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The two-phase Stefan problem is widely used in industrial field.This paper focuses on solving the two-phase inverse Stefan problem
when the interface moving is unknown, which is more realistic from the practical point of view. With the help of optimization
method, the paper presents a hybrid method which combines the homotopy perturbation method with the improved Adomian
decomposition method to solve this problem. Simulation experiment demonstrates the validity of this method. Optimization
method plays a very important role in this paper, so we propose a modified spectral DY conjugate gradient method. And the
convergence of this method is given. Simulation experiment illustrates the effectiveness of this modified spectral DY conjugate
gradient method.

1. Introduction

The process of solidification/melting occurs in many indus-
trial fields, such as steel-making continuous casting. In the
continuous casting process [1, 2], molten steel comes into
slab by solidification. And this process is shown in Figure 1.
Because of the heat symmetry, we only consider 1/2 of slab
thickness, and we divide this domain into two regions by
the freezing front, which is shown in Figure 2. 𝐷

1
stands

for the solid phase and 𝐷
2
is taken by the liquid phase.

The solidification problem of continuous casting is associated
with Stefan problem, which is a model of the process with a
phase change.

Many researches have focused on solving Stefan problems
[3–7]. Grzymkowski and Slota [8, 9] applied the Adomian
decomposition method (ADM) combined with optimization
for solving the direct and the inverse one-phase Stefan prob-
lem, and Hetmaniok et al. [10] used the Adomian decom-
position method (ADM) and variational iteration method to
solve the one-phase Stefan moving boundary problems. In
comparison to the studies on the one-phase Stefan problems,
researches on two-phase Stefan problems [11] are much more

scarce. Słota [12] applied homotopy perturbation method
(HPM) to solve the two-phase inverse Stefan problem. How-
ever, in their formulation, these two-phase inverse Stefan
problems were solved when the position of the moving
interface is known.While the position of themoving interface
is unknown and no temperature or heat flux boundary
conditions are specified onone part of the boundary, this two-
phase inverse Stefan problem may be difficult to be solved.
This problem is close to the problem which occurs in the
continuous casting. Therefore, this paper focuses on solving
this problem by a hybrid method with optimization which
combines the homotopy perturbation method (HPM) with
the improved Adomian decomposition method (IADM).

This paper is organized as follows. In Section 2, we give
the description of the two-phase Stefan problem. And the
hybrid method for solving this problem is introduced in
Section 3. We give a modified spectral DY conjugate gradient
method and the convergence of this method in Section 4. In
Section 5, some numerical results are given to illustrate the
validity of the hybrid method.
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Figure 1: The solidification process of continuous casting slab (𝑥
stands for the direction of heat transfer and 𝑧 stands for casting
direction).

2. The Description of Two-Phase Inverse
Stefan Problem

In this section, the two-phase inverse Stefan problem is
considered. The two domains are described (see Figure 2):

𝐷1 = {(𝑥, 𝑡) ; 𝑥 ∈ [0, 𝜉 (𝑡)] , 𝑡 ∈ [0, 𝑡
∗
]} ,

𝐷2 = {(𝑥, 𝑡) ; 𝑥 ∈ [𝜉 (𝑡) , 𝑑] , 𝑡 ∈ [0, 𝑡
∗
]} ,

(1)

and their boundaries with unknown function 𝑥 = 𝜉(𝑡) are

Γ1 = {(𝑥, 0) ; 𝑥 ∈ (0, 𝑠) , 𝑠 = 𝜉 (0)} , (2)

Γ2 = {(𝑥, 0) ; 𝑥 ∈ (𝑠, 𝑑) , 𝑠 = 𝜉 (0)} , (3)

Γ3 = {(0, 𝑡) ; 𝑡 ∈ [0, 𝑡
∗
]} , (4)

Γ4 = {(𝑑, 𝑡) ; 𝑡 ∈ [0, 𝑡
∗
]} , (5)

Γ5 = {(𝑥, 𝑡) ; 𝑡 ∈ [0, 𝑡
∗
] , 𝑥 = 𝜉 (𝑡)} , (6)

Γ6 = {(𝑥, 𝑡
∗
) ; 𝑥 ∈ [0, 𝜉 (𝑡∗)]} . (7)

In practice, the measurement of temperature on the
boundary Γ4 may not be easily obtained and the position of
the moving interface described by means of function 𝑥 =

𝜉(𝑡) is unknown. Therefore, the designed two-phase inverse
Stefan problem consists in the calculation of the temperature
distribution in the domains 𝐷1 and 𝐷2, respectively, as well
as in the reconstruction of the functions describing moving
interface 𝑥 = 𝜉(𝑡). In order to solve this inverse problem, the
additional information is given. In such a situation, the final
time internal temperature at 𝑡 = 𝑡

∗ on the boundary Γ6 is
known, which can be measured in practice. The temperature
distribution is determined by the functions 𝑢1(𝑥, 𝑡) and
𝑢2(𝑥, 𝑡), which are defined in the domains 𝐷1 and 𝐷2,
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Figure 2:Thedomain formulation of the two-phase Stefan problem.

respectively, and they satisfy the following heat conduction
equations:

𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑡
= 𝛼1

𝜕
2
𝑢1 (𝑥, 𝑡)

𝜕𝑥2
in 𝐷1, (8)

𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑡
= 𝛼2

𝜕
2
𝑢2 (𝑥, 𝑡)

𝜕𝑥2
in 𝐷2, (9)

where 𝑡 and 𝑥 refer to time and spatial location and 𝛼1 and
𝛼2 are the thermal diffusivity in the solid phase and the liquid
phase, respectively. On the boundaries Γ1 and Γ2, the initial
conditions are described in the following:

𝑢1 (𝑥, 0) = 𝜑1 (𝑥) on Γ1, (10)

𝑢2 (𝑥, 0) = 𝜑2 (𝑥) on Γ2, (11)

𝜉 (0) = 𝑠. (12)

On the boundary Γ3, it satisfies the Dirichlet boundary or
Neumann boundary condition:

𝑢1 (0, 𝑡) = 𝜃1 (𝑡) on Γ3. (13)

On the boundary Γ4, it satisfies the Dirichlet boundary
conditions:

