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When dealing with linear systems feedback interconnected with memoryless nonlinearities, a natural control strategy is making
the overall dynamics linear at first and then designing a linear controller for the remaining linear dynamics. By canceling the
original nonlinearity via a first feedback loop, global linearization can be achieved. However, when the controller is not capable of
exactly canceling the nonlinearity, such control strategy may provide unsatisfactory performance or even induce instability. Here,
the interplay between accuracy of nonlinearity approximation, quality of state estimation, and robustness of linear controller is
investigated and explicit conditions for stability are derived. An alternative controller design based on such conditions is proposed
and its effectiveness is compared with standard methods on a benchmark system.

1. Introduction and Motivations

One of the most prolific areas of interest in the nonlinear
control theory deals with the existence of coordinate changes
and nonlinear inputs which are capable of making the com-
plete system linear, so that themathematical tools of the linear
control framework can be successfully exploited. The idea of
suppressing the process nonlinearities bymeans of a properly
designed controller dates back to the early stages of the
control theory [1], and it can bewell illustrated by considering
a system in the Lur’e form [2, ch. 7], which features a linear
dynamic part feedback interconnected through a static (or
memoryless) nonlinear operator:

�̇� = 𝐴𝑥 + 𝐵 (𝑢 − 𝜓 (𝑥)) . (1)

Such a system, indeed, can be globally feedback linearized by
exploiting the control input

𝑢 = 𝜓 (𝑥) − 𝑤 (2)

that transforms the original nonlinear model into the new
linear system

�̇� = 𝐴𝑥 − 𝐵𝑤, (3)

which can be controlled through 𝑤 using standard linear
control techniques [3]. Observe that (3) is qualitatively dif-
ferent from the direct linearization of (1) around the desired
nominal solution [2, ch. 4] as it has global validity. Despite
this noteworthy result, the nonlinear input (2) can only be
used under two very strict conditions which often prevent
its application to real cases: (i) the nonlinearity 𝜓 must be
exactly known a priori and (ii) the controller must be capable
of exactly reproducing it.

The extension to generic systems, for which only an
output 𝑦 = 𝑔(𝑥) is measurable, is known as output feedback
linearization and it exploits a linearizing control input of the
form 𝑢 = 𝑎(𝑥) + 𝑏(𝑥)𝑤 to make the relationship between
the output 𝑦 and the new input 𝑤 linear. In his pioneering
work, Krener was the first providing sufficient conditions
for the exact cancellation of the nonlinearity [4], while the
complete solution of the output feedback problem was found
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later by Isidori [5]. The state feedback linearization, instead,
aims to design a suitable change of coordinates such that
the transformed system turns out to be locally diffeomorphic
to a linear system. Necessary and sufficient conditions for
the single input case were already presented in the work
of Krener [4], while the multiple inputs problem has been
independently solved by Su [6] and Hunt et al. [7]. Moreover,
a large number of techniques have been developed to partially
feedback linearize the system when it does not satisfy the
previous scenarios (see, e.g., [8, 9] and the references therein).

Despite the rigorous results available in the literature, all
the feedback linearization methods suffer from the lack of
robustness with respect to inexact nonlinearity cancellations
when applied to real world cases. Indeed, the inexact cancel-
lations give rise to unmodeled dynamics, which usually have
detrimental effects on the controlled system performance,
and which can even lead to instability (see, e.g., [10–12]
and the references therein). Unfortunately, such an issue is
quite common when dealing with real problems, where the
exact cancellation of the nonlinearity may not be possible
for several complications. The detrimental effect of inexact
nonlinearity estimation has been highlighted in autopilot
design [13], aeroelastic systems [14, 15] and DCmotor control
[16], just to cite a few examples. With reference to system (1)-
(2) the following negative scenarios can occur.

(1) The nonlinear operator 𝜓 cannot be completely and
exactly known a priori. For instance, only a limited
set of sample points are available, or just its lower and
upper bound can be experimentally investigated.

(2) The system state 𝑥 cannot be directly observed and
must be reconstructed. The use of a state observer
negatively affects the cancellation, since the state
estimates may deviate from the true values during
transients.

(3) The control input 𝑢 can be designed by using only
a finite set of basis functions, preventing a perfect
reproduction of the nonlinear operator 𝜓.

These issues can be well illustrated by considering a Lur’e
system of the form

�̇� = 𝐴𝑥 + 𝐵 (𝑢 − 𝜓 (𝑧)) ,

𝑧 = 𝐷𝑥,

𝑦 = 𝐶𝑥,

(4)

where 𝑥 ∈ R𝑛𝑥 is the state, 𝑢 ∈ R the control input, 𝑦 ∈ R𝑛𝑦

the measured output, and 𝑧 ∈ R the actual argument of the
nonlinear operator that does not necessarily coincide with
𝑦. Here, for the sake of the simplicity, let us assume that
𝜓 : R → R, although the general case 𝜓 : R𝑛𝑧 → R𝑛𝑢

is straightforward by considering multidimensional signals
for 𝑧 and the signals (𝜀, 𝑒) defined in Section 2.1. Finally,
without any loss of generality, suppose that 𝜓(0) = 0 so
that the desired equilibrium sits on the origin of the state
space.

Let us assume that the pair (𝐴, 𝐶) is observable. The
standard theory then recommends the use of a state observer

̇

�̂� = 𝐴𝑥 + 𝐵 (𝑢 − 𝜙 (�̂�)) − 𝐿 (𝑦 − 𝑦) ,

𝑦 = 𝐶𝑥,

�̂� = 𝐷𝑥

(5)

to recover the missing information on 𝑥 and 𝑧 [17]. Hence, if
(𝐴, 𝐵) is also controllable, the control input can be designed
as

𝑢 = −𝐾𝑥 + 𝜙 (�̂�) , (6)

where the function 𝜙 is the approximation of the nonlinearity
𝜓. Here the controller might not be able to exactly reproduce
the actual nonlinear operator 𝜓 via 𝜙, potentially causing an
inexact nonlinearity cancellation.However,𝜙 is still supposed
to satisfy at least the condition 𝜙(0) = 0, in order to preserve
the equilibrium in the origin. By defining the cancellation
residual

𝜀 (�̂�, 𝑧) := 𝜙 (�̂�) − 𝜓 (𝑧) , (7)

and the state estimation error

𝜁 := 𝑥 − 𝑥,

𝜌 := 𝐷𝜁,

(8)

the controlled system in the traditional framework can be
written as

[

�̇�

̇

𝜁

] = [

𝐴 − 𝐵𝐾 −𝐵𝐾

0

𝑛
𝑥
×𝑛
𝑥

𝐴 − 𝐿𝐶

][

𝑥

𝜁

] + [

𝐵

−𝐵

] 𝜀,

[

𝑧

𝜌

] = [

𝐷 0

𝑇

𝑛
𝑥

0

𝑇

𝑛
𝑥

𝐷

][

𝑥

𝜁

] .

(9)

In Figure 1 the corresponding block diagram is reported. It
is worth noticing that when the cancellation residual is the
null signal, that is, 𝜀 ≡ 0, the separation principle holds
and therefore the linear dynamics of the controlled system
can be arbitrarily set by separately choosing 𝐾 and 𝐿 [18,
ch. 16]. Unfortunately, such condition is hardly met in any
real world scenario, since it requires to achieve both exact
nonlinearity cancellation and perfect state estimation. Hence,
in themost common situations the cancellation residual plays
the role of a disturbance that simultaneously affects both the
original system state and its estimation, thus introducing a
mutual interplay between the controller and the observer that
prevents one to independently design𝐾 and𝐿.The stability of
the system (7)–(9) under the interference of the cancellation
residual 𝜀 can be investigated through standard approaches
by observing that it is in (extended) Lur’e form; that is, it
consists of a linear subsystem feedback interconnected with
nonlinearity (7). For the sake of completeness a short review
of traditionalmethods is presented hereafter, highlighting the
pros and cons of each solution.
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Figure 1: The traditional connection scheme made of a nonlinear
state observer, a canceling nonlinearity, and a linear static controller.

