) , 𝜃𝑖2 (𝑡) , 𝜃𝑖3 (𝑡) , 𝜃𝑖4 (𝑡) , 𝜃𝑖5 (𝑡) , 𝜃𝑖6 (𝑡) ,

𝜃
𝑖7 (𝑡) , 𝜃𝑖8 (𝑡) , 𝜃𝑖9 (𝑡)] , 𝑖 = 1, 2, 3.

(19)
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Figure 7: Bifurcation diagram of prices with respect to 𝛼3 when (a)
𝛼1 = 0.02, 𝛽1 = 0.02 and (b) 𝛼1 = 0.05, 𝛽1 = 0.043.
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Figure 9: The changes of average profit of firm 1 with respect to 𝛼1 when 𝛼3 = 0.5.

We define 𝜀
𝑖
(𝑡) as predicting error at time period 𝑡; then 𝜀

𝑖
(𝑡)

equals

𝜀
𝑖 (𝑡) = 𝑝𝑖 (𝑡) − 𝑝𝑖 (𝑡) , 𝑖 = 1, 3,

𝜀2 (𝑡) = 𝑠1 (𝑡) − 𝑠1 (𝑡) .
(20)

The parameter estimate vector update law under RLS algo-
rithm is

𝜃
𝑖 (𝑡 + 1) = 𝜃𝑖 (𝑡) +𝐾𝑖 (𝑡) 𝑥𝑖 (𝑡) 𝜀𝑖 (𝑡) , (21)

where 𝐾
𝑖
(𝑡) is defined as 𝐾

𝑖
(𝑡) = 𝑃

𝑖
(𝑡)𝑥
𝑖
(𝑡)/(1 +

𝑥𝑇
𝑖
(𝑡)𝑃
𝑖
(𝑡)𝑥
𝑖
(𝑡)) and 𝑃

𝑖
(𝑡 + 1) is defined as

𝑃
𝑖 (𝑡 + 1) = [𝐼 −𝐾𝑖 (𝑡) 𝑥𝑖 (𝑡)] 𝑃𝑖 (𝑡) . (22)

To start the RLS algorithm, we should give initial values to
𝜃
𝑖
(1) and 𝑃

𝑖
(1). We set the initial value of 𝜃

𝑖
(1) as a small

vector, for example, 𝜃
𝑖
(1) = [1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.02, and

set 𝑃
𝑖
(1) = 𝑟𝐼

𝑛
, where 𝐼

𝑛
represents an 𝑛 ∗ 𝑛 identity matrix

and 𝑟 is a large positive number. Then the decision-making
strategy of player 2 with RLS estimation is

𝑝2 (𝑡 + 1) =
𝑏2𝑐2𝑠

2
2 + 𝑏2ℎ2 + 𝑎2 + 𝑑2 ((𝑝1 (𝑡 + 1) + 𝑝3 (𝑡 + 1)) /2) + 𝑒2𝑠2 − 𝑓2 ((𝑠3 + 𝑠1 (𝑡 + 1)) /2)

2𝑏2
, (23)
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Figure 10: The orbits of 𝑝1, 𝑠1, 𝑝2, and 𝑝3 of system (24) when 𝛼1 = 0.085, 𝛽1 = 0.02, and 𝛼3 = 0.5.
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Figure 11: Estimation errors of player 2 when 𝛼1 = 0.085, 𝛽1 = 0.02, and 𝛼3 = 0.5.

where 𝑠2 = 𝑠∗2 (𝑡) and 𝑠3 = 𝑠∗3 (𝑡). Inserting (23) into system
(12) and substituting naive estimation, we get the equations

of the new system, where the second player makes decision
based on RLS estimation:

𝑝1 (𝑡 + 1) = 𝑝1 (𝑡) + 𝛼1𝑝1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑝1 (𝑡)
,

𝑠1 (𝑡 + 1) = 𝑠1 (𝑡) + 𝛽1𝑠1 (𝑡)
𝜕𝜋1 (𝑡)

𝜕𝑠1 (𝑡)
,

𝑝2 (𝑡 + 1) =
𝑏2𝑐2𝑠

2
2 + 𝑏2ℎ2 + 𝑎2 + 𝑑2 ((𝑝1 (𝑡 + 1) + 𝑝3 (𝑡 + 1)) /2) + 𝑒2𝑠2 − 𝑓2 ((𝑠3 + 𝑠1 (𝑡 + 1)) /2)

2𝑏2
,

𝑝3 (𝑡 + 1) = (1−𝛼3) 𝑝3 (𝑡) + 𝛼3𝑝
∗

3 (𝑡) .

(24)
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Figure 12: Parameter basin plots in the (𝛼1, 𝛽1) plane when 𝛼3 = 0.5: (a) system (12); (b) system (24), where: period-1 (grey), period-2 (cyan),
period-4 (blue), period-6 (yellow), period-8 (red), more than 8 (white).
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Figure 13: Bifurcation diagram of 𝑝2 with respect to 𝛼1 when 𝛽1 = 0.02, 𝛼3 = 0.5, case 1: 𝑝2 in system (12), case 2: 𝑝2 in system (24).