𝑢2 (𝑑, 𝑡) = 𝜃 (𝑡) on Γ4. (14)

On the phase change moving interface (Γ5), it satisfies the
condition of temperature continuity and the Stefan condition:

𝑢1 (𝜉 (𝑡) , 𝑡) = 𝑢2 (𝜉 (𝑡) , 𝑡) = 𝑢
∗
, (15)

where 𝑢∗ is the phase change temperature. Hence,

𝜅
𝑑𝜉 (𝑡)

𝑡
= 𝑘2

𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑥

𝑥=𝜉(𝑡)

− 𝑘1
𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑥

𝑥=𝜉(𝑡)

, (16)

where 𝜅 is the latent heat of fusion per unit volume and 𝑘1
and 𝑘2 are the thermal conductivity in the solid and liquid
phase, respectively.The final time internal temperature on the
boundary Γ6 satisfies

𝑢1 (𝑥, 𝑡
∗
) = 𝑢
𝑇

1 (𝑥) on Γ6. (17)
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3. The Solution of Two-Phase Inverse
Stefan Problem

3.1. The Homotopy Perturbation Method. The homotopy per-
turbation method was presented in [13, 14]; it arose as a
combination of two other methods: the perturbation method
and the homotopy technique from topology. Homotopy
perturbation method was applied on differential equations,
partial differential equations, and the direct and inverse
problems of heat transfer by many authors [15–17].

Homotopy perturbation method was used to find the
exact or the approximate solutions of the linear and nonlinear
integral equations [16, 18], the two-dimensional integral
equations [19–21], and the integrodifferential equations [22–
25]. This method enables seeking a solution of the following
operator equation:

𝐵 (𝑤) − 𝜁 (𝑧) = 0 𝑧 ∈ Ω, (18)

where 𝐵 is an operator, 𝑤 is a sought function, and 𝜁 is
a known function on the domain of Ω. The operator 𝐵 is
presented in the form of sum:

𝐵 (V) = 𝑅 (𝑤) +𝑄 (𝑤) , (19)

where 𝑅 defines the linear operator and 𝑄 is the remaining
part of operator 𝐵. So (18) can be written as

𝑅 (𝑤) +𝑄 (𝑤) − 𝜁 (𝑧) = 0 𝑧 ∈ Ω. (20)

We define a new operator 𝐻 which is called the homotopy
operator in the following:

𝐻(V, 𝑝) = (1−𝑝) (𝑅 (V) − 𝑅 (𝑤0)) + 𝑝 (𝐵 (V) − 𝜁 (𝑧))

= 0,
(21)

where 𝑝 ∈ [0, 1] is an embedding parameter, V(𝑧, 𝑝) : Ω ×

[0, 1] → R, and 𝑤0 defines the initial approximation of a
solution of (18); (21) is transformed into the following form:

𝐻(V, 𝑝) = 𝑅 (V) − 𝑅 (𝑤0) + 𝑝𝑅 (𝑤0)

+ 𝑝 (𝑄 (V) − 𝜁 (𝑧)) = 0.
(22)

Therefore,

𝐻(V, 0) = 𝑅 (V) − 𝑅 (𝑤0) ,

𝐻 (V, 1) = 𝑅 (𝑤0) +𝑄 (V) − 𝜁 (𝑧) .
(23)

For 𝑝 = 0 the solution of operator equation 𝐻(V, 0) = 0 is
equivalent to solution of problem 𝑅(V) − 𝑅(𝑤0) = 0, whereas,
for 𝑝 = 1, the solution of operator equation 𝐻(V, 1) = 0 is
equivalent to solution of problem (20). Thus, a monotonous
change of parameter𝑝 from zero to one is just that continuous
change of the trivial problem 𝑅(V) −𝑅(𝑤0) = 0 to the original
problem. In topology, this is called homotopy. According to
the HPM, we assume that the solution of (21) and (22) can be
written as a power series in 𝑝:

V =
∞

∑

𝑖=0
𝑝
𝑖
𝑤
𝑖
= 𝑤0 +𝑝𝑤1 +𝑝

2
𝑤2 + ⋅ ⋅ ⋅ ; (24)

setting 𝑝 = 1, the approximate solution of (20) is obtained:

𝑤 = lim
𝑝→ 1

V =
∞

∑

𝑖=0
𝑤
𝑖
= 𝑤0 +𝑤1 +𝑤2 + ⋅ ⋅ ⋅ ; (25)

in most cases, the series in (25) is convergent, and in [15] an
additional remark on the convergence of this series can be
found.

3.2. The Improved Adomian Decomposition Method. The
Adomian decompositionmethod was presented by Adomian
[26]. This method was used to solve a wide variety of
linear and nonlinear problems. Several other researchers had
developed a modification to the ADM [27].Themodification
usually involves a slight change and it is aimed at improving
the accuracy of the series solution.

The Adomian decomposition method is able to solve a
wide class of nonlinear operator equations [28] in the form

𝐹 (𝑢) = 𝜂, (26)

where 𝐹 : 𝐻 → 𝐺 is a nonlinear operator, 𝜂 is a known
element from Hilbert space 𝐺 and 𝑢 is the sought element
from Hilbert space𝐻. The operator 𝐹(𝑢) can be written as

𝐹 (𝑢) = 𝐿 (𝑢) +𝑅 (𝑢) +𝑁 (𝑢) , (27)

where 𝐿 is an invertible linear operator, 𝑅 is a linear operator,
and𝑁 is a nonlinear operator.The solution of (26) admits the
decomposition into an infinite series of components

𝑢 =

∞

∑

𝑖=0
𝑔
𝑖
; (28)

the nonlinear term𝑁 is equated to an infinite series

𝑁(𝑢) =

∞

∑

𝑖=0
𝐴
𝑖
; (29)

𝐴
𝑛
is the Adomian polynomials, which can be determined by

𝐴0 = 𝑁 (𝑔0) , (30)

𝐴
𝑛
=

1
𝑛!
[
𝑑
𝑛

𝑑𝜆𝑛
𝑁(

𝑛

∑

𝑖=0
𝜆
𝑖
𝑔
𝑖
)]

𝜆=0

𝑛 ≥ 1. (31)

