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We propose an optimized Support VectorMachine classifier, named PMSVM, inwhich SystemNormalization, PCA, andMultilevel
Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main
goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC
curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively
better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

1. Introduction

The swift development of machine learning technologies
gives us a good chance to process and analyse data in a brand-
newperspective.Machine learning, also known as knowledge
discovery, is one of themost important branches of computer
science, which aims to find useful patterns from data and
is quite different from those traditional statistical methods.
As a comparatively new machine learning algorithm, Sup-
port Vector Machine (SVM) has attracted much attentions
recently and has been successfully used in various application
vocations [1–6]. In this study, we focus on constructing an
optimized SVM model, so as to use it on heart disease data
classification, aiming to improve the classification efficiency
and accuracy of SVM.

Many literatures have involved contents of using Support
Vector Machine to deal with data. Muthu Rama Krishnan et
al. designed a SVM based classifier, which was used on two
UCI mammogram datasets for breast cancer detection and
reached the accuracy of 99.385% and 93.726%, respectively
[7]. Xie and Wang integrated a hybrid feature selection
method with SVM for erythematosquamous disease diagno-
sis, which reached the accuracy of 98.61% [8].

Feature selection is the basis of machine learning algo-
rithms; appropriate feature selection strategy can obviously
improve the performances of machine learning methods.
Deisy et al. proposed a novel information theory based
feature selection algorithm to improve the classification
accuracy for SVM classifiers [9–12]. Other feature selection
methods such as mutual information measurement [13],
kernel 𝐹-score feature selection, and explicit margin-based
feature elimination method are often adopted to get better
classification results for SVM or other machine learning
algorithms [14–17].

Most of the machine learning algorithms have their
parameters; proper measures should be taken to decide
the optimized values of them. Genetic Algorithm, Particle
Swarm Optimization Algorithm, Artificial Immune System
AlgorithmandGrid SearchMethod are thosemost often used
parameter optimization algorithms [18–23]. Generally, data
feature selectionmethods and parameter optimization strate-
gies are comprehensively considered. Lin et al. developed a
Simulated Annealing approach for parameter determination
and feature selection in SVM, and experiments showed the
good performance of it [24]. Tan et al. proposed a new
hybrid approach, in which Genetic Algorithm and Support
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Vector Machine are integrated effectively based on a wrapper
strategy [25], which performed well on the UCI chromosome
dataset. Literature [26] presented a hybrid approach based on
feature selection, fuzzy weighted preprocessing, and artificial
immune recognition system, which was used on the UCI
heart disease and hepatitis disease datasets, and the obtained
accuracies are 92.39% and 81.82%, respectively.

Besides feature selection and parameter optimization,
kernel function is another factor that should be considered
for kernel based machine learning algorithms like SVM.
Khemchandani et al. adopted an optimal kernel selection
technique in Twin Support VectorMachines; the efficiency of
it was testified with some UCI machine learning benchmark
datasets [12, 27]. Abibullaev et al. introduced a linear pro-
gramming SVM with multikernel function for brain signal
data classification and got a good performance [15, 28–30].

Artificial Neural Network [23], Extreme Learning Ma-
chine [31], 𝐾-Nearest Neighbor analysis, Fuzzy Logic based
methods [32–34], Ensemble Learning algorithms [34–39],
and so forth, are often used or hybridly used to finish data
classification tasks and usually can get good classification
results. As a new version of Support Vector Machine, Least
Square SVM involves equality constraints instead of inequal-
ity constraints and works with a least squares cost function.
An obvious drawback of the Least Square SVM is that the
sparseness is lost [22, 40, 41]. Yang et al. developed an adaptive
pruning algorithm based on the bottom-to-top strategy, in
which the incremental and decremental learning procedures
were used and solved the drawback of traditional Least
Square SVM [42–45].

Through the investigation of existing literatures, we
noticed that the main points of studies using Support Vector
Machine for classification are modifying and utilizing typical
classification algorithms in combination and trying to acquire
better classification performance. In general, the main pro-
cess includes three procedures: (1) Data Preprocessing (fea-
ture selection, normalization, dimension reduction, etc.); (2)
Constructing Optimized Classification Models (including
parameter optimization); (3) Classification Accuracy and
Efficiency Demonstration.

Although lots of efforts have been made on SVM and
its applications, the performance of it is undesirable and still
needs to be optimized.

The remaining parts of this paper are arranged as follows:
The Mathematical Derivation of Support Vector Machine
part shows the mathematical nature of SVM; the part Process
of Principal Component Analysis gives the detail of Principal
Component Analysis; the proposed System Normalization,
Stratified Cross Validation, and Multilevel Grid Search based
SVM algorithm are described in the Proposed Methods part;
corresponding experiments are shown in the Experimental
Results part; the following part gives the conclusions of this
study.

2. Mathematical Derivation of
Support Vector Machine

Support Vector Machine (SVM), as one of the most effec-
tive machine learning algorithms used for classification or

regression problems, was firstly proposed by Vapnik and his
Colleagues in 1995 and its history can be backtracked to the
basic works of the Statistical LearningTheory since the 1960s
[1–4]. SVM is good at processing nonlinear, high dimension,
and little sample machine learning problems.

