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This paper proposes the use of scatter search metaheuristic to solve an integrated production, inventory, and distribution routing
problem. The problem is based on a single production plant that produces a single product that is delivered to N geographically
dispersed customers by a set of homogenous fleet of vehicles.The objective is to construct a production plan and delivery schedule to
minimize the total costs and ensuring each customer’s demand ismet over the planning horizon.We assumed that excess production
can be stored at the plant or at customer’s sites within some limits, but stockouts due to backordering or backlogging are not allowed.
Further testing on a set of benchmark problems to assess the effectiveness of ourmethod is also carried out.We compare our results
to the existing metaheuristic algorithms proposed in the literature.

1. Introduction

Two substantial components to improve the timeliness and
consistency of delivery are integrated logistics management
and product availability. Integrating production and distribu-
tion decisions can have a significant impact on setup, holding,
and delivery costs. In general, the problem of coordinating
production and transportation is called the production-
inventory-distribution routing problem (PIDRP) [1]. The
research on PIDRP involves some different areas such as
vehicle routing, production, and inventory [2]. PIDRP ismost
similar to the inventory routing problemandperiodic routing
problem, because it requiresmultiple visits to each customer’s
sites over the planning horizon.

Chandra and Fisher [3] studied about a single plant,
multicustomers in a multiple period by comparing two
different methods to investigate the value of coordinating
production and distribution. The problem is to minimize
the total cost of production, transportation, and inventory.
Two different alternative solution approaches are presented
to manage this operation, one in which the production
scheduling and vehicle routing problems are solved separately

and another in which they are coordinated within a single
model. The computational results reported a reduction in
total operating cost from coordination ranged from 3% to
20%.

Lei et al. [1] presented multifacility, heterogeneous fleet
version of the PIDRP that was motivated by a chemical
manufacturer with international customers. The problem is
to coordinate the production, inventory, and transportation
schedules to minimize the total cost over the planning
horizon.They proposed a two-phasemethodology, by solving
a restricted version of the problem by eliminating the routing
constraints in phase one and proposed a routing heuristic
based on an extended optimal partitioning procedure in
phase two to transform the less-than transporter load assign-
ments obtained in phase one into more efficient delivery
schedules.

Boudia et al. [4] proposed integer linear model to solve
the PIDRP but it failed to solve the large instances, and then a
Greedy Randomized Adaptive Search Procedure (GRASP) is
developed to tackle the production and distribution decisions
simultaneously. Another two improved versions using either
a reactive mechanism or a path-relinking process embedded
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in GRASP are also developed and the results are better than
the GRASP alone.

Boudia and Prins [5] presented an alternative method
to solve the PIDRP. They solved the problem with memetic
algorithm population management (MA|PM) and compared
with a two-phase heuristics and GRASP. Computational
testing showed that MA|PM can tackle large instances and
gave better results compared to two-phase approach and
GRASP.

Bard and Nananukul [2, 6] developed a mixed integer
programming (MIP)model aimed atminimizing production,
inventory, and delivery costs. The objective of the problem
is to minimize the total cost over the planning horizon
without incurring any stockouts at the customer sites. The
problem includes a production plant, multiple customers
with time varying demand, a finite planning horizon, and
a fleet of homogenous vehicles. They developed a three-
phase methodology centered on tabu search and using
allocation model to find a good initial solution. They also
combined the features of reactive tabu search algorithm and
branch-and-price algorithm by taking efficiency of the tabu
search heuristic and the precision of the branch-and-price
algorithm. Nananukul [7] extended the idea by improving
the clustering of the customers by creating adaptive core
clusters in the reactive tabu search algorithms which are used
in the clustering process instead of the original data points
thus enabling the algorithm to be efficient. Unfortunately the
detailed computational results were not given.

Armentano et al. [8] presented two tabu search variants
for PIDRP. The first variant involves construction of a short-
term memory and integrating a path relinking procedure,
while another one incorporates a longer term memory and
integrate the first variant. The algorithms are tested on
generated instances and on instances taken from Boudia
et al. [4] which involved a single product. Computational
results showed that the two variants of tabu search yield good
tradeoffs between solution quality and computational time
and successfully outperformedBoudia andPrins [5] andBard
and Nananukul [2, 9] in all instances.

Adulyasak et al. [10] improves upon the results of Armen-
tano et al. [8] by proposing adaptive large neighborhood
search heuristic to take care of binary variables representing
the setup and routing variables whilst the continuous vari-
ables associated with inventory, production, and quantities
delivered are handled by solving a network flow problems.
The results outperformed all other know heuristics for
PIDRP.

Two inventory replenishment policies, order-up-to level
and maximum level were considered in Adulyasak et al. [11]
for inventory routing problem and PIDRP. By using adaptive
large neighborhood search to obtain the initial solutions
and the branch-and-cut algorithm were proposed to solve
the different formulations. The authors managed to solve
to optimality relatively small instances, 50 customers, three
periods, and three vehicle on parallel computers.

Torabi et al. [12] proposed a two-step solution approach to
solve an integrated multisites production planning, procure-
ment, and distribution plans. The first step restricts the vehi-
cle routings into direct shipment and solved the full model as

mixed integer problem. Scatter search algorithm is employed
in the last step by solving the associated consolidation
problem in order to improve the solutions. Computational
testings showed that this method gives the comparable or
improved solution compared to the best solution for original
model for 8 out of 10 cases and failed to get a better solution
for 2 other problems. However the algorithms were not
performed on benchmark instances.

We refer the readers to a review of formulations and
solution algorithms in PIDRP by Adulyasak et al. [13] for the
state of the art.