Substituting (28), (29), (30), and (31) into operator equation
(26) and using the inverse operator 𝐿

−1, the following
equation can be obtained:

𝑔0 = 𝑔
∗
+𝐿
−1
(𝜂) ,

𝑔
𝑛
= −𝐿
−1
𝑅 (𝑔
𝑛−1) − 𝐿

−1
(𝐴
𝑛−1) , 𝑛 ≥ 1,

(32)

where 𝑔
∗ is the function dependent on the initial and

boundary conditions.
The improved Adomian decomposition method [27]: it

is important to note that the improved Adomian decompo-
sition method is based on the assumption that the function



4 Mathematical Problems in Engineering

𝑦 = 𝑔
∗
+ 𝐿
−1
(𝜂) can be divided into two parts, namely, 𝑦1

and 𝑦2. Under this assumption, the following equation can
be obtained:

𝑦 = 𝑦1 +𝑦2. (33)

Accordingly, a slight variation is proposed on the components
𝑔0 and 𝑔1. The suggestion is that only the part 𝑦1 is assigned
to the component 𝑔0, whereas the remaining part 𝑦2 is
combined with other terms given in (33) to define 𝑔1.
Consequently, the recursive relation is written as follows:

𝑔0 = 𝑦1,

𝑔1 = 𝑦2 −𝐿
−1
𝑅 (𝑔0) − 𝐿

−1
(𝐴0) ,

𝑔
𝑛+2 = −𝐿

−1
𝑅 (𝑔
𝑛+1) − 𝐿

−1
(𝐴
𝑛+1) 𝑛 ≥ 0.

(34)

3.3. The Solution of the Two-Phase Inverse Stefan Problem.
In this section, we introduce the solution of the two-phase
inverse Stefan problem.We split the two-phase inverse Stefan
problem into two problems. The first is the determination of
𝑢1(𝑥, 𝑡) in domain𝐷1 and the moving interface 𝜉(𝑡) which is
satisfying (7), (8), (10), and (13). Once the boundary 𝑥 = 𝜉(𝑡)
and the heat flux (𝜕𝑢2(𝑥, 𝑡)/𝜕𝑥)|𝑥=𝜉(𝑡) have been obtained, the
second problem for determining the temperature 𝑢2(𝑥, 𝑡) in
domain𝐷2 is solved.

The solution of 𝑢1(𝑥, 𝑡) and moving interface 𝜉(𝑡) based
on HPM: because the heat flux on the moving position is
unknown in this two-phase inverse Stefan problem, theHPM
is used to compute 𝑢1(𝑥, 𝑡). In this section, the homotopy
perturbation method is applied to solve the inverse problem.
We make the homotopy map for (22):

𝐻1 (V1, 𝑝) =
𝜕
2V1
𝜕𝑥2

−
𝜕
2
𝑢1,0

𝜕𝑥2
+𝑝(

𝜕
2
𝑢1,0

𝜕𝑥2
+

1
𝛼1

𝜕V
𝑖

𝜕𝑡
) ; (35)

the solution to this equation,

𝐻1 (V1, 𝑝) = 0, (36)

is sought in the form of a power series in 𝑝 and it satisfies

V1 =
∞

∑

𝑖=0
𝑝
𝑖
𝑢1,𝑖, (37)

where 𝑝 ∈ [0, 1]; by substituting (37) into (36), the following
equation can be obtained:

∞

∑

𝑖=0
𝑝
𝑖
𝜕
2
𝑢1,𝑖

𝜕𝑥2
=
𝜕
2
𝑢1,0

𝜕𝑥2
−𝑝

𝜕
2
𝑢1,0

𝜕𝑥2
+

1
𝛼1

∞

∑

𝑖=1

𝜕𝑢1,𝑖−1

𝜕𝑡
. (38)

Next, by comparing the same powers of parameter 𝑝 in (38),
the following equation can be obtained:

𝜕
2
𝑢1,1

𝜕𝑥2
=

1
𝛼1

𝜕𝑢1,0

𝜕𝑡
−
𝜕
2
𝑢1,0

𝜕𝑥2
, (39)

𝜕
2
𝑢1,𝑖

𝜕𝑥2
=

1
𝛼1

𝜕𝑢1,𝑖−1

𝜕𝑡
for 𝑖 ≥ 2. (40)

Equations (39) and (40) must be supplemented by the
boundary conditions.Therefore, for (39), we set the following
boundary conditions:

𝑢1,0 (0, 𝑡) + 𝑢1,1 (0, 𝑡) = 𝜃1 (𝑡) , (41)

𝑢1,0 (𝜉 (𝑡) , 𝑡) + 𝑢1,1 (𝜉 (𝑡) , 𝑡) = 𝑢
∗
, (42)

and for (40) we set the conditions in the following (𝑖 ≥ 2):

𝑢1,𝑖 (0, 𝑡) = 0, (43)

𝑢1,𝑖 (𝜉 (𝑡) , 𝑡) = 0. (44)

The above conditions are selected. So we give the 𝑛-order
approximate solution:

�̂�1,𝑛 =
𝑛

∑

𝑖=1
𝑢1,𝑖, (45)

because 𝑢1,𝑖 are determined by the unknown function 𝜉(𝑡).
This function is derived in the form

𝜉 (𝑡) =

𝑚

∑

𝑖=1
𝑐
𝑖
𝜓
𝑖
(𝑡) . (46)

Thus we define a cost function 𝐽1 according to (10) and (17):

𝐽1 (𝑐1, . . . , 𝑐𝑚) = ∫
𝜉(0)

0
{𝑢1,𝑛 (𝑥, 0) − 𝜑1 (𝑥)}

2
𝑑𝑥

+∫

𝜉(𝑡
∗

)

0
{𝑢1,𝑛 (𝑥, 𝑡

∗
) − 𝑢
𝑇

1 (𝑥)}
2
𝑑𝑥.

(47)

Therefore, 𝑐
𝑖
are chosen according to the minimum of (47).

The moving interface 𝜉(𝑡) and the solution of 𝑢1 in domain
𝐷1 can be obtained.