(i) Stability through the Analysis of the Linearized
Dynamics around the Equilibrium [2, ch. 4]. This
category groups all of the methods which aim to
set up the poles of the system linearized around the
equilibrium. Therefore, they assume that the local
behaviour of 𝜀 at the fixed point, that is, the value
of its derivative there, is known. On one hand, when
𝐾 and 𝐿 have already been fixed the computation of
the equilibrium eigenvalues can be efficiently carried
out via numerical techniques. On the other hand, the
complex mutual dependence between the controller
and the observer prevents deriving explicit formulas
for designing the gains 𝐾 and 𝐿 so that all the
eigenvalues at the equilibrium have negative real
parts. This problem is usually overcome by enforcing
a sufficient degree of separation between the observer
and the controller, bringing on a very high degree of
conservatism in the solution [17].

(ii) Closed Loop Methods Based on the Lur’e Problem For-
mulation [2, ch. 7].These techniques analyze the equi-
librium stability by exploiting the closed loop form
that features the feedback interconnection between a
linear subsystem and a static nonlinearity satisfying
a sector condition. The originating method of this
family is the circle criterion. Since these techniques
explicitly take into account the nonlinearity 𝜀, that
is, the cancellation residual, their results are partially
based on the knowledge of the interplay between
controller and observer.Unfortunately, this advantage
vanishes by the very complicated dependence of
the linear subsystem properties from 𝐾 and 𝐿 that
prevents their explicit computation.

(iii) Closed Loop Methods Based on the Input-to-Output
Properties of the Loop Branches [2, ch. 6]. This family
counts approaches inspired by the passivity theorem
for feedback systems. The basic idea is based in rep-
resenting the system as a loop of subsystems, whose
input-to-output properties prevent the existence of

self-sustained nonzero signals. Suitable ad hoc math-
ematical manipulations allow one to decouple the
model so to enclose 𝐾 and 𝐿 in different subsystems,
but this causes the presence of nonlinear dynamic
subsystems, whose input-to-output features are quite
formidable to be explicitly designed using 𝐾 and 𝐿.

As highlighted above, designing a stabilizing controller with
guaranteed performance in presence of state estimation and
inexact nonlinearity cancellation is a challenging problem. In
the rest of the paper a simple effective strategy based on the
dissipativity theory [19, ch. 9] will be presented along with a
comparative example with the traditional approaches.

Notation. A function 𝑓(𝑥) : R → R is called Lipschitz con-
tinuous if









𝑓 (𝑥) − 𝑓 (𝑧)









≤ 𝐿

𝑓
|𝑥 − 𝑧| , (10)

and 𝐿
𝑓
is referred to as its Lipschitz constant. In particular,

𝑓 is globally Lipschitz continuous if (10) holds over the entire
real axis, whereas the function will be called locally Lipschitz
continuous if (10) holds only on limited subsets of R.

Given a signal 𝑔(𝑡) : [0, 𝑇] → R𝑛𝑔 , its 𝑝-norm is defined
as
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(11)

where | ⋅ | is the Euclidean norm. The set of signals 𝑔 with
finite𝑝-norm ‖𝑔‖

𝑝
< ∞ forms a Banach space denoted by 𝐿𝑝.

Finally, given an operator H : 𝐿

𝑝

→ 𝐿

𝑞, its induced (𝑝, 𝑞)-
norm is defined as

‖H‖

𝑝,𝑞
= sup
‖𝑤‖
𝑝
<∞

‖H(𝑤)‖

𝑞

‖𝑤‖

𝑝

. (12)

The induced norm ‖H‖

2,2
is also referred to as the𝐻

∞
-norm

ofH.

2. An Alternative Control Strategy

In the previous section the remarkable conservatism ofmeth-
ods based on the linearized dynamics around the equilibrium
has been highlighted, whereas the approaches inspired by
circle criterion and passivity theory would be more suitable
for taking into account the interplay between observer and
controller. Nonetheless, it has also been stressed out that
the complexity of these latter methods prevents an explicit
solution of the problem. Here an alternative strategy to
overcome the controller design difficulties that are intrinsic
in the traditional observer-based approach is introduced in
Section 2.1, whereas in Sections 2.2 and 2.3 the cases of
globally and locally Lipschitz nonlinearities𝜓 are considered,
respectively. Finally, an explicit derivation for the optimal
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piecewise linear approximation of 𝜓 is introduced in
Section 2.4.

2.1. Control Scheme. Let us consider the nonlinear system (4)
along with an output-feedback controller of the form

V̇ = 𝑅V + 𝑆𝑦,

𝑤 = 𝑇V + 𝑈𝑦 ←→ {

𝑤

1
= 𝑇

1
V + 𝑈
1
𝑦

𝑤

2
= 𝑇

2
V + 𝑈
2
𝑦,

𝑢 = −𝑤

1
+ 𝜙 (𝑤

2
) .

(13)

By denoting the implicit estimation error as 𝑒(𝑡) := 𝑤

2
(𝑡) −

𝑧(𝑡) and defining the useful output signal 𝜋 := [𝑧, 𝑒]

𝑇, the
complete system can be rewritten as

[

�̇�

V̇] = [
𝐴 − 𝐵𝑈

1
𝐶 −𝐵𝑇

1

𝑆𝐶 𝑅

] [

𝑥

V] + [
𝐵

0

] 𝜀, (14)

[

𝑧

𝑒

] = [

𝐷 0

𝑈

2
𝐶 − 𝐷 𝑇

2

] [

𝑥

V] , (15)

𝜀 (𝜋) = 𝜀 (𝑧, 𝑒) = 𝜙 (𝑒 + 𝑧) − 𝜓 (𝑧) . (16)

The corresponding scheme is illustrated in Figure 2. The
proposed model features two feedback loops: the inner inter-
connection explicitly accounts for the actual control input
𝑤

1
regulating the linear subsystem, while the outer branch is

responsible for the nonlinearity cancellation residual, acting
as a disturbance. Conditions for the inner loop to compensate
the negative effects of the outer one are investigated hereafter.
A comparisonwith the previousmodel (7)–(9) also highlights
a similar (extended) Lur’e structure, comprising a linear
part feedback connected through the very same nonlinear
function 𝜀, representing the cancellation residual. However,
despite the strong analogies, the two control strategies turn
out to be not completely equivalent, as stated by the following
proposition (see also [20] for further insights).

Proposition 1. The control strategy (14)–(16) is more general
than the traditional form (7)–(9), even when 𝑈 = 0.

Proof. First, notice that the observer (5) and (6) can be
rewritten as

̇

�̂� = (𝐴 − 𝐵𝐾 − 𝐿𝐶) 𝑥 + 𝐿𝑦,

𝑤 := [

𝐾

𝐷

]𝑥 ←→ {

𝑤

1
= 𝐾𝑥

𝑤

2
= 𝐷𝑥,

𝑢 = −𝑤

1
+ 𝜙 (𝑤

2
) .