In particular, the PIDRP considered in this paper is very
similar to that of Bard and Nananukul [2, 6] which involves
a production plant, multiple customers with time varying
demand, a finite planning horizon, and a fleet of homogenous
vehicles that delivers the product from the production plant
to the customers’ sites. Excess production can be stored either
at the plant or at the customer sites within some limits, but
inventory cannot be transferred between sites and stockouts
are not permitted.The objective is tominimize a combination
of setup, holding, and routing costs both at the production
facility and at customers, without incurring any stockouts at
the customer sites. We also propose a three-phase method-
ology and our algorithm differs from Bard and Nananukul
[2, 6] in Phase 2 and Phase 3. In Phase 2, we employ the
Giant Tour procedure [14], sweep, and savings algorithms
which have been shown to be efficient routing procedures and
Phase 3 introduces the scatter search algorithm, embedding
the new inventory updating mechanism as the improvement
methodology.

The remainder of this paper is organized as follows.
In Section 2, we present the description of PIDRP and
its mathematical formulation. In Section 3, the three-phase
scatter search method we employed to solve the PIDRP
is discussed in detail and followed by the presentation of
computational experiments and results in Section 4. Finally,
conclusions are drawn in Section 5.

2. Problem Description and
Mathematical Formulation

We consider a production, inventory, and distribution rout-
ing problem similar to the one proposed by Bard and
Nananukul [2, 9]. It consists of a single production plant that
produces a single product and distributes it to a set of 𝑁

customers with nonnegative demand 𝑑
𝑖𝑡
in period 𝑡 where

𝑖 = 1, 2, . . . , 𝑁 and 𝑡 = 1, . . . , 𝜏 and limited number of
items 𝑝

𝑡
can be produced in period 𝑡 and a limited number

of inventories 𝐼
𝑃

𝑡
can be stored by incurring unit holding

cost ℎ𝑃 at production plant. A fleet of homogeneous vehicles
with capacity𝑄 delivers the items to the customer’s sites, and
each vehicle can make at most one trip per period. A limited
amount of inventory 𝐼

𝐶

𝑖𝑡
can be stored at customers’ sites with

unit holding cost of ℎ𝐶
𝑖
, and each customer can only be visited

at most once per period.
Furthermore, it is assumed that at the end of planning

horizon all inventories (both at the production facility and
at customer’s site) are required to be zero. The objective
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is to construct a production plan and delivery schedule
which minimizes production, inventory, and distribution
costs while fulfilling each customer’s demand requirement.
Let 𝑐0 denote the production plant (depot) and {𝑐1, 𝑐2, . . . , 𝑐𝑁}
be a set of customers. 𝑤

𝑖𝑡
is a decision variable denoting the

amount to be delivered to customer 𝑖 in period 𝑡.The traveling
distance (cost) from customer 𝑐

𝑖
to customer 𝑐

𝑗
(𝑖, 𝑗 =

1, 2, . . . , 𝑁) is denoted by 𝑐
𝑖𝑗
. 𝑥
𝑖𝑗𝑡

equals 1 if there is a route
from customer 𝑖 to customer 𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑁) and 0
otherwise. 𝑦

𝑖𝑡
represents the total quantity on a vehicle before

delivering to customer 𝑖 in period 𝑡.
The maximum inventory level for production plant is

denoted by 𝐼
𝑃

max and for customers’ sites is denoted by 𝐼
𝐶

max,𝑖.
In this study, the initial inventories at customers’ sites are
assumed to be zero.

The integrated production, inventory, and distribution
routing problem (PIDRP) can be formulated as follows [2]:

Φ
𝐼𝑃

= min∑
𝑡∈𝑇

∑
𝑖∈𝑁0

∑
𝑗∈𝑁0

𝑐
𝑖𝑗
𝑥
𝑖𝑗𝑡

+ ∑
𝑡∈𝑇

𝑓
𝑡
𝑧
𝑡
+ ∑
𝑡∈𝑇0\{𝜏}

ℎ
𝑃
𝐼
𝑃

𝑡

+ ∑
𝑡∈𝑇\{𝜏}

∑
𝑖∈𝑁

ℎ
𝐶

𝑖
𝐼
𝐶

𝑖𝑡

(1)

subject to

𝐼
𝑃

𝑡
= 𝐼
𝑃

𝑡−1 +𝑝
𝑡
− ∑
𝑖∈𝑁

𝑤
𝑖𝑡
, ∀𝑡 ∈ 𝑇0, (2)

𝐼
𝐶

𝑖𝑡
= 𝐼
𝐶

𝑖,𝑡−1 +𝑤
𝑖𝑡
−𝑑
𝑖𝑡
, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇, (3)

∑
𝑖∈𝑁

𝑤
𝑖𝑡
≤ 𝐼
𝑃

𝑡−1, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇, (4)

𝑝
𝑡
≤ 𝐶𝑧
𝑡
, ∀𝑡 ∈ 𝑇0 \ {𝜏} , (5)

𝑝0 ≥ ∑
𝑖∈𝑁

(𝑑
𝑖1 − 𝐼
𝐶

𝑖0) , (6)

∑
𝑗∈𝑁0
𝑗 ̸=𝑖

𝑥
𝑖𝑗𝑡

≤ 1, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇,
(7)

∑
𝑖∈𝑁0
𝑖 ̸=𝑗

𝑥
𝑖𝑗𝑡

= ∑
𝑖∈𝑁0
𝑖 ̸=𝑗

𝑥
𝑗𝑖𝑡
, ∀𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇,

(8)

∑
𝑗∈𝑁

𝑥0𝑗𝑡 ≤ 𝜃, ∀𝑡 ∈ 𝑇, (9)

𝑦
𝑗𝑡

≤ 𝑦
𝑖𝑡
−𝑤
𝑖𝑡
+𝐷

max
𝑡

(1−𝑥
𝑖𝑗𝑡
) ,

∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁0, 𝑡 ∈ 𝑇,

(10)

𝑤
𝑖𝑡
≤ 𝐷

max
𝑖𝑡

∑
𝑗∈𝑁0

𝑥
𝑖𝑗𝑡
, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇, (11)

0 ≤ 𝐼
𝑃

𝑡
≤ 𝐼
𝑃

max,

0 ≤ 𝐼
𝐶

𝑖𝑡
≤ 𝐼
𝐶

max,𝑖;

∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 \ {𝜏} ;

𝐼
𝑃

𝜏
= 𝐼
𝐶

𝑖𝜏
= 0, ∀𝑖 ∈ 𝑁,

(12)

𝑥
𝑖𝑗𝑡

∈ {0, 1} ,

𝑧
𝑡
∈ {0, 1} ,

0 ≤ 𝑦
𝑖𝑡
≤ 𝑄,

𝑝
𝑡
≥ 0,

𝑤
𝑖𝑡
≥ 0 and integer,

∀𝑖 ̸= 𝑗 ∈ 𝑁0, 𝑡 ∈ 𝑇,

(13)

where 𝐷
max
𝑖𝑡

= min{𝑄,∑
𝜏

𝑙=𝑡
𝑑
𝑖𝑙
} and 𝐷

max
𝑡

= min{𝑄,

∑
𝑖∈𝑁

∑
𝜏

𝑙=𝑡
𝑑
𝑖𝑙
}.

The objective function comprises the transportation
costs, production setup costs, holding costs at the warehouse
and holding costs at the customer sites. Equations (2) and (3)
represent the inventory flow balance equations for produc-
tion facility and customers, respectively. Equation (5) limits
production on period 𝑡 to the capacity of the factory, and (6)
allows production in period 0.The total amount available for
delivery on period 𝑡 is limited by the amount of inventories at
the factory on period 𝑡 − 1 as formulated in (4). Equation (11)
limits the amount delivered to each customer and (7) ensures
that if customer 𝑖 is serviced on period 𝑡, then it must have
a successor on its route, while route continuity is enforced
by (8). Equation (9) limits the number of vehicles that leaves
the factory at period 𝑡, and (10) keeps track of the load on
the vehicles. We note that Adulyasak et al. [10] use slightly
different approach in the formulation.

In this study, extending the idea from Bard and
Nananukul [6] we propose a three-phase methodology to
solve the PIDRP. Our algorithm differs from Bard and
Nananukul [6] in Phase 2 and Phase 3. Starting from Phase
1 that solves the allocation model which is the simplified
version (relaxed) of the model to determine the amount to
be delivered to each customer in each period, Phase 2 routes
the customers using the Giant Tour procedure [14], sweep,
and savings algorithms to determine the delivery routes for
each period. In phase 3, we develop scatter search method by
creating composite decision rules and surrogate constraints
to improve the initial solutions. We also incorporate the
inventory updating based on the forward and backward
transfer.

We identify the initial solution in Phase 1 by solving
the allocation model as a mixed integer programming to
get a set of feasible allocations. The routing variables and
routing constraints (7)–(10) are removed and aggregated
vehicle capacity constraints are introduced to the allocation
model. Since we already deleted the routing constraints in
the allocation model, we need an alternative representation
for the cost term to determine the approximated cost which
is needed to make a delivery to customer 𝑖 in period 𝑡.
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𝑓
𝐶

𝑖𝑡
represents the fixed cost of making delivery to customer

𝑖 on period 𝑡, 𝑒𝐶
𝑖𝑡
denotes the variable cost of delivering one

item to customer 𝑖 in period 𝑡, and 𝑧
𝐶

𝑖𝑡
is valued to 1 if delivery

is made to customer 𝑖 in period 𝑡 and 0 otherwise.
As in Bard and Nananukul [2], we divide the problem

into two cases, for problem instances with 𝑁
2
𝑇 ≤ 500

and for instances with 𝑁
2
𝑇 > 500. Since all the instances

we considered are 𝑁
2
𝑇 > 500, we introduce the variable

cost term ∑
𝑖𝑡
𝑒
𝐶

𝑖𝑡
𝑤
𝑖𝑡
, where 𝑒

𝐶

𝑖𝑡
is approximated by the cost

of making a delivery to customer 𝑖 directly from the depot
divided by the total demand of customer 𝑖 in period 𝑡.

The allocation model of the PIDRP is formulated as
follows:

Φ
𝐼𝑃

= min∑
𝑡∈𝑇

𝑓
𝑡
𝑧
𝑡
+ ∑
𝑡∈𝑇

∑
𝑖∈𝑁

𝑒
𝐶

𝑖𝑡
𝑤
𝑖𝑡
+ ∑
𝑡∈𝑇0\{𝜏}

ℎ
𝑃
𝐼
𝑃

𝑡

+ ∑
𝑡∈𝑇\{𝜏}

∑
𝑖∈𝑁

ℎ
𝐶

𝑖
𝐼
𝐶

𝑖𝑡

(1a)

Additional new constraints are as follows:

∑
𝑖∈𝑁

𝑤
𝑖𝑡
≤ 0.8𝑄𝜃, ∀𝑡 ∈ 𝑇, (14)

𝑤
𝑖𝑡
≤ 𝐷

max
𝑖𝑡

𝑧
𝐶

𝑖𝑡
, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. (15)

Allocation model modifies the objective function in the
full model and replaces the routing variables with addi-
tional parameter to represent the costs (the second term in
(1a)). The term ∑

𝑖𝑡
𝑒
𝐶

𝑖𝑡
𝑤
𝑖𝑡
is the approximated transportation

cost replacing the term ∑
𝑡∈𝑇

∑
𝑖∈𝑁0

∑
𝑗∈𝑁0

𝑐
𝑖𝑗
𝑥
𝑖𝑗𝑡
, the actual

distance (transportation) cost. Allocation model also uses
the same constraints but eliminating the routing constraints
(constraints (7)–(9)) and adding additional two constraints.
Equation (14) limits the total amount that can be delivered
on period 𝑡 to a fixed percentage of the total transportation
capacity. The parameter testing by Bard and Nananukul [2]
showed that the percentage value of 80% always yielded
feasible solutions. Additional variable 𝑧

𝐶

𝑖𝑡
is included in

constraint (15) to keep track of whether customer 𝑖 receives
a delivery in period 𝑡. Constraint (15) was a modification of
constraint (11) by replacing the routing variables 𝑥

𝑖𝑗𝑡
with 𝑧

𝐶

𝑖𝑡
.