The boundary condition (13) on the boundary Γ3 and the
condition of temperature continuity (15) should be fulfilled
for 𝑛 ≥ 1. In this way, while looking for the solution of this
problem in domain 𝐷1, the initial approximation 𝑢1,1 will be
found by solving the system of (39) with conditions (41) and
(42). Conversely, functions𝑢1,𝑖, 𝑖 = 1, 2, . . ., are determined by
the recurrent solution of (40) with conditions (42) and (44).
Consequently, themoving interface 𝜉(𝑡) and the solution of𝑢1
in domain𝐷1 can be obtained by the homotopy perturbation
methodwith optimization. According to the Stefan condition
(16) on the phase changemoving interface Γ5, the temperature
𝑢2(𝑥, 𝑡) in domain 𝐷2 can be recovered by IADM with
optimization method.

The solution of 𝑢2(𝑥, 𝑡) based on IADM with optimiza-
tion: in this problem,we consider the operator equations (27),
where

𝐿 (𝑢2) =
𝜕
2
𝑢2

𝜕𝑥2
,

𝑅 (𝑢2) = −
1
𝛼2

𝜕𝑢2
𝜕𝑡

,

𝑁 (𝑢2) = 0,

𝜂 = 0.

(48)
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The inverse operator 𝐿−1 is given by the following equation:

𝐿
−1
(𝑢2) = ∫

𝑥

𝑑

∫

𝑥

𝜉(𝑡)

𝑢2 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑥. (49)

The boundary condition and the Stefan condition from (14)
are used to obtain the following equation:

𝐿
−1
𝐿(

𝜕
2
𝑢2

𝜕𝑥2
) = 𝑢2 (𝑥, 𝑡) − 𝜃 (𝑡)

−
𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑥

𝑥=𝜉(𝑡)

(𝑥 − 𝑑) .

(50)

Hence

𝑔
∗
= 𝜃 (𝑡) +

𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑥

𝑥=𝜉(𝑡)

(𝑥 − 𝑑) ; (51)

then the following recursive relation can be obtained:

𝑔0 = 𝑢2 (𝑑, 𝑡) = 𝜃 (𝑡) ,

𝑔1 =
𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑥

𝑥=𝜉(𝑡)

(𝑥 − 𝑑)

+
1
𝛼2

∫

𝑥

𝑑

∫

𝑥

𝜉(𝑡)

𝜕𝑔0
𝜕𝑡

𝑑𝑥 𝑑𝑥,

𝑔
𝑛+2 =

1
𝛼2

∫

𝑥

𝑑

∫

𝑥

𝜉(𝑡)

𝜕𝑔
𝑛−1
𝜕𝑡

𝑑𝑥 𝑑𝑥, 𝑛 ≥ 0;

(52)

because 𝑢1(𝑥, 𝑡) and 𝜉(𝑡) are determined by the above
HPM with optimization method, (𝜕𝑢2(𝑥, 𝑡)/𝜕𝑥)|𝑥=𝜉(𝑡) can be
obtained by (16). An approximation solution is expressed in
the form

𝑢2,𝑛 =
𝑛

∑

𝑖=0
𝑔
𝑖

𝑛 ∈ 𝑁, (53)

and in this inverse Stefan problem, 𝜃(𝑡) is unknown on the
boundary Γ4 and it is derived in the following form:

𝜃 (𝑡) =

𝑚

∑

𝑖=1
𝑞
𝑖
𝜙
𝑖
(𝑡) , (54)

where 𝑞
𝑖
∈ 𝑅 and 𝜙

𝑖
(𝑡) are the basis function.The coefficients

𝑞
𝑖
are selected to show minimal deviation of function (55)

from conditions (11) and (15). Thus 𝑞
𝑖
are chosen according

to the minimum of the following functional:

𝐽2 (𝑞1, . . . , 𝑞𝑚) = ∫
𝑡
∗

0
{𝑢2,𝑛 (𝜉 (𝑡) , 𝑡) − 𝑢

∗
}
2
𝑑𝑡

+∫

𝑑

𝜉(0)
{𝑢2,𝑛 (𝑥, 0) − 𝜑2 (𝑥)}

2
𝑑𝑥,

(55)

where 𝐽2(𝑞1, . . . , 𝑞𝑚) is a nonlinear function. The optimiza-
tion method plays a very important role in solving this two-
phase inverse Stefan problem. Therefore, a modified spectral

DY conjugate gradientmethod is presented. In Section 4, this
optimization method is introduced.

Remark.The IADMwith optimizationmethod can be used to
solve the direct and inverse one-phase Stefan problem which
is designed in the literature [8, 9]. And this method is better
than ADM with optimization method. In Section 5, we give
two examples of one-phase Stefan problem to illustrate the
effectiveness of the IADM with optimization method.

4. A Modified Spectral DY Conjugate
Gradient Method

Conjugate gradient methods are very efficient for solving
the unconstrained optimization problemmin

𝑥∈𝑅
𝑛

𝑓(𝑥). Their
iterative formula is given as follows:

𝑥
𝑘+1 = 𝑥𝑘 +𝛼𝑘𝑑𝑘,

𝑑
𝑘
=

{

{

{

−𝑔
𝑘
, if 𝑘 = 1;

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

if 𝑘 ≥ 1,

(56)

where step-size 𝛼
𝑘
is positive, 𝑔

𝑘
= ∇𝑓(𝑥

𝑘
), and 𝛽

𝑘
is a scalar.

In addition, 𝛼
𝑘
is a step length which is calculated by the line

search. 𝛽
𝑘
is a very important factor in conjugate gradient

methods; the FR, PRP, DY, and CD methods [29] are used
for choosing this scalar. Among them, the DY method is
regarded as one of the efficient conjugate gradient methods.
The scalar 𝛽

𝑘
is given by

𝛽
DY
𝑘

=

𝑔𝑘


𝑑
𝑇

𝑘−1𝑦𝑘−1
, (57)

where 𝑦
𝑘−1 = 𝑔

𝑘
− 𝑔
𝑘−1 and ‖ ⋅ ‖ stands for Euclidean

norm. Recently, Birgin andMartłnez [30] presented a spectral
conjugate gradient method which is combining conjugate
gradient method and spectral gradient method. And the
direction 𝑑

𝑘
is obtained by

𝑑
𝑘
= − 𝜃
𝑘
𝑔
𝑘
+𝛽
𝑘
𝑑
𝑘−1,

𝛽
𝑘
=
(𝜃
𝑘
𝑦
𝑘−1 − 𝑠𝑘−1)

𝑇

𝑔
𝑘

𝑑
𝑇

𝑘−1𝑦𝑘−1
,

(58)

where 𝜃
𝑘
= 𝑠
𝑇

𝑘−1𝑠𝑘−1/𝑠
𝑇

𝑘−1𝑦𝑘−1 is a parameter with 𝑠
𝑘−1 =

𝑥
𝑘
− 𝑥
𝑘−1 and 𝜃𝑘 is regarded as spectral gradient. However,

according to [31], the spectral conjugate gradient method can
not guarantee producing the descent directions.