(17)

Therefore, by comparing these equations with controller (13),
the two schemes are algebraically equivalent if and only if
there exists an invertible transformation V = 𝑄𝑥 such that

𝑅 = 𝑄 (𝐴 − 𝐵𝐾 − 𝐿𝐶)𝑄

−1

, 𝑆 = 𝑄𝐿,

𝑇

1
= 𝐾𝑄

−1

, 𝑇

2
= 𝐷𝑄

−1

, 𝑈 = 0.

(18)

(sI − A)−1B

C

D

𝜙

𝜓

x

T(sI − R)−1S
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w
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w2

y

z

+

+
+
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−

−

𝜀

Figure 2: The alternative connection scheme featuring the double
feedback loop comprising the input-to-output controller and the
nonlinearity cancellation residual.

The above conditions prove that for each given (𝐾, 𝐿) any
invertible𝑄 provides an equivalent controller (𝑅, 𝑆, 𝑇, 𝑈). On
the other hand, by substituting𝐾 = 𝑇

1
𝑄 and 𝐿 = 𝑄−1𝑆 in the

first equation, it follows that, given a certain (𝑅, 𝑆, 𝑇, 0), there
exists an equivalent observer-based scheme, if and only if the
following quadratic and linear matricial equations

𝑄𝐴𝑄

−1

− 𝑄𝐵𝑇

1
− 𝑆𝐶𝑄

−1

− 𝑅 = 0

𝑛
𝑥
×𝑛
𝑥

(19)

𝐷 = 𝑇

2
𝑄 (20)

admit an invertible solution 𝑄. Observe that the equivalence
condition can be relaxed by noticing that the feedback acts
on a signal that is not directly measured, so that all the
differences between the two schemes can be conveniently
put into the nonlinear operator, eventually kept out of the
problem. This is indeed the same as requiring that only the
linear and directly accessible part of the system needs to
participate in the equivalence condition that consequently
reduces to only equation (19). In general, even the existence
of a solution of just (19) will require the right combination of
the matrices 𝐴, 𝐵, 𝐶, 𝑅, 𝑆, and 𝑇 that cannot be assumed a
priori. For example, in the scalar case 𝑛

𝑥
= 1 equation (19)

reduces to

𝑏𝑡

1
𝑞

2

+ (𝑟 − 𝑎) 𝑞 + 𝑠𝑐 = 0, (21)

which admits real solutions 𝑞 if and only if (𝑟 − 𝑎)2 > 4𝑏𝑡
1
𝑠𝑐.

The rest of this sectionwill be devoted to setting up results
necessary for proving the following proposition.

Proposition 2. The interconnection scheme (14)–(16) can be
studied via closed loop techniques based on the dissipativity
of the linear subsystem and the cancellation residual, also
providing under mild conditions an explicit solution in terms
of the matrices (𝑅, 𝑆, 𝑇, 𝑈) representing controller (13).

In order to show the validity of such proposition, let
us consider the linear subsystem described by (14)-(15) and
observe that it is the feedback interconnection of (𝐴, 𝐵, 𝐶, 0)
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and (𝑅, 𝑆, 𝑇, 𝑈). The input-to-output behavior of this subsys-
tem from the signal 𝜀 to 𝜋 is related to dissipativity by the
existence of a positive definite storage function 𝑉

𝑙
(𝑥, V) and a

supply function 𝑠
𝑙
(𝜀, 𝜋) such that

𝑉

𝑙
(𝑥 (𝑡

2
) , V (𝑡

2
)) ≤ 𝑉

𝑙
(𝑥 (𝑡

1
) , V (𝑡

1
))

+ ∫

𝑡
2

𝑡
1

𝑠

𝑙
(𝜀 (𝑡) , 𝜋 (𝑡)) 𝑑𝑡 ∀𝑡

1
< 𝑡

2
,

(22)

or equivalently

̇

𝑉

𝑙
= 𝜕

𝑥
𝑉

𝑙
(𝑥, V) �̇� + 𝜕V𝑉𝑙 (𝑥, V) V̇ ≤ 𝑠𝑙 (𝜀, 𝜋 (𝑥, V, 𝜀)) ∀𝑥, V, 𝜀.

(23)

Assuming that both the storage and the supply functions are
quadratic (see [19, ch. 9])

𝑉

𝑙
(𝑥, V) = [𝑥𝑇 V𝑇]K [

𝑥

V] ,

𝑠

𝑙
(𝜀, 𝜋) = [𝜀 𝜋

𝑇

] [

𝛼

𝑙
𝛽

𝑙

𝛽

𝑇

𝑙
𝛾

𝑙

] [

𝜀

𝜋

] ,

K = K
𝑇

, 𝛾

𝑙
= 𝛾

𝑇

𝑙
,

(24)

condition (23) boils down to the matricial inequalities

K > 0

[

A𝑇
𝑙
K +KA

𝑙
KB
𝑙

B𝑇
𝑙
K 0

]

− [

C
𝑙
D
𝑙

0 𝐼

]

𝑇

[

𝛼

𝑙
𝛽

𝑙

𝛽

𝑇

𝑙
𝛾

𝑙

] [

C
𝑙
D
𝑙

0 𝐼

] ≤ 0,

(25)

where

[

A
𝑙
B
𝑙

C
𝑙
D
𝑙

] =

[

[

[

[

𝐴 − 𝐵𝑈

1
𝐶 −𝐵𝑇

1
𝐵

𝑆𝐶 𝑅 0

𝐷 0 0

𝑈

2
𝐶 − 𝐷 𝑇

2
0

]

]

]

]

. (26)

Proposition 3. The solutions K, 𝑅, 𝑆, 𝑇, and 𝑈 of problem
(25) map into the solutions 𝑋, 𝑌, 𝑍

1
, 𝑍
2
, 𝑍
3
= [𝑍

𝑇

31
, 𝑍

𝑇

32
]

𝑇,
and 𝑍

4
= [𝑍

𝑇

41
, 𝑍

𝑇

42
]

𝑇 of the following problem:

[

𝑌 𝐼

𝐼 𝑋

] > 0

[

[

[

𝑌

𝑇

𝐴

𝑇

− 𝑍

𝑇

31
𝐵

𝑇

+ 𝐴𝑌 − 𝐵𝑍

31
𝑍

𝑇

1
+ 𝐴 − 𝐵𝑍

41
𝐶 𝐵

𝐴

𝑇

− 𝐶

𝑇

𝑍

𝑇

41
𝐵

𝑇

+ 𝑍

1
𝐴

𝑇

𝑋

𝑇

+ 𝐶

𝑇

𝑍

𝑇

2
+ 𝑋𝐴 + 𝑍

2
𝐶 𝑋𝐵

𝐵

𝑇

𝐵

𝑇

𝑋

𝑇

0

]

]

]

−

[

[

[

0 𝑌

𝑇

𝐷

𝑇

−𝑌

𝑇

𝐷

𝑇

+ 𝑍

𝑇

32

0 𝐷

𝑇

−𝐷

𝑇

+ 𝐶

𝑇

𝑍

𝑇

42

1 0

𝑇

0

𝑇

]

]

]

[

[

[

𝛼

𝑙
𝛽

𝑙,1
𝛽

𝑙,2

𝛽

𝑇

𝑙,1
𝛾

𝑙,1
𝛾

𝑙,2

𝛽

𝑇

𝑙,2
𝛾

𝑇

𝑙,2
𝛾

𝑙,4

]

]

]

[

[

0

𝑇

0

𝑇

1

𝐷𝑌 𝐷 0

−𝐷𝑌 + 𝑍

32
−𝐷 + 𝑍

42
𝐶 0

]

]

< 0,

(27)

through the nonlinear transformations

K = [

𝑌 V
𝐼 0

]

−1

[

𝐼 0

𝑋 U
]

(28)

[

[

𝑅 𝑆

𝑇

1
𝑈

1

𝑇

2
𝑈

2

]

]

=

[

[

U −𝑋𝐵 0

0 𝐼 0

0 0 𝐼

]

]

−1

[

[

𝑍

1
− 𝑋

𝑇

𝐴𝑌 𝑍

2

𝑍

31
𝑍

41

𝑍

32
𝑍

42

]

]

[

V𝑇 0

𝐶𝑌 𝐼

]

−1

(29)

and for nonsingular matricesU andV satisfying

UV
𝑇

= 𝐼 − 𝑋𝑌. (30)

Proof. The proof follows the same outline as in [21, Section
4.2].