3. Scatter Search

Thescatter searchmetaheuristic has successfully been applied
to awidespread variety of vehicle routing problems. Corberán
et al. [15] proposed a scatter search to solve a real-life problem
with multiple objectives. Two different heuristics were used
to construct the initial trial solutions in the scatter search.
Two simple exchange procedures, insertion and swap, are
used to improve the solutions. The combination method is
based on a voting scheme. The algorithms tested on real
data show that scatter search can solve the practical problem
efficiently. A more recent application of scatter search is by
Mota et al. [16], who presented a scatter search for vehicle
routing problem with split demands. Local search is adopted
as the improvement method. Four kinds of critical clients
are defined to produce new solutions. The algorithm was

tested on a set of benchmark instances and it was found that
scatter search algorithm always produces the least number of
vehicles compared the tabu search developed by the authors.

Scatter search is an evolutionary metaheuristic that oper-
ates on a set of solutions, which the scatter search literature
refers to as the reference set (Refset). The evolution of the
Refset is achieved by way of combining reference solutions
to yield trial solutions with combination of attributes not
present in the previous set of solutions. The Refset is a
collection of “good” solutions found during the search, where
the meaning of “good” is not limited to quality as measured
by the objective function value. For instance, a solution may
be good because it provides diversity with respect to other
solutions in the reference set. In fact, some implementations
of scatter search divide theRefset into two subsets, consisting,
respectively, of solution quality and diversity. Scatter search
was first introduced by Glover [17]. Glover made a template
in a version customized for nonlinear optimization problems
with continuous variables. Laguna and Marti [18] published
the first book on scatter search, containing introductory
tutorials and advanced techniques such as the use of memory
and path relinking.

The scatter search terminology that is used in this paper
is similar to Laguna and Marti [18]. The algorithm is made
up of several distinct steps: A diversification generator,
an improvement method, a reference set update, a subset
generation method which operates on the reference set in
order to produce a subset of its solutions as a basis for creating
combined solutions, and a solution combination method
which transforms a given subset of solutions produced by
the subset generation method into one or more combined
solutions vectors.

The scatter search procedure stops when a termination
criterion—either the maximum number of iterations, Max-
Iter, is reached, or the reference set does not change, or
improvement does not warrant further iterations.

The scatter search algorithm can be formally stated as
shown in Algorithm 1.

Updating the Inventory Level (Step 7). In the inventory updat-
ing we propose two types of moves: a forward and backward
transfer. The aim of the forward transfer is to reduce the
inventory holding cost without increasing drastically the
transportation cost. In the backward transfer the preference
is given to the suppliers with the lower holding cost in order
to determine whether the transportation and the inventory
holding cost can be further consolidated. Examples of the
forward and backward transfers are illustrated in Figures 1
and 2, respectively.

Backward Transfer. Figure 1 shows an example of backward
transfer where the routings are separated by zeros and
𝑤
𝑖𝑡

and 𝐼
𝑖𝑡

are the pick-up quantity and the inventory,
respectively. Assuming the coordinates of the 5 customers
are 𝑐
1
(−2, 0), 𝑐

2
(1, 1), 𝑐

3
(4, 2), 𝑐

4
(3, 5), and 𝑐

5
(1, −2) and the

depot is located at𝐷(0, 0) the holding costs per unit for each
customer are ℎ

1
= 12, ℎ

2
= 9, ℎ

3
= 6, ℎ

4
= 3, and ℎ

5
= 6 and

the vehicle capacity is 10.
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Step 1. Generate Solutions – Generate trial solutions using Giant Tour Procedure, sweep algorithm and savings algorithm
Step 2. Improve the Solutions – Apply 2-𝑜𝑝𝑡 to improve solutions generated in Step 1
Step 3. Build the reference set – put |Refset| = 𝑏1 + 𝑏2 solutions in the reference set
Step 4. Initialize best solutions – make 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 as the best solution in the current Refset,

𝑖 = 1
While (𝑖 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟) do
{

While (new solutions in Refset) do
{

Step 5. Generate subset – generate 2 pairs of solution (2 element subset) of the Refset.
Step 6. Combine solutions – generate new combined solutions from pairs of 2 element subsets in Step 5.
Step 7. Improve the solutions – update inventory level, and for the affected periods (transfer from and transfer to periods)

apply within the same period 1-0 and 1-1 exchange, and 2-𝑜𝑝𝑡.
Step 8. Update reference set – update the reference set by maintaining the number of solutions inside the Refset

by replacing the existing solutions with the better combined solutions.
Step 9. Update the best – update the 𝐵𝑒𝑠𝑡𝑆𝑜𝑙 in the Refset
𝑖 = 𝑖 + 1
}

}

Algorithm 1

Before Period Route Route cost Holding cost 
transfer

4 0 1 5 0 4 0 19.5035 18
4 4 4
0 0 0

5 0 1 5 3 0 4 0 26.7396 0
4 4 2 2
0 0 0 0

Total cost 46.2431 18

After Period Route Route cost Holding cost
transfer

4 0 1 5 0 4 0 19.5035 24
4 4 6
0 0 2

5 0 1 5 3 0 15.0777 0
4 4 2
0 0 0

Total cost 34.5812 24

Iit

wit

Iit

wit

Iit

wit

Iit

wit

Figure 1: Example of a backward transfer.

The selection of period and customer to be transferred is
favorable to the lower holding cost. In this example, we select
customer 4 in period 5. The saving is found by increasing the
inventory cost and decrease in routing.