Based on the above analysis, in the following, we describe
a modified spectral DY conjugate gradient method and give
the convergence of this method with the Wolfe type line
search rules.

4.1. The Modified Spectral DY Conjugate Gradient Method.
The new method is introduced:

𝑑
𝑘
=

{

{

{

−𝑔
𝑘
, if 𝑘 = 1;

−𝜃
𝑘
𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1 if 𝑘 ≥ 1,

(59)
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where 𝜃
𝑘
= 1 + ‖𝑔

𝑘−1‖
2
/‖𝑔
𝑘
‖
2 and 𝛽

𝑘
= 𝛽

DY
𝑘

. This method is
called the MDY method.

Algorithm 1. Consider the following.

Step 1. The following are given: 𝑥0 ∈ 𝑅
𝑛, 𝜀 > 0, and the max

iteration step𝑁max.

Step 2. Set 𝑘 = 1; compute 𝑑1 = −𝑔1 = −∇𝑓(𝑥0); if ‖𝑔1‖ ≤ 𝜀,
then stop.

Step 3. Find 𝛼
𝑘
according to Wolfe type line search rule.

Step 4. Let 𝑥
𝑘+1 = 𝑥𝑘+𝛼𝑘𝑑𝑘 and 𝑔𝑘+1 = 𝑔(𝑥𝑘+1); if ‖𝑔𝑘+1‖ ≤ 𝜀,

then stop.

Step 5. Compute 𝑑
𝑘+1 by (59).

Step 6. Set 𝑘 = 𝑘 + 1; go to Step 3.

4.2. Convergence Analysis. From the above, the MDY con-
jugate gradient method provides a descent direction for the
objective function. In the following, we give the convergence
of this algorithmwith theWolfe type line search rules. Firstly,
we introduce some assumptions:

(i) The level setΩ = {𝑥 ∈ 𝑅
𝑛
| 𝑓(𝑥) ≤ 𝑓(𝑥1)} is bounded.

(ii) In some neighborhood 𝑁 of Ω, 𝑓(𝑥) is continuously
differentiable and its gradient is Lipschitz continuous;
namely, there exists a constant 𝐿 > 0 such that
𝑔 (𝑥) − 𝑔 (𝑦)

 ≤ 𝐿
𝑥 −𝑦

 , ∀𝑥, 𝑦 ∈ 𝑁. (60)

It is implied from the above assumptions that there exist two
positive constants 𝛽 and 𝛾 such that

‖𝑥‖ ≤ 𝐵,

𝑔 (𝑥)
 ≤ 𝛾,

∀𝑥 ∈ Ω.

(61)

TheWolfe type line search [29] is

𝑓 (𝑥
𝑘
) −𝑓 (𝑥

𝑘
+𝛼
𝑘
𝑑
𝑘
) ≥ 𝛿𝛼

2
𝑘

𝑑𝑘


2

, (62)

𝑔 (𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘
≥ − 2𝛿𝛼

𝑘

𝑑𝑘


2

, (63)

and the strong Wolfe line search is

𝑓 (𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓 (𝑥

𝑘
) + 𝛿𝛼

𝑘
𝑔
𝑇

𝑘
𝑑
𝑘
, (64)


𝑔 (𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘


≤

𝜎𝑔
𝑇

𝑘
𝑑
𝑘


, (65)

where 0 < 𝛿 < 𝜎 < 1.

Lemma 2. Let the sequences {𝑔
𝑘
} and {𝑑

𝑘
} be generated by the

proposed algorithm (Algorithm 1) with Wolfe type line search
rules; then 𝑔𝑇

𝑘
𝑑
𝑘
< 0 and

𝛽
DY
𝑘

≤
𝑔
𝑇

𝑘
𝑑
𝑘

𝑔
𝑇

𝑘−1𝑑𝑘−1
. (66)

Proof. According to (59), we have

𝑔
𝑇

𝑘
𝑑
𝑘
= − 𝜃
𝑘

𝑔𝑘


2

+𝛽
DY
𝑘
𝑔
𝑇

𝑘
𝑑
𝑘−1

= 𝛽
DY
𝑘

[−𝜃
𝑘
𝑑
𝑘−1 (𝑔

𝑇

𝑘
−𝑔
𝑇

𝑘−1) + 𝑔
𝑇

𝑘
𝑑
𝑘−1]

= 𝛽
DY
𝑘

[𝑔
𝑇

𝑘−1𝑑𝑘−1 −

𝑔𝑘−1


2

𝑑
𝑘−1𝑦
𝑇

𝑘−1
𝑔𝑘



2
]

≤ 𝛽
DY
𝑘
𝑔
𝑇

𝑘−1𝑑𝑘−1.

(67)

If we choose 𝑘 = 1, then

𝑔
𝑇

1 𝑑1 = −
𝑔1



2

< 0; (68)

according to (65), we have

𝑦
𝑇

1 𝑑1 ≥ (𝜎 − 1) 𝑔
𝑇

1 𝑑1 ≥ 0. (69)

So 𝛽DY2 ≥ 0. For 𝑘 > 1, according to (67), we have

𝑔
𝑇

𝑘
𝑑
𝑘
< 0, (70)

by induction. So we obtain

𝛽
DY
𝑘

≤
𝑔
𝑇

𝑘
𝑑
𝑘

𝑔
𝑇

𝑘−1𝑑𝑘−1
; (71)

the proof is completed.