Observe that problem (27) is more appealing than (25)
because it can be cast as a LMI, depending on the nature of
the supply function and in particular of 𝛾

𝑙
.

Proposition 4. Sufficient conditions for problem (27) to have
a LMI formulation are either 𝛾

𝑙
= 0 or 𝛾

𝑙
= 𝑏

𝑇

𝑎

−1

𝑏 for matrices
𝑎 and 𝑏 of compatible dimensions such that 𝑎 < 0.

Proof. See [21, Lemma 4.2] and the references therein.

2.2. Globally Lipschitz Nonlinearity. Thanks to Proposition 3
the dissipativity conditions (25) can be enforced onto the
linear subsystem (14)-(15) via the controller (𝑅, 𝑆, 𝑇, 𝑈).
Moreover, such a result can be achieved by designing the
controller as in (29) by solving (27). The following result
ensures that such controller is capable of stabilizing the
equilibrium in the origin if the supply function 𝑠

𝑙
(𝜀, 𝜋) is
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properly chosen on the basis of the original nonlinearity 𝜓
and its approximation 𝜙.

Proposition 5. Suppose that 𝛾
𝑙
satisfies the hypothesis of

Proposition 4 and assume that the functions 𝜙 and 𝜙 − 𝜓 are
globally Lipschitz with constants 𝐿

𝜙
and 𝐿

𝜙−𝜓
, respectively.

Then, a sufficient condition for the controller (29) to make the
equilibrium in the origin globally asymptotically stable is the
existence of 𝜆 ∈ (0, 1) such that 𝛼

𝑙
, 𝛽
𝑙
, and 𝛾

𝑙
satisfy

[

(𝛼

𝑙
+ 1) 𝜆 − 1 𝜆𝛽

𝑙

𝜆𝛽

𝑇

𝑙
𝜆𝛾

𝑙
+ (1 − 𝜆) (𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
) 𝐼

] < 0. (31)

Proof. First, consider the nonlinear operator 𝜀(𝜋) in (16) and
observe that

|𝜀 (𝑒, 𝑧)| =









𝜙 (𝑒 + 𝑧) − 𝜙 (𝑧) + 𝜙 (𝑧) − 𝜓 (𝑧)









≤









𝜙 (𝑒 + 𝑧) − 𝜙 (𝑧)









+









𝜙 (𝑧) − 𝜓 (𝑧)









≤ 𝐿

𝜙
|𝑒| + 𝐿

𝜙−𝜓
|𝑧| .

(32)

Then, notice that, for any 𝑎, 𝑏 ∈ R+ and 𝑥, 𝑦 ∈ R+, a sufficient
condition for 𝛾 ∈ R+ to satisfy

(𝑎𝑥 + 𝑏𝑦)

2

≤ 𝛾

2

(𝑥

2

+ 𝑦

2

) (33)

is

𝛾 =

√

𝑎

2
+ 𝑏

2
.

(34)

Indeed, by substituting the above 𝛾 into (33), one obtains

𝑎

2

𝑥

2

+ 𝑏

2

𝑦

2

+ 2𝑎𝑏𝑥𝑦 ≤ (𝑎

2

+ 𝑏

2

) (𝑥

2

+ 𝑦

2

) , (35)

that is equivalent to inequality

−𝑏

2

𝑥

2

− 𝑎

2

𝑦

2

+ 2𝑎𝑏𝑥𝑦 = − (𝑏𝑥 − 𝑎𝑦)

2

≤ 0,
(36)

which is always satisfied.Therefore, combining (32) and (33),
it follows that

|𝜀 (𝑒 (𝑡) , 𝑧 (𝑡))|

2

≤ (𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
) (|𝑒 (𝑡)|

2

+ |𝑧 (𝑡)|

2

) ∀𝑡,

(37)

which directly implies that

‖𝜀‖

2
≤ √𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
‖𝜋‖

2
, (38)

that is, the nonlinearity (16) on the outer feedback loop of the
proposed control scheme is finite gain stable. Observe that
such a property can be conveniently expressed by means of

a constant storage function 𝑉
𝑛
and a corresponding supply

function 𝑠
𝑛
for the nonlinear operator 𝜀(𝜋) as follows:

̇

𝑉

𝑛
= 0 ≤ 𝑠

𝑛
(𝜋, 𝜀) := [𝜋

𝑇

𝜀] [

(𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
) 𝐼 0

𝑇

0 −1

] [

𝜋

𝜀

] .

(39)
Assume now that 𝜆 ∈ (0, 1) satisfies (31) and consider the
candidate Lyapunov function

𝑉 (𝑥, V) = 𝜆𝑉
𝑙
(𝑥, V) + (1 − 𝜆)𝑉

𝑛

= 𝜆 [𝑥

𝑇 V𝑇]K [

𝑥

V] + (1 − 𝜆)𝑉𝑛.
(40)

By assumption the controller (𝑅, 𝑆, 𝑇, 𝑈) assures that the
linear subsystem (14)-(15) satisfies the dissipativity conditions
(25). Therefore, by choosing 𝑉

𝑛
≡ 0, one has that 𝑉(𝑥, V) ≥ 0

with 𝑉(𝑥, V) = 0 if and only if 𝑥 = V = 0

𝑛
. Moreover,

exploiting (39), it follows that

̇

𝑉 = 𝜆

̇

𝑉

𝑙
+ (1 − 𝜆)

̇

𝑉

𝑛
≤ 𝜆𝑠

𝑙
(𝜀, 𝜋) + (1 − 𝜆) 𝑠

𝑛
(𝜋, 𝜀)

= [𝜀 𝜋

𝑇

] [

(𝛼

𝑙
+ 1) 𝜆 − 1 𝜆𝛽

𝑙

𝜆𝛽

𝑇

𝑙
𝜆𝛾

𝑙
+ (1 − 𝜆) (𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
) 𝐼

]

⋅ [

𝜀

𝜋

] < 0,

(41)

showing that 𝑉(𝑥, V) is a proper Lyapunov function for the
complete system, and therefore the equilibrium in the origin
is globally asymptotically stable.

Corollary 6. Acontroller (𝑅, 𝑆, 𝑇, 𝑈) ensuring the dissipativity
conditions (25) onto the linear subsystem for

[

𝛼

𝑙
𝛽

𝑙

𝛽

𝑇

𝑙
𝛾

𝑙

] = [

𝛿

2

0

𝑇

0 −𝐼

] , (42)

where

𝛿

2

<

1

𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓

, (43)

can be designed via LMI resolution, and moreover it makes
the equilibrium in the origin of the complete system globally
asymptotically stable.