Initial routings are for periods 4 and 5, with the route cost
18.771591 and 24.36395 and 0 holding cost. According to the
inventory updatingmechanism,we transfer customer 4 in the
period 5 to period 4. As the same customer is visited in period
4, we aggregate the amount to be transferred with the existing
delivery quantity and we note that the resulting aggregated
amount does not violate the capacity constraint. After the
transfer of delivery amount by 2 units, we have a holding
cost 6 with ℎ

4
= 3. This will reduce the distance in period

5.The overall savings after the transfer is 64.2431−58.5812 =

5.6619.

Forward Transfer. Figure 2 shows a forward transfer and the
objective is to reduce the holding cost whilst achieving a
balance between the inventory and the transportation costs.

The selection of period and supplier to be transferred
is biased towards customers with high holding cost. In this
example, we select customer in period 1. Note that we limit
the transfer to at most 2 periods only. This is to ensure that
the increase in the routing cost is not exceedingly high.

Thedemands for customer 1 in periods 1, 2, and 3 are𝑑
11

=

4, 𝑑
12

= 2, and 𝑑
13

= 4. From the figure, 𝐼
11

= 6 and 𝐼
12

= 4,



6 Mathematical Problems in Engineering

Before Period Route Route cost Holding cost

1 0 2 5 0 1 0 3 4 0 24.1156 81
2 3 10 2 5
0 1 6 0 1

2 0 2 3 0 9.0486 72
2 5
0 4

3 0 2 0 5 4 0 18.1756 36
6 2 4
4 0 0

Total cost 51.3398 189

After Period Route Route cost Holding cost

1 0 2 5 0 1 0 3 4 0 24.1156 33
2 3 6 2 5
0 1 2 0 1

2 0 2 3 0 9.0486 24
2 5
0 4

3 0 2 0 1 5 4 0 21.5450 36
6 4 2 4
4 0 0 0

Total cost 60.4129 93

Iit

wit

Iit

wit

Iit

wit

Iit

wit

Iit

wit

Iit

wit

Figure 2: Example of a forward transfer.

the resultant holding cost for periods 1, 2, and 3 are 81, 24,
and 36, respectively, and the total cost, including the routing
cost for all 3 periods, is 240.3398. Customer 1 is not visited
in periods 2 and 3, so we apply forward transfer by inserting
customer 1 to period 3 according to the best insertion. Note
that inserting customer 1 in period 2 results in the violation
of vehicle capacity constraint. The saving after the transfer is
240.3398 − 153.4129 = 86.9269.

3.1. Diversification Generation Method. Diversification gen-
eration method generates a set of diverse solutions which
is denoted as 𝑃, and the size of the population of solutions
is represented by 𝑃𝑠𝑖𝑧𝑒 (i.e., |𝑃| = 𝑃𝑠𝑖𝑧𝑒). Few different
algorithms are applied within the diversification generation
method to obtain initial solutions. This method produces
feasible solutions that can be used as trial solutions for the
scatter search procedure. The solutions are created using
sweep algorithm [19], savings algorithm [20], and Giant
Tour Procedure [14]. The Giant Tour Procedure starts by
constructing cost network, which considers delivery amounts
and vehicle capacity constraints. The construction starts by
calculating the cost from the depot 0 to the customer 𝑐

𝑖
and

from customer 𝑐
𝑖
going back to the depot as the cost of the

arc (0, 𝑐
𝑖
). If the combined deliveries of customers 𝑐

𝑖
and 𝑐
𝑗
are

less than the vehicle’s capacity, then the arc of (𝑐
𝑖
, 𝑐
𝑗
) is added

into the existing cost network.The construction is continued
until the vehicle could not accommodate the new customer,

andwe start with a new vehicle.The process is continued until
there are no more arcs connecting to the last customer in the
giant tour. The giant tour is then partitioned using Djikstra’s
algorithm to form routes.

In order to improve the solutions obtained from sweep
and saving algorithms, we applied Giant Tour Procedure
following the order of the routes generated by sweep and
savings algorithms. The procedure is able to improve on the
solution by collapsing a few vehicles in each period.

3.2. Improvement Method. The solutions generated by the
diversification generation method and combination method
(see Section 3.5) are subjected to the improvement method.
We apply 1-0 exchange, 1-1 interchange, 2-𝑜𝑝𝑡∗ as interroute
procedure, and 2-𝑜𝑝𝑡 as intraroute in the improvement
method to improve the solutions.

(1) 1-0 Exchange (insertion). This exchange method removes
a customer form one route and inserts it into another route.
Select a customer 𝑐

𝑖
, 𝑖 ∈ {1, . . . , 𝑁), from the route 𝑅

𝑘
in the

period 𝑡, 𝑡 ∈ {1, . . . , 𝜏}, and insert it into another route 𝑅
𝑙

within the same period.The customer is inserted into another
route if it does not violate any constraints and reduces the
routing cost.

(2) 1-1 Interchange (swap).This method starts with removing
two customers from their initial routes within the same
period. The customer 𝑐

𝑖
, 𝑖 ∈ {1, . . . , 𝑁), from route 𝑅

𝑘

is exchanged with 𝑐
𝑗
, 𝑗 ∈ {1, . . . , 𝑁), from route 𝑅

𝑙
.
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Table 1: Results from randomly generated data sets.