Theorem 3. Let the sequences {𝑔
𝑘
} and {𝑑

𝑘
} be generated

by the proposed algorithm (Algorithm 1) with Wolfe type line
search rules; then

𝑔
𝑇

𝑘
𝑑
𝑘
≤ −𝐶 ‖ 𝑔

𝑘
‖
2
, (72)

where 𝐶 > 0 is a constant.

Proof. According to (59), we have

𝑔
𝑇

𝑘
𝑑
𝑘
= − 𝜃
𝑘

𝑔𝑘


2

+𝛽
DY
𝑘
𝑔
𝑇

𝑘
𝑑
𝑘−1

= −
𝑔𝑘−1



2

+(
𝑔
𝑇

𝑘
𝑑
𝑘−1

𝑑
𝑇

𝑘−1𝑦𝑘−1
− 1) 𝑔𝑘



2

≤ (
𝑔
𝑇

𝑘−1𝑑𝑘−1

𝑑
𝑇

𝑘−1𝑦𝑘−1
)
𝑔𝑘



2

.

(73)

From the Wolfe type line search rules (65), we can obtain

− (𝜎 + 1) 𝑔𝑇
𝑘−1𝑑𝑘−1 ≥ 𝑑

𝑇

𝑘−1 (𝑔𝑘 −𝑔𝑘−1) > 0; (74)

according to (73) and (74), we have

𝑔
𝑇

𝑘
𝑑
𝑘
≤ −

1
𝜎 + 1

𝑔𝑘


2

; (75)

we define 𝐶 = 1/(𝜎 + 1). Therefore, we can obtain inequality
(72).
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Lemma 4. Suppose that assumptions (i) and (ii) hold; let {𝑔
𝑘
}

and {𝑑
𝑘
} be generated by the proposed algorithm (Algorithm 1)

with Wolfe type line search rules (62) and (63); then one has

∑

𝑘≥0

(𝑔
𝑇

𝑘
𝑑
𝑘
)
2

𝑑𝑘


2
≤ ∞. (76)

Proof. From assumption (ii), we have

𝑔 (𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
)
𝑇

−𝑔 (𝑥
𝑘
)
𝑇

≤ 𝐿

𝛼𝑘𝑑𝑘
 , (77)

so we can obtain

𝑔 (𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘
−𝑔 (𝑥

𝑘
)
𝑇

𝑑
𝑘


≤ 𝐿𝛼
𝑘

𝑑𝑘


2

. (78)

From inequality (63), we obtain

2𝜎𝛼
𝑘

𝑑𝑘


2

≥ −𝑔 (𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘
. (79)

According to inequalities (78) and (79), we have

(2𝜎+𝐿) 𝛼
𝑘

𝑑𝑘


2
≥ −𝑔
𝑇

𝑘
𝑑
𝑘
. (80)

So we can obtain

𝛼
𝑘

𝑑𝑘
 ≥

1
2𝜎 + 𝐿

(
−𝑔
𝑇

𝑘
𝑑
𝑘

𝑑𝑘


) . (81)

Owing to inequality (81), we have

∞

∑

𝑘=1
(
−𝑔
𝑇

𝑘
𝑑
𝑘

𝑑𝑘


) ≤ (2𝜎+𝐿)2
∞

∑

𝑘=1
𝛼
2
𝑘

𝑑𝑘


2

≤ (2𝜎+𝐿)2
∞

∑

𝑘=1
{𝑓 (𝑥
𝑘
) −𝑓 (𝑥

𝑘+1)}

< +∞.

(82)

From (82), we can obtain inequality (76).

Theorem 5. Suppose that assumptions (i) and (ii) hold. Let
{𝑔
𝑘
} and {𝑑

𝑘
} be generated by the algorithm with Wolfe type

line search rules. Then one has

lim inf
𝑘→∞

𝑔𝑘
 = 0. (83)

Proof. By contradiction, we suppose that there exists a posi-
tive constant 𝛾 > 0, such that

𝑔𝑘
 ≥ 𝛾 (84)

holds for all 𝑘 > 1. From (59), we have

𝑑𝑘


2
= − 2𝜃

𝑘
𝑑
𝑇

𝑘
𝑔
𝑘
+ (𝛽

DY
𝑘
)
2 𝑑𝑘−1



2
− 𝜃

2
𝑘

𝑔𝑘


2
. (85)

According to Lemma 4 and the above equation, we have

𝑑𝑘


2
≤ (

𝑔
𝑇

𝑘
𝑑
𝑘

𝑔
𝑇

𝑘−1𝑑𝑘−1
)

2
𝑑𝑘−1



2
− 𝜃

2
𝑘

𝑔𝑘


2
− 2𝜃
𝑘
𝑑
𝑇

𝑘
𝑔
𝑘
. (86)

Multiplying the above inequality by 1/(𝑔𝑇
𝑘
𝑑
𝑘
)
2, we have

𝑑𝑘


2

(𝑔
𝑇

𝑘
𝑑
𝑘
)
2 ≤

𝑑𝑘−1


2

(𝑔
𝑇

𝑘−1𝑑𝑘−1)
2 −(

𝜃
𝑘

𝑔𝑘


𝑔
𝑇

𝑘
𝑑
𝑘

+
1

𝑔𝑘


)

2

+
1

𝑔𝑘


2
≤

𝑑𝑘−1


2

(𝑔
𝑇

𝑘−1𝑑𝑘−1)
2 +

1
𝑔𝑘



2

≤

𝑘

∑

𝑖=1

1
𝑔

2
𝑖



2
≤

1
𝛾
2 𝑘.

(87)

Then from inequality (83), we have

∞

∑

𝑘=1

(𝑔
𝑇

𝑘
𝑑
𝑘
)
2

𝑔𝑘


2
≥ 𝛾

2
∞

∑

𝑘=1

1
𝑘
= ∞, (88)

which contradicts (76). Therefore, (83) holds.

5. Numerical Simulation Experiments

In order to illustrate the validity of the IADM with opti-
mization method, we introduce the one-phase inverse Stefan
problem in Example 1. From the literature [9], we know the
inverse Stefan problem consists in the calculation of the
temperature distribution in the domain and in the recon-
struction of the temperature distribution on the boundary,
when the position of the functionwhich describes themoving
interface is known. And then, in Example 2, we solve the two-
phase inverse Stefan problem based on the hybrid method
which combines the Adomian decomposition method with
the homotopy perturbation method.