Proof. First, observe that the hypotheses of Proposition 4 are
satisfiedwith 𝑏 = 𝐼 and 𝑎 = −𝐼. Indeed, using𝛼

𝑙
= 𝛿

2,𝛽
𝑙
= 0

𝑇,
and 𝛾
𝑙
= −𝐼, one obtains

[

𝛼

𝑙
𝛽

𝑙

𝛽

𝑇

𝑙
𝛾

𝑙

] =

[

[

𝛿

2

0

𝑇

0

𝑇

0 0 0

0 0 0

]

]

+

[

[

0

𝑇

0

𝑇

𝐼 0

0 𝐼

]

]

[

−𝐼 0

0 −𝐼

] [

0 𝐼 0

0 0 𝐼

] ,

(44)

and, thus, substituting this result into the inequalities (27),
they can be rewritten as
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[

𝑌 𝐼

𝐼 𝑋

] > 0 (45)

[

[

[

𝑌

𝑇

𝐴

𝑇

− 𝑍

𝑇

31
𝐵

𝑇

+ 𝐴𝑌 − 𝐵𝑍

31
𝑍

𝑇

1
+ 𝐴 − 𝐵𝑍

41
𝐶 𝐵

𝐴

𝑇

− 𝐶

𝑇

𝑍

𝑇

41
𝐵

𝑇

+ 𝑍

1
𝐴

𝑇

𝑋

𝑇

+ 𝐶

𝑇

𝑍

𝑇

2
+ 𝑋𝐴 + 𝑍

2
𝐶 𝑋𝐵

𝐵

𝑇

𝐵

𝑇

𝑋

𝑇

0

]

]

]

−

[

[

[

0 0 0

0 0 0

0

𝑇

0

𝑇

𝛿

2

]

]

]

−

[

[

[

𝑌

𝑇

𝐷

𝑇

−𝑌

𝑇

𝐷

𝑇

+ 𝑍

𝑇

32

𝐷

𝑇

−𝐷

𝑇

+ 𝐶

𝑇

𝑍

𝑇

42

0

𝑇

0

𝑇

]

]

]

[

−𝐼 0

0 −𝐼

] [

𝐷𝑌 𝐷 0

−𝐷𝑌 + 𝑍

32
−𝐷 + 𝑍

42
𝐶 0

] < 0,

(46)

which can be transformed into proper LMIs by applying
Schur’s complement formula to (46):

[

𝑌 𝐼

𝐼 𝑋

] > 0 (47)

[

[

[

[

[

[

[

[

𝑌

𝑇

𝐴

𝑇

− 𝑍

𝑇

31
𝐵

𝑇

+ 𝐴𝑌 − 𝐵𝑍

31
𝑍

𝑇

1
+ 𝐴 − 𝐵𝑍

41
𝐶 𝐵 𝑌

𝑇

𝐷

𝑇

−𝑌

𝑇

𝐷

𝑇

+ 𝑍

𝑇

32

𝐴

𝑇

− 𝐶

𝑇

𝑍

𝑇

41
𝐵

𝑇

+ 𝑍

1
𝐴

𝑇

𝑋

𝑇

+ 𝐶

𝑇

𝑍

𝑇

2
+ 𝑋𝐴 + 𝑍

2
𝐶 𝑋𝐵 𝐷

𝑇

−𝐷

𝑇

+ 𝐶

𝑇

𝑍

𝑇

42

𝐵

𝑇

𝐵

𝑇

𝑋

𝑇

−𝛿

2

0

𝑇

0

𝑇

𝐷𝑌 𝐷 0 −𝐼 0

−𝐷𝑌 + 𝑍

32
−𝐷 + 𝑍

42
𝐶 0 0 −𝐼

]

]

]

]

]

]

]

]

< 0. (48)

Then, notice that (31) becomes

[

(𝛿

2

+ 1) 𝜆 − 1 0

𝑇

0 −𝜆𝐼 + (1 − 𝜆) (𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
) 𝐼

] < 0 (49)

that is equivalent to the inequalities

(𝛿

2

+ 1) 𝜆 − 1 < 0 ⇐⇒ 𝛿

2

<

1 − 𝜆

𝜆

−𝜆 + (1 − 𝜆) (𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
) < 0 ⇐⇒

1 − 𝜆

𝜆

<

1

𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓

,

(50)

which have to be solved for 𝜆 ∈ (0, 1) under assumption (43).
This problem is equivalent to finding 𝜆 such that

0 ≤

1

1/ (𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
) + 1

< 𝜆 <

1

𝛿

2
+ 1

≤ 1. (51)

Finally, notice that such a problem is well posed and can be
solved if and only if

1

𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓

≥ 0, 𝛿

2

≥ 0, 𝛿

2

<

1

𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓

. (52)

2.3. Locally Lipschitz Nonlinearity. In presence of inexact
nonlinearity cancellations Proposition 5 andCorollary 6 pro-
vide an effective LMI-based way for designing a stabilizing

controller chosen among a wider class with respect to
traditional “observer plus static feedback” solutions (see,
e.g., formulas (29) and (48)). Nonetheless, the approach
presented so far can be effectively applied only if the
problem nonlinearity is globally Lipschitz continuous. Such
assumption might be quite restrictive in many applications;
for instance, it prevents the exploitation of the proposed
technique for systems having polynomial nonlinearities.
Then, to widen the extent of the proposed approach, in the
following the previous results will be adjusted assuming that
the nonlinearities 𝜓 and 𝜙 are just locally Lipschitz continu-
ous.

Remark 7. The assumptions on the nonlinear operators can-
not be relaxed any further, as local Lipschitz continuity is
necessary for the existence and uniqueness of the solution of
any ordinary differential equation [22].

Suppose that 𝜙 is designed so that the local finite L
2
-

gains of 𝜙 and 𝜙 − 𝜓 satisfy









𝜙(𝜉)







2
< 𝐿

𝜙









𝜉







2
, if 



𝜉 (𝑡)









< 𝜔

𝜙
∀𝑡,









𝜙(𝜉) − 𝜓(𝜉)







2
< 𝐿

𝜙−𝜓









𝜉







2
, if 



𝜉 (𝑡)









< 𝜔

𝜙−𝜓
∀𝑡,

(53)

and define the two projection vectors

𝑃

𝜙
= [1 1] , 𝑃

𝜙−𝜓
= [0 1] . (54)
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Proposition 8. A controller (𝑅, 𝑆, 𝑇, 𝑈), designed via
Proposition 5 or Corollary 6 using the gains in (53), locally
stabilizes the equilibrium in the origin. Moreover, all the initial
conditions satisfying

ℎ (𝑥

0
, V
0
)

:= [𝑥

𝑇

0
V𝑇
0
]K [

𝑥

0

V
0

]

< min(
𝜔

2

𝜙

𝑃

𝜙
C
𝑙
K−1C𝑇

𝑙
𝑃

𝑇

𝜙

,

𝜔

2

𝜙−𝜓

𝑃

𝜙−𝜓
C
𝑙
K−1C𝑇

𝑙
𝑃

𝑇

𝜙−𝜓

)

(55)

belong to its domain of attraction, K being defined as in (28)
andC

𝑙
as in (26).