Case
CPLEX SS

Lower bound Best integer Time Veh. number Obj. Veh. number Time Gap
(sec) (sec)

S12T5 4382.7182 4416.85 929.41 19 4430.96 19 21.47 0.32
S12T10 8330.1596 8674.45 1212.55 36 8746.18 36 35.79 0.83
S12T14 10694.11 11814.85 3600.35 51 11429.24 53 57.32 −3.26
S20T5 6617.0717 6882.51 1194.95 28 6813.3 29 83.8 −1.01
S20T10 13473.909 14280.74 1401.64 58 13993.89 60 126.02 −2.01
S20T14 18278.376 19448.52 897.93 80 19026.64 82 153.66 −2.17
S20T21 25369.66 26705.26 1989.7 118 26044.53 120 217.07 −2.47
S50T5 9840.5676 12006.72 2881.62 52 9957.22 56 315.05 −17.07
S50T10 11199.561 31335.94 713.58 114 22522.12 117 366.8 −28.13
S50T14 13750.901 45082.01 830.42 161 28480.12 164 437.96 −36.83
S50T21 9920.4403 117350.35 1056.38 239 39404.71 243 525.48 −66.42
S100T5 4442.154 36017.92 3352.85 — 19338.39 128 4855.77 −46.31
S100T10 — — — — 39462.74 261 10934.05 —
S100T14 — — — — 52185 365 13905.83 —

The exchange is applied if it could produce a shorter length
of the routing cost or reduce the number of vehicles.

(3) 2-𝑜𝑝𝑡∗. 2-𝑜𝑝𝑡∗algorithm is similar to the 2-𝑜𝑝𝑡, but,
instead of deleting edges within the same route, it deletes two
different edges on the different routes and then reconnects
them by considering the lower routing cost.

(4) 2-𝑜𝑝𝑡.This method selects two different edges within the
same route and then deletes and reconnects them to other
edges. The move is accepted if the resulting routing cost is
lower than the previous cost. The process is continued until
no further improvement is found.

3.3. Reference Set Update Method. 𝑅𝑒𝑓𝑠𝑒𝑡 denotes the refer-
ence set and its size is denoted by 𝑏 (i.e., |𝑅𝑒𝑓𝑠𝑒𝑡| = 𝑏).
Solutions are included in the reference set by a measure of
quality (objective value) or diversity. Solutions are denoted by
𝑥
𝑗, (𝑗 ∈ 1, . . . 𝑏), and it is assumed that 𝑥1 is the best solution

and 𝑥
𝑏 is the worst solution according to the objective value.

The reference set consists of two subsets, in which the subset
of high quality solutions denoted by 𝑅𝑒𝑓𝑠𝑒𝑡

1
contains the 𝑏

1

best solutions, and the subset of diverse solutions denoted by
𝑅𝑒𝑓𝑠𝑒𝑡

2
contains the 𝑏

2
diverse solutions; hence 𝑏 = 𝑏

1
+ 𝑏
2
.

The initial reference set consists of 𝑏
1
best solutions that

belong to 𝑃 and a number of 𝑏
2
solutions from 𝑃 that

maximize the minimum distance to 𝑅𝑒𝑓𝑠𝑒𝑡. The distance
between the two solutions is calculated by adding the number
of noncommon arcs of each solution before the combination.
We adopt Russell and Chiang [21] for updating the 𝑅𝑒𝑓𝑠𝑒𝑡 by
composing the new reference set of (𝑏

1
+ 𝑏
2
)/2 best solutions

from the original reference set, and the remaining solutions
are created from newly generated (combined) solutions.
The solutions in the reference set are not changed until all
combinations of solutions, generated by the combination
method, are performed as prescribed by the subset generation

method. This indicates the use of a static update of the
reference set, where the set of solutions generated by the
combination method is denoted as 𝑃𝑜𝑜𝑙 and the subset of
solutions chosen from 𝑅𝑒𝑓𝑠𝑒𝑡 is denoted by 𝑆.

3.4. Subset Generation Method. Subset generation method
is the foundation for constructing new solutions in scatter
search. The subsets are built based on the reference set. This
method generates subsets of the solutions in the reference
set which are combined in the solution combinationmethod.
In our implementation, we restrict the method to select
representative subsets by using Subset Type-1 [22], which
consists of all 2-element subsets comprising of two different
solutions which is explained further in the next section.

3.5. Solution Combination Method. We adapt the solution
combination method in Torabi et al. [12] that use Subset
Type-1 to create new solutions and applied to all pairs of
subsets generated by subset generation method. Each subset
comprises of two different solutions that is combined to
generate a now solution. This method is divided into two
steps. Step 1 aims to combine only the common elements of
the combined routes and Step 2 assigns the demand of the
remaining customers.

Step 1. Let 𝐴 be a solution with 𝑝 routes and 𝐵 a solution
with 𝑞 routes, where 𝐴

𝑖
is the 𝑖th route for solution 𝐴, 𝑖 =

{1, . . . , 𝑝}, and𝐵
𝑘
is the 𝑘th route for solution𝐵.The solutions

𝐴 and 𝐵 are combined as follows:

(1.1) Build a matrix 𝐴 × 𝐵 where its components (𝐴
𝑖
, 𝐵
𝑘
)

have the number of common arcs between the route 𝑖
of solution 𝐴 and route 𝑘 of solution 𝐵.

(1.2) Choose the components (𝐴
𝑖
, 𝐵
𝑘
) which have the

greater number of common arcs; if there is a tie, then
select randomly.
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(1.3) The combined route is performed by the routes’
common elements (arcs).

(1.4) Each combined route is excluded from the list (delete
the line and column referring to components of
(𝐴
𝑖
, 𝐵
𝑘
)).

Step 2. This step aims to fulfill the customers who have
not been served by Step 1 and done through the insertion
procedure. This procedure is done as follows:

(2.1) Pick customer 𝑖, 𝑖 ∈ (𝐴
𝑖
, 𝐵
𝑘
), which is the farthest one

from the depot and is going to be inserted.
(2.2) Based on the initial solutions 𝐴 and 𝐵, all the routes

in which customer 𝑖 is inserted are verified and also
all the edges in which 𝑥

𝑖𝑗
= 1 (customer 𝑖 is served

before customer 𝑗) or 𝑥
𝑗𝑖

= 1 (customer 𝑖 is served
after customer 𝑗).