In order to see the performance of the RLS algorithm, we set
𝛼1 = 0.085, 𝛽1 = 0.02, and 𝛼3 = 0.5 and depict the orbits
and estimation errors of the RLS estimation. Figure 10 shows
the orbits of 𝑝1, 𝑠1, 𝑝2, and 𝑝3; Figure 11 gives the estimation
errors of player 2. From them we can know that the RLS
estimation is accurate and even system (24) is in chaos.

Figure 12 shows the parameter basin plots in the (𝛼1, 𝛽1)
plane by setting𝛼3 = 0.5, where different periods are depicted
in the legend. Comparingwith naive estimation, we can know
that RLS estimation can expand stable region in parameter
plane and postpone the appearance of long-time cycles; that
is to say, RLS estimation is beneficial to system stability.

Figure 13 shows the bifurcation diagrams of 𝑝2 with
respect to 𝛼1 when 𝛽1 = 0.02, 𝛼3 = 0.5 in two cases:
case 1 is the bifurcation diagram of 𝑝2 in system (12); case
2 is the bifurcation diagram of 𝑝2 in system (24), where

player 2 applies naive estimation in system (12) and applies
RLS estimation in system (24); the initial states of case 1
and case 2 are same and in the neighborhood of the Nash
equilibrium point. Comparing case 2 with case 1, we can get
the conclusion that the RLS estimation can expand the stable
region and postpone the appearance of bifurcation, which are
consistent with Figure 12; what ismore, we can also know that
RLS estimation also can postpone the appearance of chaos.
Figure 14 proves this from the other point of view by giving
the orbits of 𝑝2. We can see the orbit of 𝑝2 is chaotic in (a)
when player 2 adopts naive estimation, but it turns to period-
4 in (b) after player 2 adopts the RLS estimation.

Now, we will study the influence of RLS estimation on
profit to see whether adopting RLS estimation is better than
adopting naive estimation. Figure 15 shows average profits
of player 2 in system (12) (case 1) and system (24) (case 2)
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Figure 14: The orbit of 𝑝2 when 𝛼1 = 0.081, 𝛽1 = 0.02, and 𝛼3 = 0.5: (a) system (12); (b) system (24).
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Figure 15: The changes of average profit of firm 2 (a) and their difference (b) with respect to 𝛼1 when 𝛽1 = 0.02, 𝛼3 = 0.5, case 1: 𝜋2 in system
(12), case 2: 𝜋2 in system (24).

and gives their difference. From Figure 15 we can get that
player 2 has the same profits in two cases if both systems are
stable, but player 2 can get more profit in case 2 than in case 1
when system (12) loses its stability.What ismore, Figure 15(b)
shows the value of adopting RLS estimation compared with
naive estimation; if there is an extra cost for adopting RLS
estimation, then whether a firm should adopt RLS estimation
can be got by comparing its value and its cost.

The basin of attractions of Nash equilibrium point in
(𝑝1, 𝑠1) plane is showed in Figure 16 by setting the initial
conditions 𝑝2 = 7.2546, 𝑝3 = 7.9242, 𝛼1 = 0.05, 𝛽1 =

0.04, and 𝛼3 = 0.5, where Figure 16(a) corresponds to
system (12) and Figure 16(b) corresponds to system (24).
From Figure 16 we can see that the basin of attractions of
the Nash equilibrium point in system (12) and system (24)
is almost same. We can know that although RLS estimation
can influence the stable region of parameters, it almost cannot

change the basin of attractions of the Nash equilibrium point;
that is to say, the RLS estimation cannot expand the basin of
Nash equilibrium point.

Above all, we can know that, compared with naive
estimation, the stable region of adjustment parameter is
expanded if player 2 adopts RLS estimation and adopting RLS
estimation can increase player 2’s profit if system with naive
estimation is unstable; however, the RLS estimation almost
cannot change the basin of attractions of Nash equilibrium.

5. Conclusion

In this paper, we put forward a price and service competition
model with heterogeneous players. We find that the service
offered by adaptive player is always convergent; the player,
using best reply with naive expectation mechanism, offers
fixed service after one period. What is more, the stabilities of
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Figure 16: Basin of attractions in (𝑝1, 𝑠1) plane: (a) system (12); (b) system (24).

fixed points, complex dynamics features, and the differences
between bivariate game andunivariate game are also analyzed
in detail. Results of simulation show that bifurcation and
chaos may happen in this competition when adjustment
parameters change, different adjustment parameters have
different impacts on this system, and, compared with price
game, price and service game will reduce the stable region
of price adjustment parameter but can delay the appearance
of chaos. Compared with naive estimation, RLS estimation
can expand the stable region of adjustment parameters and
increases firm’s profit when system with naive estimation is
unstable, but RLS estimation cannot expand the basin of
attractions of Nash equilibrium point.
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