Proof. First, observe that (𝑅, 𝑆, 𝑇, 𝑈) is guaranteed to stabilize
the equilibrium only if the system dynamics satisfy











𝑃

𝜙
𝜋 (𝑡)











< 𝜔

𝜙
,











𝑃

𝜙−𝜓
𝜋 (𝑡)











< 𝜔

𝜙−𝜓
, ∀𝑡, (56)

for an open set of initial conditions containing it. Indeed,
in such a region the nonlinear operator (16) on the outer
feedback loop satisfies condition (38) thanks to (32) and
(53). The candidate Lyapunov function (40) with 𝑉

𝑛
≡ 0

is again a proper Lyapunov function, though this time with
only local validity. Therefore, in the region where 𝑉(𝑥, V) is
a local Lyapunov function its level curves represent invariant
ellipsoids of the system; that is, any initial condition inside
one of these ellipsoids always generates trajectories which do
not exit it. Moreover, observe that these regions can also be
characterized via

ℎ (𝑥, V) ≤ 𝜖, (57)

for positive values of 𝜖, by getting rid of the 𝜆 in 𝑉(𝑥, V),
that can be eliminated without any loss of generality thanks
to 𝑉
𝑛
≡ 0. Then, since 𝜔

𝜙
, 𝜔

𝜙−𝜓
> 0, the region pointed

out by (56) is not empty and therefore one can always find
a sufficiently small 𝜖 such that the invariant ellipsoid (57) is
completely contained inside it. This is sufficient to guarantee
the local stability of the equilibrium.

Let us then look for the biggest ellipsoid (57) belonging
to the domain of attraction of the equilibrium. A given initial
condition (𝑥

0
, V
0
) belongs to an invariant ellipsoid if and only

if

ℎ (𝑥 (𝑡) , V (𝑡)) ≤ ℎ (𝑥
0
, V
0
) , ∀𝑡. (58)

Since by assumptionK > 0, (58) can be written as

[

[

ℎ (𝑥

0
, V
0
) 𝑥

𝑇 V𝑇

𝑥

V K−1
]

]

≥ 0 (59)

using the Schur complement.Then, consider thematrixC
𝑙
as

in (26) and observe that

[

ℎ (𝑥

0
, V
0
) 𝜋

𝑇

𝜋 C
𝑙
K−1C𝑇

𝑙

]

=

[

[

1 0

𝑇

0

𝑇

0

0 C
𝑙

]

]

[

[

ℎ (𝑥

0
, V
0
) 𝑥

𝑇 V𝑇

𝑥

V K−1
]

]

[

[

1 0

𝑇

0

𝑇

0

0 C𝑇
𝑙

]

]

≥ 0.

(60)

Hence, by using again the Schur complement, one finally
obtains

𝜋

𝑇

(C
𝑙
K
−1

C
𝑇

𝑙
)

−1

𝜋 ≤ ℎ (𝑥

0
, V
0
) ,

(61)

which represents an output invariant ellipsoid for the linear
subsystem (14)-(15). In order to find when such an ellipsoid
is tangent to the level curves described by 𝑃

𝜙
𝜋 = 𝜔

𝜙
, one has

to impose that its Jacobian is parallel to them, that is,

2 (C
𝑙
K
−1

C
𝑇

𝑙
)

−1

𝜋 = 𝑃

𝑇

𝜙
(62)

for some real value . The corresponding outputs, that is, the
tangent points, satisfy

𝜋 =

1

2

C
𝑙
K
−1

C
𝑇

𝑙
𝑃

𝑇

𝜙
, (63)

and then, since  and𝜔
𝜙
are related through (56), one obtains















1

2

𝑃

𝜙
C
𝑙
K
−1

C
𝑇

𝑙
𝑃

𝑇

𝜙















< 𝜔

𝜙
. (64)

Substituting the tangent point into the equation of the output
invariant ellipsoid (61), instead, one obtains

1

4



2

𝑃

𝜙
C
𝑙
K
−1

C
𝑇

𝑙
𝑃

𝑇

𝜙
≤ ℎ (𝑥

0
, V
0
) , (65)

and therefore themaximumandminimumvalues for derive
from



















≤ √

4ℎ (𝑥

0
, V
0
)

𝑃

𝜙
C
𝑙
K−1C𝑇

𝑙
𝑃

𝑇

𝜙

. (66)

Combining (64) and (66) it follows that

ℎ (𝑥

0
, V
0
) <

𝜔

2

𝜙

𝑃

𝜙
C
𝑙
K−1C𝑇

𝑙
𝑃

𝑇

𝜙

. (67)

Then, repeating the same process with respect to 𝑃
𝜙−𝜓

, 𝜔
𝜙−𝜓

and taking the strictest constraint conclude the proof.

The previous results highlight that in presence of inexact
cancellation, that is, 𝐿

𝜙−𝜓
̸= 0, a (local) stabilizing controller

can be designed referring to the combined (local) gain
√
𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
. Therefore, the approximating nonlinearity 𝜙
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should be aimed to minimize this value rather than the
cancellation error ‖𝜙 − 𝜓‖

2
alone. Such a problem admits an

interesting interpretation when both 𝜓 and 𝜙 are continuous
in R, differentiable almost everywhere, and their derivatives
are locally bounded in every compact subset of R. Indeed,
under these assumptions the aboveL

2
-gains directly depend

on the maxima and minima of the derivatives of 𝜙 and 𝜙 −
𝜓, and the approximation process can be split over a finite
partition of R resulting in a convex optimization problem.
In order to illustrate such a situation and, for the sake of the
simplicity, in the following,𝜓will be locally approximated on
a limited interval by means of a piecewise linear function 𝜙.

2.4. Optimal Piecewise Linear Approximation of the Non-
linearity 𝜓. Consider the problem of approximating the
nonlinearity 𝜓 in the interval I = [−𝜔, 𝜔], for some given
𝜔 ∈ R+. Moreover, assume that the corresponding 𝜙must be
designed by means of a limited set of fixed piecewise linear
functions {𝑓

𝑖
}

𝑖=−𝑚,...,𝑚−1
, namely

𝑓

𝑖
(𝜉) =

{

{

{

{

{

0 𝜉 < 𝜔

𝑖

𝑎

𝑖
+ 𝑏

𝑖
(𝜉 − 𝜔

𝑖
) 𝜔

𝑖
≤ 𝜉 ≤ 𝜔

𝑖+1

0 𝜔

𝑖+1
< 𝜉,

(68)

where Ω = {𝜔

−𝑚
= −𝜔, . . . , 𝜔

0
= 0, . . . , 𝜔

𝑚
= 𝜔}. To ensure

that 𝜙 is continuous, observe that the condition

𝑎

𝑖+1
= 𝑎

𝑖
+ 𝑏

𝑖
(𝜔

𝑖+1
− 𝜔

𝑖
) , ∀𝑖 = −𝑚, . . . , 𝑚 − 2, (69)

must be satisfied. Similarly, one has to impose

𝑎

0
= 0 (70)

in order to preserve the equilibrium in the origin. Finally, let
us suppose that 𝜓 is only partially known, but that at least
the maxima and minima of its derivative 𝜓 = 𝜕

𝜉
𝜓(𝜉) inside

the natural partition ofI given by Ω are known, that is, the
values

𝑐

𝑖
= max
𝜉∈(𝜔
𝑖
,𝜔
𝑖+1
)

(𝜓



(𝜉)) , 𝑑

𝑖
= min
𝜉∈(𝜔
𝑖
,𝜔
𝑖+1
)

(𝜓



(𝜉)) (71)

are provided ∀𝑖 = −𝑚, . . . , 𝑚 − 1. Observe that in each
(𝜔

𝑖
, 𝜔

𝑖+1
) the maximum derivative of 𝜙 is |𝑏

𝑖
|, while that of

𝜙 − 𝜓 alternatively is |𝑐
𝑖
− 𝑏

𝑖
| or |𝑏

𝑖
− 𝑑

𝑖
|. Therefore, the

optimization of the local value of
√
𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
boils down to

min
𝑏
𝑖

(𝑏

2

𝑖
+max ((𝑐

𝑖
− 𝑏

𝑖
)