Example 1. In this example, the one-phase inverse Stefan
problem [9] is taken for the following values of parameters:
𝛼1 = 1, 𝑘1 = 1, 𝑢∗ = 1, 𝑡∗ = 1/2, 𝜅 = 1/𝛼1, 𝜑1(𝑥) = exp(𝛼1𝑥),
and 𝑢𝑇1 (𝑥) = exp(𝛼1/2 − 𝑥). Then the exact solution of such
formulated one-phase Stefan problem can be found from the
following functions:

𝑢1 (𝑥, 𝑡) = exp (𝛼1𝑡 − 𝑥) ,

𝜃1 (𝑡) = exp (𝛼1𝑡) ,

𝜉 (𝑡) = 𝛼1𝑡.

(89)

The following equation,

𝜙
𝑖
(𝑡) = exp (− (𝑖 − 1) 𝑡) 𝑖 = 1, 2, . . . , 𝑚, (90)

is taken as basis function. The approximate solutions are
compared with the exact solution and the values of the
absolute errors are calculated from

𝛿
ℎ
= {∫

𝑡
∗

0
[ℎ
𝑒
(𝑡) − ℎ

𝑟
(𝑡)] 𝑑𝑡}

1/2

,

𝛿
𝑢
= {∫∫

𝐷

[𝑢
𝑒
(𝑥, 𝑡) − 𝑢

𝑛
(𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡}

1/2
,

(91)
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where ℎ(𝑡) ∈ {𝜃(𝑡), 𝜉(𝑡)} (𝜃(𝑡) stands for the boundary
condition on Γ1 in the literature [9] and 𝜉(𝑡) is the moving
interface), 𝐷 is the domain of the temperature distribu-
tion, ℎ

𝑒
(𝑡) is the exact value of function ℎ(𝑡), ℎ

𝑟
(𝑡) is the

approximate value of function ℎ(𝑡), 𝑢
𝑒
(𝑥, 𝑡) is the exact

distribution of the temperature in the domain, and 𝑢
𝑛
(𝑥, 𝑡)

is the reconstructed distribution of temperature. Percentage
relative errors are calculated from

Δ
ℎ
=

𝛿
ℎ

√∫
𝑡
∗

0 [ℎ
𝑒
(𝑡)]

2
𝑑𝑡

× 100%,

Δ
𝑢
=

𝛿
𝑢

√∫∫
𝐷
[𝑢
𝑒
(𝑥, 𝑡)]

2
𝑑𝑥 𝑑𝑡

× 100%.
(92)

The comparison of the ADM and the IADM for recon-
structing distribution of the temperature on boundary Γ1 in
the literature [9] is shown in Figure 3 for 𝑛 = 1, 𝑛 = 2 and
𝑚 = 2, 𝑚 = 3. From Figure 3, the method based on the
improved Adomian decompositionmethod (IADM) is better
than the Adomian decomposition method (ADM).

Example 2. This example is introduced to illustrate the effec-
tiveness of the hybrid method which combines the Adomian
decomposition method with the homotopy perturbation
method, which is presented in the previous sections. Here, we
consider an example of the two-phase inverse Stefan problem
[12], in which 𝛼1 = 5/2, 𝛼2 = 5/4, 𝑘1 = 6, 𝑘2 = 2, 𝜅 = 4/5,
𝑢
∗
= 1, 𝑡∗ = 1, 𝑑 = 3, 𝑠 = 3/2, and 𝜑1(𝑥) = 𝑒

(3−2𝑥)/10,
𝜑2(𝑥) = 𝑒

(3−2𝑥)/5, 𝜃1(𝑡) = 𝑒
(𝑡+3)/10, and 𝑢𝑇1 (𝑥) = 𝑒

(4−2𝑥)/10.
The exact solution of this inverse Stefan problem is described
by the following functions:

𝑢1 (𝑥, 𝑡) = 𝑒
(𝑡−2𝑥+3)/10

,

𝑢2 (𝑥, 𝑡) = 𝑒
(𝑡−2𝑥+3)/5

,

𝜃 (𝑡) = 𝑒
(𝑡−3)/5

,

𝜉 (𝑡) =
(𝑡 + 3)

2
.

(93)

First, we use HPM with optimization method to solve
𝑢1(𝑥, 𝑡) and 𝜉(𝑡). As the initial approximation 𝑢1,0, this fulfills
the initial condition:

𝑢1,0 (𝑥, 𝑡) = 𝑒
(3−2𝑥)/10

. (94)

By using the function 𝑢1,0 in (39) and the conditions (41) and
(42), the following system of equations can be obtained:

𝜕
2
𝑢1,1 (𝑥, 𝑡)

𝜕𝑥2
= −

1
25
𝑒
(3−2𝑥)/10

. (95)

With the conditions

𝑢1,1 (0, 𝑡) = 𝑒
3/10

(𝑒
(𝑡/10)−1

) ,

𝑢1,1 (𝑥, 𝑡)
𝑥=𝜉(𝑡)

= 1− 𝑒(3−2𝜉(𝑡))/10,
(96)

this system of equations can be solved. And the solution of
this system is shown in the following:

𝑢1,1 (𝑥, 𝑡) = − 𝑒
3/10−𝑥/5

+
1 − 𝑒(3+𝑡)/10

𝜉 (𝑡)
𝑥 + 𝑒
(𝑡+3)/10

. (97)

Next, we designate the functions 𝑢1,𝑖 for 𝑖 ≥ 2 in the
following:

𝜕
2
𝑢1,𝑖

𝜕𝑥2
=
2
5
𝜕𝑢1,𝑖−1

𝜕𝑡
, (98)

and the conditions are shown:

𝑢1,𝑖 (0, 𝑡) = 0,

𝑢1,𝑖 (𝑥, 𝑡)
𝑥=𝜉(𝑡)

= 0.
(99)

By using (98) and the boundary conditions (99), we derive
𝑢1,𝑖(𝑥, 𝑡) for 𝑖 ≥ 2; according to (45), the approximate solution
𝑢1(𝑥, 𝑡) is obtained. Here, we define basis functions according
to (46):

𝜓
𝑖
(𝑡) = 𝑡

𝑖−1
𝑖 = 1, . . . , 𝑚. (100)

We use the modified spectral DY (MDY) conjugate gradient
method to solve function (47). The solution of moving inter-
face 𝜉(𝑡) is shown in Figure 4. So the temperature 𝑢1(𝑥, 𝑡) is
derived in domain𝐷1. Values of the error in reconstruction of
the position of the moving interface 𝜉(𝑡) and the temperature
distribution 𝑢1(𝑥, 𝑡) are shown in Table 1.