(2.3) For each 𝑗 belonging to one of the combined routes
in Step 1, we calculate the cost for inserting customer
𝑖 before customer 𝑗 or the cost for inserting customer
𝑖 after customer 𝑗.

(2.4) Choose each possible insertion with the minimum
cost. If there is no feasible position to be inserted,
construct a new route.

The procedure stops when it reaches the maximum
iteration.

4. Results and Discussion

All the algorithms are written in Matlab 7.7 and performed
on a 3.1 GHz processor with 8GB of RAM. For the algorithm
testing, we generate randomly 14 data sets to test the algo-
rithm that comprises of 12, 20, 50, and 100 customers with
5, 10, 14, and 21 periods. The locations of the customers are
generated randomly in a square of 100 × 100. The locations
of the customers for the 20 customers are extended from the
12 customers instance by adding 8 new randomly generated
customers. Similarly, the 50 customers instance is extended
from the 20 customers by generating randomly 30 additional
customers. The same procedure was applied for the 100
customers instance by generating randomly an additional 50
customers’ locations.

All of the data sets have demands in every period,
with exception for case 50 customers. The holding cost for
each customer is generated within the range [1, 10] and the
demands are generated randomly within the range [0, 50].
The vehicle capacity is fixed to 100 and the depot is located
at (0, 0) for all data sets.

Table 1 shows the results, the number of vehicles, and
the CPU time for scatter search metaheuristic. CPLEX 12.4
is allowed to run 10800 seconds (3 hours) but, in most
cases, CPLEX terminates prematurely because of being out of
memory. It is observed that CPLEX failed to get lower bounds
for large sized problems. We note that the formulation
presented in Section 2 is weak because of the imposed
number of vehicles and is able to solve to optimality for a very
small problem [9]. However the CPLEX solutions are used as

Table 2: Results for 50 customers instances.

Instance MA|PM RTS SS
Obj. Obj. Obj. (MA|PM) RTS Vehicles

1 378378 398795 373172 −1.38 −6.43 5
2 403913 373374 380129 −5.89 1.81 5
3 409573 353058 369355 −9.82 4.62 5
4 399220 361176 419256 5.02 16.08 5
5 422279 364819 410140 −2.87 12.42 5
6 407122 368082 372717 −8.45 1.26 5
7 414977 396963 366617 −11.65 −7.64 5
8 379744 370822 399269 5.14 7.67 5
9 407935 379379 416811 2.18 9.87 5
10 396258 370655 421940 6.48 13.84 5
11 402475 354025 382085 −5.07 7.93 5
12 358702 354981 365139 1.79 2.86 5
13 371030 365432 398346 7.36 9.01 5
14 406114 363404 386252 −4.89 6.29 5
15 373076 367659 406994 9.09 10.70 5
16 379404 360534 360433 −5.00 −0.03 5
17 406353 398442 400878 −1.35 0.61 5
18 401179 368533 365400 −8.92 −0.85 5
19 406893 377073 392953 −3.43 4.21 5
20 398508 372141 381826 −4.19 2.60 5
21 397112 374743 408826 2.95 9.10 5
22 358749 347329 355774 −0.83 2.43 5
23 407369 362619 398696 −2.13 9.95 5
24 369784 375022 369717 −0.02 −1.41 5
25 411556 374682 414254 0.66 10.56 5
26 408704 366167 363157 −11.14 −0.82 5
27 366197 375261 387595 5.84 3.29 5
28 401032 373155 416631 3.89 11.65 5
29 384282 379320 371621 −3.29 −2.03 5
30 369959 369223 364819 −1.39 −1.19 5

guideline in order to ensure that our solutions are correct.
Table 1 illustrates the CPLEX solutions and the solutions
obtained by our algorithm.

Furthermore, we test the performance of scatter search
algorithm on the set of instances generated by Boudia et al.
[4] comprising of three subsets of 30 instances each with 50,
100, and 200 customers over a planning horizon of 20 periods.
Every subset of instances has a limited number of vehicles,
with 5, 9, and 13 vehicles, respectively.

All of the data sets have demands in every period. The
holding costs for each customer and the production plant are
assigned at 1 for all instances, and the vehicle’s capacity is fixed
at 8000 for instances with 50 and 100 customers and 12000
for instances with 200 customers. The production capacities
are fixed at 50000, 120000, and 240000 for instances with
50, 100, and 200 customers, respectively, and the storage
capacity at the plant varies between one and a half and
twice of the production capacity. The production setup cost
is proportional to production capacity.
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Table 3: Results for 100 customers instances.

Instance MA|PM RTS SS
Obj. Obj. Obj. (MA|PM) RTS Vehicles

1 714401 711671 714768 0.05 0.44 9
2 722047 694694 706531 −2.15 1.70 9
3 677598 683270 702056 3.61 2.75 9
4 710552 718252 715081 0.64 −0.44 9
5 733040 731260 709207 −3.25 −3.02 9
6 696146 744927 704383 1.18 −5.44 9
7 705322 695728 701951 −0.48 0.89 9
8 679210 706058 709180 4.41 0.44 9
9 699518 705035 721338 3.12 2.31 9
10 705778 696521 721714 2.26 3.62 9
11 709122 711895 705973 −0.44 −0.83 9
12 755726 703162 747220 −1.13 6.27 9
13 695466 721066 707786 1.77 −1.84 9
14 718260 698548 728132 1.37 4.24 9
15 736041 711506 729536 −0.88 2.53 9
16 715209 714873 709663 −0.78 −0.73 9
17 737832 702314 702391 −4.80 0.01 9
18 723413 720238 727677 0.59 1.03 9
19 720218 748734 728944 1.21 −2.64 9
20 724727 729099 738669 1.92 1.31 9
21 724328 738746 712796 −1.59 −3.51 9
22 701506 702849 717464 2.27 2.08 9
23 710033 712717 723209 1.86 1.47 9
24 734327 727741 726290 −1.09 −0.20 9
25 725446 725869 730997 0.77 0.71 9
26 718939 700719 722588 0.51 3.12 9
27 715068 686382 719054 0.56 4.76 9
28 685117 700980 695956 1.58 −0.72 9
29 722571 725030 717728 −0.67 −1.01 9
30 721850 698942 701024 −2.89 0.30 9

Tables 2, 3, and 4 present the total costs and the number
of vehicles for our algorithm compared to Memetic Algo-
rithm/Population Management (MA|PM) algorithm [5] and
Reactive Tabu Search (RTS) algorithm [2, 9] for instances
with 50, 100, and 200 customers, respectively.