2

, (𝑏

𝑖
− 𝑑

𝑖
)

2

)) . (72)

Observe that by defining

𝜇

𝑖
= 𝑏

𝑖
−

𝑐

𝑖
+ 𝑑

𝑖

2

(73)

the problem becomes

min
𝜇
𝑖

(𝑔 (𝜇

𝑖
))

= min
𝜇
𝑖

((𝜇

𝑖
+

𝑐

𝑖
+ 𝑑

𝑖

2

)

2

+max((
𝑐

𝑖
− 𝑑

𝑖

2

− 𝜇

𝑖
)

2

, (

𝑐

𝑖
− 𝑑

𝑖

2

+ 𝜇

𝑖
)

2

))

= min
𝜇
𝑖

((𝜇

𝑖
+

𝑐

𝑖
+ 𝑑

𝑖

2

)

2

+ (

𝑐

𝑖
− 𝑑

𝑖

2

+









𝜇

𝑖









)

2

)

= min
𝜇
𝑖

(𝜇

2

𝑖
+ (𝑐

𝑖
+ 𝑑

𝑖
) 𝜇

𝑖
+

(𝑐

𝑖
+ 𝑑

𝑖
)

2

4

+

(𝑐

𝑖
− 𝑑

𝑖
)

2

4

+ (𝑐

𝑖
− 𝑑

𝑖
)









𝜇

𝑖









+ 𝜇

2

𝑖
)

= min
𝜇
𝑖

(2𝜇

2

𝑖
+

(𝑐

2

𝑖
+ 𝑑

2

𝑖
)

2

+ (𝑐

𝑖
+ 𝑑

𝑖
) 𝜇

𝑖
+ (𝑐

𝑖
− 𝑑

𝑖
)









𝜇

𝑖









) .

(74)

In order to solve the above optimization problem, define the
functions

𝑔

+

(𝜇

𝑖
) = 2𝜇

2

𝑖
+

(𝑐

2

𝑖
+ 𝑑

2

𝑖
)

2

+ 2𝑐

𝑖
𝜇

𝑖
,

𝑔

−

(𝜇

𝑖
) = 2𝜇

2

𝑖
+

(𝑐

2

𝑖
+ 𝑑

2

𝑖
)

2

+ 2𝑑

𝑖
𝜇

𝑖

(75)

and observe that the argument of the previous minimum is

𝑔 (𝜇

𝑖
) = {

𝑔

+

(𝜇

𝑖
) if 𝜇

𝑖
≥ 0

𝑔

−

(𝜇

𝑖
) if 𝜇

𝑖
< 0.

(76)

Points of maxima andminima of 𝑔+ and 𝑔− can be derived by
setting the derivatives 𝜕

𝜇
𝑖

𝑔

+ and 𝜕
𝜇
𝑖

𝑔

− to zero, thus obtaining

𝜕

𝜇
𝑖

𝑔

+

(𝜇

𝑖
) = 4𝜇

𝑖
+ 2𝑐

𝑖
= 0,

𝜕

𝜇
𝑖

𝑔

−

(𝜇

𝑖
) = 4𝜇

𝑖
+ 2𝑑

𝑖
= 0,

⇒ 𝜇

+

𝑖
= −

1

2

𝑐

𝑖
, 𝜇

−

𝑖
= −

1

2

𝑑

𝑖
,

(77)

giving the values

𝑔

+

(𝜇

+

𝑖
) =

1

2

𝑐

2

𝑖
+

(𝑐

2

𝑖
+ 𝑑

2

𝑖
)

2

− 𝑐

2

𝑖
=

1

2

𝑑

2

𝑖
,

𝑔

−

(𝜇

−

𝑖
) =

1

2

𝑑

2

𝑖
+

(𝑐

2

𝑖
+ 𝑑

2

𝑖
)

2

− 𝑑

2

𝑖
=

1

2

𝑐

2

𝑖
.

(78)
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Summing up the above results,

min
𝜇
𝑖

(𝑔 (𝜇

𝑖
))

=

{

{

{

{

{

{

{

{

{

{

{

{

{

min (𝑔+ (0) , 𝑔− (𝜇−
𝑖
)) =

1

2

𝑐

2

𝑖
if 0 ≤ 𝑑

𝑖
≤ 𝑐

𝑖

min (𝑔+ (0) , 𝑔− (0)) = 1

2

(𝑐

2

𝑖
+ 𝑑

2

𝑖
) if 𝑑

𝑖
≤ 0 ≤ 𝑐

𝑖

min (𝑔+ (𝜇+
𝑖
) , 𝑔

−

(0)) =

1

2

𝑑

2

𝑖
if 𝑑
𝑖
≤ 𝑐

𝑖
≤ 0,

(79)

𝑏

𝑖
=

{

{

{

{

{

{

{

{

{

{

{

{

{

−

1

2

𝑑

𝑖
+

1

2

(𝑐

𝑖
+ 𝑑

𝑖
) =

1

2

𝑐

𝑖
if 0 ≤ 𝑑

𝑖
≤ 𝑐

𝑖

1

2

(𝑐

𝑖
+ 𝑑

𝑖
) if 𝑑

𝑖
≤ 0 ≤ 𝑐

𝑖

−

1

2

𝑐

𝑖
+

1

2

(𝑐

𝑖
+ 𝑑

𝑖
) =

1

2

𝑑

𝑖
if 𝑑
𝑖
≤ 𝑐

𝑖
≤ 0.

(80)

The remaining coefficients 𝑎
𝑖
can then be computed by (69)-

(70), while the overall localL
2
-gain is

√𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
= √ max
𝑖=−𝑚,...,𝑚−1

(min
𝜇
𝑖

(𝑔 (𝜇

𝑖
))).

(81)

Remark 9. A short look at (79) and (81) reveals that the exact
cancellation may not be the better solution when using the
proposed control scheme. Indeed, assume that 𝜓 is piecewise
linear with the same angular points Ω of 𝜙. Then, since 𝑐

𝑖
=

𝑑

𝑖
for every 𝑖, the exact cancellation in a certain subinterval

implies that the local value of 𝐿2
𝜙
is 𝑐2
𝑖
, while that of 𝐿2

𝜙−𝜓
is

zero. Instead, using the cancellation related to (80), the square
of the overallL

2
-gain results in (1/2)𝑐2

𝑖
as in (79). Therefore,

for the sake of the proposed approach, the exact cancellation
does not turn out to be the best option.

3. Example

Let us consider a Chua circuit governed by the dynamical
equations

�̇�

1
= 𝛼 (𝑥

2
− 𝑎𝑥

1
− 𝑏𝑥

3

1
) + 𝑢

�̇�

2
= 𝑥

1
− 𝑥

2
+ 𝑥

3

�̇�

3
= −𝛽𝑥

2
,

(82)

and let us assume that the measured quantity is 𝑦(𝑡) = 𝑥
2
(𝑡).

Under these assumptions, the system is described by the
matrices

𝐴 =

[

[

−𝛼𝑎 𝛼 0

1 −1 1

0 −𝛽 0

]

]

, 𝐵 =

[

[

1

0

0

]

]

,

𝐶 = [0 1 0] , 𝐷 = [1 0 0]

(83)

and the nonlinearity

𝜓 (𝜉) = 𝛼𝑏𝜉

3

. (84)
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Figure 3: Open loop chaotic dynamics obtained by simulating (82)
with 𝛼 = 10, 𝛽 = 100/7, 𝑎 = −1/7, and 𝑏 = 2/7, with initial
conditions (𝑥

1
, 𝑥

2
, 𝑥

3
) = (0.0945, 0, 0). The transient is not shown

for clarity.