In order to verify the validity of the modified spectral
DY (MDY) conjugate gradient method, we choose 𝑛 = 2,
𝑚 = 2, 𝜀 = 10−4, the initial point 𝑐0 = (2.2, 2.5), and the
max step number𝑁max = 100. The comparison results of DY
and MDY are shown in Figure 5 and Table 2. Comparing to
DY conjugate gradient method, the MDY conjugate gradient
method is slightly better.

The moving interface 𝜉(𝑡) and 𝑢1(𝑥, 𝑡) in domain 𝐷1
are obtained by the homotopy perturbation method with
optimization. Next, with the help of condition (16), we can
determine the temperature 𝑢2(𝑥, 𝑡) in domain 𝐷2 by the
improved Adomian decomposition method (IADM) with
optimization. Without loss of generality, we choose the basis
functions

𝜙
𝑖
(𝑡) = 𝑡

𝑖−1
, 𝑖 = 1, . . . , 𝑚. (101)

The exact and the reconstructed distribution of the
temperature on boundary Γ4 are shown in Figure 6 for
different number of basis functions 𝜙

𝑖
(𝑡). And the errors in

reconstruction of the temperature 𝜃(𝑡) (on boundary Γ4 in
Figure 2) and the temperature distribution 𝑢2(𝑥, 𝑡) are shown
in Table 3.The inversion results of the function 𝜃(𝑡)match the
exact value very well.

The measured temperature 𝑢𝑇1 (𝑥) at the final time 𝑡∗ on
the boundary Γ6 in Figure 2 is perturbed by the random
error. So in the next section we consider the influence of
measurement errors on the results. We set the measured
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Table 1: Values of the error in reconstruction of the position of the moving interface and the temperature distribution 𝑢1(𝑥, 𝑡).

HPM 𝛿
𝜉

Δ
𝜉

𝛿
𝑢1

Δ
𝑢1

𝑛 = 2, 𝑚 = 2 0.108712413045 0.61599738364 0.116978666115 0.109525848228
𝑛 = 2, 𝑚 = 3 0.210642147214 1.19356205914 0.299360015653 0.280470260729
𝑛 = 2, 𝑚 = 3 0.015061910569 0.08534533677 0.102526697222 0.096057215386

Exact
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Figure 3: The reconstructing distribution of the temperature on boundary (Γ1 in the literature [9]) for 𝑛 = 1, 𝑛 = 2 and𝑚 = 2,𝑚 = 3.

temperature 𝑢𝑇1 (𝑥)with an error of 1% and 3%.We can obtain
the moving interface 𝜉(𝑡) and 𝜃(𝑡); the results are shown in
Figures 7 and 8.

In Figures 7 and 8, the exact and the reconstructed
distribution of the temperature on moving interface 𝜉(𝑡) and

the boundary Γ4 are shown, and the errors in reconstruction
of the function describing themoving interface and boundary
conditions are compiled in Table 4. The obtained recon-
struction results illustrate that the functions 𝜉(𝑡) and 𝜃(𝑡)

are reconstructed very well. From the results, the hybrid
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Figure 4: The position of moving interface 𝜉(𝑡).

Table 2: The comparison results of DY and MDY.

Algorithm Iteration numbers Optimization value
DY 50 (1.52, 0.48)
MDY 23 (1.51, 0.501)

method with optimization is stable with the input errors.
When the input data are contaminated by the errors, the error
of the reconstructed boundary conditions does not exceed the
error of the input data.

6. Conclusion

Based on the homotopy perturbation method (HPM) with
the improved Adomian decomposition method (IADM), a
hybrid method with optimization is proposed to solve the
two-phase inverse Stefan problem. This problem is more
realistic from the practical point of view. The simulation
experiment is used to verify this method. Experimental
results match the exact value very well. Furthermore, this
investigated method can also be used for solving one-phase
direct Stefan problems.

Optimization method is very crucial in this paper,
so a modified spectral DY conjugate gradient method is
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Table 3: Values of the error in reconstruction of the temperature 𝜃(𝑡) on boundary Γ4 in Figure 2 and the temperature distribution 𝑢2(𝑥, 𝑡).

IADM 𝛿
𝜃(𝑡)

Δ
𝜃(𝑡)

𝛿
𝑢2(𝑥,𝑡)

Δ
𝑢2(𝑥,𝑡)

𝑛 = 2, 𝑚 = 2 0.0125536846 0.20525000280 0.649823007 0.5444948151
𝑛 = 2, 𝑚 = 3 0.00907338187 0.14834781217 0.717820233 0.6014705398

Table 4: Values of the error in reconstruction the moving interface 𝜉(𝑡) and the temperature 𝜃(𝑡) on boundary Γ4 in Figure 2.

Perturbation error on the 𝑢𝑇1 (𝑥) 𝛿
𝜉(𝑡)

Δ
𝜉(𝑡)

𝛿
𝜃(𝑡)

Δ
𝜃(𝑡)

1% error 0.0968150593 0.771949532 0.032490326 0.7475026727
3% error 0.3725894970 2.9708217908 0.061914613 1.4244652005
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Figure 5: The cost function 𝐽1 changes with the increasing of
iteration numbers.
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Figure 6: The reconstructing distribution of the temperature 𝜃(𝑡)
on boundary Γ4 in Figure 2.
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Figure 7: The reconstructed position of moving interface 𝜉(𝑡).
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Figure 8:The reconstructing distribution of the temperature 𝜃(𝑡) on
boundary Γ4 in Figure 2.
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presented. Andwe give the convergence of thisMDYmethod.
Simulation experiment illustrates the validity of this opti-
mization method.
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