It is observed that scatter search algorithms outper-
form both the Memetic Algorithm/Population Management
(MA|PM) algorithm of Boudia and Prins [5] and the Reactive
Tabu Search (RTS) algorithm of Bard and Nananukul [2] in
28 instances. The results are highlighted in bold in Tables
2, 3, and 4. Individually our algorithm outperforms 44 of
the instances compared to Memetic Algorithm/Population
Management (MA|PM) algorithm [5] and 47 instances com-
pared to Reactive Tabu Search (RTS) algorithm of Bard and
Nananukul [2]. The highlighted objective functions indicate
our algorithm outperforms both the memetic/population
management and the reactive tabu search.

Table 5 shows the average total costs of the well know
heuristics. All the results were taken from Adulyasak et
al. [13]. It shows that SS is superior to GRASP [4] and

Table 4: Results for 200 customers instances.

MA|PM RTS SS
Obj. Obj. Obj. (MA|PM) RTS Vehicles

1 996151 1030684 1033864 3.79 0.31 13
2 978373 1010158 995600 1.76 −1.44 13
3 986147 1016681 983290 −0.29 −3.28 13
4 962937 1042854 1004710 4.34 −3.66 13
5 970638 1023680 1004463 3.48 −1.88 13
6 965646 1025262 967194 0.16 −5.66 13
7 980562 1038746 1011310 3.14 −2.64 13
8 1014809 1066068 1001545 −1.31 −6.05 13
9 967738 1018420 984520 1.73 −3.33 13
10 1093230 1035240 1024832 −6.26 −1.01 13
11 1008080 1037705 981277 −2.66 −5.44 13
12 998951 1035350 995275 −0.37 −3.87 13
13 984918 1063024 1028545 4.43 −3.24 13
14 964301 1024491 1002466 3.96 −2.15 13
15 981167 1026787 997539 1.67 −2.85 13
16 1017777 1033656 1028718 1.07 −0.48 13
17 1073640 1022250 1067403 −0.58 4.42 13
18 1003670 1063306 1030854 2.71 −3.05 13
19 997348 1065705 1053589 5.64 −1.14 13
20 981788 1027134 1001820 2.04 −2.46 13
21 974384 1044771 965862 −0.87 −7.55 13
22 1065780 1045790 1001734 −6.01 −4.21 13
23 1070520 1027042 1014335 −5.25 −1.24 13
24 978491 1045014 973569 −0.50 −6.84 13
25 1029327 1024239 983691 −4.43 −3.96 13
26 961728 1043128 988534 2.79 −5.23 13
27 1028006 1030753 995478 −3.16 −3.42 13
28 1011689 1032478 994108 −1.74 −3.72 13
29 1015741 1019371 1048934 3.27 2.90 13
30 985496 1027915 1024006 3.91 −0.38 13

comparable to MA-MP algorithms of Boudia and Prins
(2007) and it also performs well for large instances when
compared to the reactive tabu search algorithms of Bard and
Nananukul [2]. However when compared to Armentano et
al. [8] the difference between the results obtained by our
algorithm is between 4% and 6% as worst off. Our algorithm
outperforms only in one instance, instance 1 in 50-customer
problem. When compared to the algorithms of Adulyasak
et al. [10] our algorithm performs poorly and they are in
between 10% and 12%.

5. Conclusion

In this paper, we present scatter search metaheuristic algo-
rithms for a finite horizon, multiperiod, and multiproduct
PIDRP with no-split deliveries and no-backlogging. We
propose three-phase methodology that implements the allo-
cation model in the first phase and construct the routes in
Phase 2 for the vehicle routing problem. In Phase 3, we
develop a scatter search algorithm by creating composite
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Table 5: Average total costs obtained by different heuristics.

GRASP1 MA-MP2 RTS3 TSPR4 ALNS5 SS SS-GRASP SS-MA-MP SS-RTS SS-TSPR SS-ALNS
B1 443,264 393,263 393,662 361,704 346,878 387360 −14.43 −1.52 4.573 6.62 10.45
B2 791,839 714,627 712,294 685,898 636,962 716643 −10.49 0.28 0.61 4.29 11.12
B3 1070,026 1001,026 1034,923 951,638 876,761 1006302 −6.33 0.464 −2.84 5.43 12.87
1Boudia et al. [4].
2Boudia and Prins [5].
3Bard and Nananukul [2].
4Armentano et al. [8].
5Adulyasak et al. [10, 11].

decision rules and surrogate constraints to improve the initial
solutions. Phase 1 is similar to Bard and Nananukul [2]
but second phase uses the giant tour, savings, and sweep
algorithms to construct the routes.

We observe that our algorithm is superior when com-
pared to the memetic/population management of Boudia
and Prins [5] for the 50 customers instances but performs
quite poorly when compared to the reactive tabu search
of Bard and Nananukul [2]. For large instances, the 200-
customer problem, our algorithm is very much superior
when compared to Bard andNananukul [2], producing better
results in 28 out of 30 instances and comparable to Boudia
and Prins [5]. However our algorithm performs poorly when
compared to Armentano et al. [8] and Adulyasak et al. [10].
Adulyasak et al. produced the best known results so far. For
future research we need to further fine-tune our algorithm in
order to be competitive with the current best known results.
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