The initial conditions are set to (𝑥
1
, 𝑥

2
, 𝑥

3
) = (0.0945, 0, 0), a

point, as explained below, located in the domain of attraction
of the bounded regime of the uncontrolled system and also
inside the invariant ellipsoid (55) of the controlled one.
It is worth underlining that such initial conditions excite
the nonlinear term from the beginning of the experiment,
whereas the parameters are chosen as 𝛼 = 10, 𝛽 = 100/7,
𝑎 = −1/7, and 𝑏 = 2/7, so that the open loop response is
chaotic and shows a typical double scroll attractor [23] (see
Figure 3). For the sake of simplicity let us assume that the
nonlinearity (84) is known only for a finite number of points
𝜉 = ±0.1𝑘, 𝑘 ∈ {0, 1, . . . , 10}, and that the constants 𝑐

𝑖
, 𝑑
𝑖

defined in (71) are known. Two interpolation strategies are
considered for comparison purposes.

(i) Naive Piecewise-Linear Interpolation. 𝑎
𝑖
and 𝑏

𝑖
are

chosen according to

𝑎

𝑖
= 𝜙 (𝜔

𝑖
) , 𝑏

𝑖
=

𝑎

𝑖+1
− 𝑎

𝑖

𝜔

𝑖+1
− 𝜔

𝑖

. (85)

(ii) Optimal Piecewise-Linear Interpolation. 𝑎
𝑖
and 𝑏
𝑖
are

chosen according to (69)-(70) and (80) in order to
minimize

√
𝐿

2

𝜙
+ 𝐿

2

𝜓−𝜙
.

In Figure 4 a comparison between the original nonlinearity
𝜓(𝜉) and the two approximating piecewise linear functions is
reported. Note that the optimal approximation significantly
differs from the naive approximation, implying that in order
to minimize the inexact cancellation Lipschitz constant the
technique shown in Section 2.4 may provide significant
advantages to improve the control robustness. This is even
more evident from the right panel of Figure 4 where the
resulting Lipschitz constant

√
𝐿

2

𝜙
+ 𝐿

2

𝜓−𝜙
is plotted. It is clear

that, for large values of the argument, the optimal piecewise
linear approximation technique described in Section 2.4
provides far better results than naive methods. Moreover let
us choose 𝜔

𝜙
= 0.3 and 𝜔

𝜙−𝜓
= 0.5 so that the overall

Lipschitz constant is 0.91 and the dynamics are guaranteed to
stay inside the invariant ellipsoid predicted by Proposition 8.
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Figure 4: (a) Comparison between original nonlinearity (solid blue), naive piecewise linear approximation (dashed red), and optimal
piecewise linear approximation (dot-dashed green). (b) Comparison of overall Lipschitz constants √𝐿2
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obtained with the two

approximation schemes.
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Figure 5: Trajectory obtained by simulating the Chua system (82)
controlled by a controller designed according to Corollary 6.

Observe that the minimum value of 𝛿 for which (47)-
(48) are solvable is 𝛿 = 1 and therefore the maximum
inexact cancellation Lipschitz constant for which the system
is guaranteed to be stable is

√
𝐿

2

𝜙
+ 𝐿

2

𝜓−𝜓
= 1 according to

Corollary 6, although such bound is conservative.
The controller is designed by solving (47)-(48) with 𝛿 =

(𝐿

2

𝜙
+ 𝐿

2

𝜙−𝜓
)

−1/2 in order to take the worst case scenario
in terms of expected performance. The resulting controlled
dynamics are now stable and converge to the equilibrium in
the origin, as shown in Figure 5. In Figure 6 the predicted
invariant ellipsoid (in green) is plotted together with the
trajectories (solid lines) and the bounds defined by 𝜔

𝜙
and

𝜔

𝜙−𝜓
(red). Note that the invariant ellipsoid is the biggest

one contained within the bounds and that the trajectories are
entirely contained within such ellipsoid, as expected.

To compare the performance of the proposed technique
with the one of the standard observed-based approach, a
controller was designed according to the procedure described
by Boyd et al. in [17], that allows one to take into account
also the discrepancy of the slope of 𝜓 and 𝜙 in the origin. A
comparison of the dynamics controlled by the two techniques
is shown in Figure 7, where it is evident that both schemes
are capable of stabilizing the dynamics, but the convergence
is faster when using the control scheme proposed in this
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0.8
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z
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−0.4
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−0.8
−0.3−0.4−0.5

Figure 6: Examples of controlled trajectories (solid lines) projected
on the 𝜋 = (𝑧, 𝑒) plane, together with the a priori bounds defined by
𝜔

𝜙
and 𝜔

𝜙−𝜓
(dashed red line), and the predicted invariant ellipsoid

(dashed green line).

paper. In Figure 8 the Bode diagrams of the two controllers
highlight the dynamical properties differences making the
proposed solution preferable. First observe that the tradi-
tional controller has higher gains at low frequencies. This
is due to its overconservative design, that is mainly based
on the knowledge of nonlinearity’s slope at the origin. In
comparison, the proposed solution uses less power when
the trajectory is close to the equilibrium; that is, it is more
efficient around the fixed point. Moreover, notice also that
this latter controller has a larger bandwidth with respect
to the observed-based one. Hence, the traditional solution
is less responsive when the system dynamics are faster, as
it happens, for instance, when the trajectory is not close
to the equilibrium. This explains the better convergence
rate exhibited by the proposed controller in Figure 7, where
the starting point is sufficiently far from the fixed point.
Therefore, the proposed solution is more effective on larger
domains around the equilibrium. Finally, the traditional
approach does not provide any a priori guarantee that the
closed loop dynamics will be stable within a given region,
that is, it is not possible to plot a figure like Figure 6 in the
traditional framework.

The above comparison suggests that the approach pre-
sented in this work is able to fruitfully exploit a minimal
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Figure 7: Comparison between the trajectories obtained by simu-
lating the Chua system (82) controlled by the proposed controller
(solid blue) and an observer-based controller designed according to
[17] (dashed green).
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Figure 8: Bode diagrams of the proposed controller (solid blue)
and the traditional solution described in [17] (dashed green). The
first controller exhibits a larger bandwidth with lower gains at low
frequencies, as a result of a better efficiency on a larger domain of
effectiveness.

amount of information about the quality of the nonlinearity
approximation (basically only the Lipschitz constants 𝐿

𝜙
and

𝐿

𝜙−𝜓
) in order to achieve a better performance than the

traditional technique.

4. Conclusions

Classical nonlinear control techniques based on nonlinearity
cancellation exhibit poor robustness properties with respect
to model uncertainty and inexact cancellations, especially
when a state estimation must be used in place of the true

state. This may induce poor closed loop performance and
even instability. In this paper, a new control strategy has
been introduced to explicitly take into account the interplay
between accuracy of nonlinearity cancellation and perfor-
mance achievable by the controller acting on the linear part
of the system. By rewriting the problem as a nonstandard
robust control problem and using dissipativity methods,
sufficient conditions for the system to be input-to-output
stable have been provided and exploited to derive explicit
controller design and nonlinearity approximation strategies.
Both globally and locally Lipschitz nonlinearities can be dealt
with in this framework. For the case of locally Lipschitz
nonlinearities, an estimation of a region of the state space
where the closed loop is guaranteed a priori to be stable is
also provided. The effectiveness of the proposed technique
has been tested on a benchmark Chua system, showing that
better performance can be achieved when using the design
introduced in this paper.
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