SVM is built on the basis of the VC Dimension (Vapnik
Chervonenkis Dimension) Theory and the Structural Risk
Minimum Theory, which are the core contents of the Sta-
tistical Learning Theory [2]. SVM has both solid theoretical
foundation and ideal generation ability [6]. Presently, SVM
has been used in many domains and occasions, such as
handwriting recognition, biological character recognition
(e.g., face recognition), credit card cheat checking, image
segmentation, bioinformatics, function fitting, and medical
data analysis [6].

As has been mentioned, SVM can be used to solve
classification and regression problems, and SVM in these two
different occasions are called SVC and SVR, respectively. In
this paper, only SVC is involved, and it is uniformly referred
to as “SVM.” Intuitively (e.g., in 2-dimensional space), the
classification problems can be divided into Linearly Separable
tasks (corresponding data is made of linearly separable
samples) and Linearly Inseparable tasks (data is formed with
linearly inseparable samples, also called nonlinearly separable
data, or nonlinear data, for short.). Figure 1 shows these two
cases. Such situations can be extended into high dimensional
space.

2.1. Linearly Separable Case. For the sake of simplicity, we
only consider two-class classification situations.

Given a dataset 𝐷, 𝐷 = {(𝑥
𝑖
, 𝑦
𝑖
)}
𝑛

𝑖=1
, where 𝑥

𝑖
∈ 𝑅
𝑑, 𝑦
𝑖
∈

{−1, 1}. Essentially, dataset 𝐷 is a set of binary group (𝑥
𝑖
, 𝑦
𝑖
);

here 𝑥
𝑖
= {𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑑
} stands for a data sample, and 𝑦

𝑖
=

±1 is the corresponding class label of𝑥
𝑖
. Particularly, we use𝑋

to represent arbitrary data sample, and its corresponding class
label is represented with 𝑌. In such situations, SVM searches
for the hyperplane with the largest separation “Margin” [1–
4], that is, the Maximum Marginal Hyperplane (MMH). A
separating hyperplane can be written as

𝑊 ⋅ 𝑋 + 𝑏 = 0, (1)

where 𝑊 = {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑑
} is weight vector; 𝑏 is called as

bias. Let 𝑞(𝑋) = 𝑊 ⋅ 𝑋 + 𝑏, the geometrical distance from a
sample𝑋 to the optimal hyperplane can be expressed as

𝑟 =
𝑞 (𝑋)

‖𝑊‖
; (2)

here, 𝑞(𝑋) is referred to as discriminant function. The
purpose of SVM is to find the parameters𝑊 and 𝑏, so as to
maximize the margin of separation (𝛿 in (5)). Without loss of
generality, the function margin can be fixed to be equal to 1.
Thus, given a training set {(𝑥

𝑖
, 𝑦
𝑖
)}
𝑛

𝑖=1
∈ 𝑅
𝑑
× {±1}, we get

𝑊 ⋅ 𝑥
𝑖
≥ +1, ∀𝑦

𝑖
= +1,

𝑊 ⋅ 𝑥
𝑖
≤ −1, ∀𝑦

𝑖
= −1.

(3)

The particular samples (𝑥
𝑖
)
𝑠
satisfy the equalities of (3) which

are referred to as Support Vectors; that is, they are exactly



Mathematical Problems in Engineering 3

−1 −0.5 0 0.5 1

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Linearly separable

−1 −0.5 0 0.5 1

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Linearly inseparable

Figure 1: Linear separable data and nonlinear separable data.

the closest samples to the optimal separating hyperplane.
Accordingly, the geometrical distance from the Support
Vector 𝑥∗ to the optimal separating hyperplane is

𝑟
∗
=
𝑞 (𝑥
∗
)

‖𝑊‖
=

{{{

{{{

{

1

‖𝑊‖
, ∀𝑦

∗
= +1,

−
1

‖𝑊‖
, ∀𝑦

∗
= −1.

(4)

Obviously, the margin of separation 𝛿 is

𝛿 = 2𝑟
∗
=
2

‖𝑊‖
. (5)

To get the maximum margin hyperplane is to maximize
𝛿 with respect to𝑊 and 𝑏.

max
𝑊,𝑏

2

‖𝑊‖

s.t. 𝑦
𝑖
(𝑊𝑥
𝑖
+ 𝑏) ≥ 1, 𝑖 = 1, 2, . . . , 𝑛.

(6)

Equivalently,

min
𝑊,𝑏

1

2
‖𝑊‖
2

s.t. 𝑦
𝑖
(𝑊𝑥
𝑖
+ 𝑏) ≥ 1, 𝑖 = 1, 2, . . . , 𝑛.

(7)

The constrained optimization problem in (7) is known
as the Primal Problem. Through the method of Lagrange
Multiplier, we construct the following Lagrange Function:

𝐿 (𝑊, 𝑏, 𝛼) =
1

2
𝑊
𝑇
𝑊−

𝑛

∑

𝑖=1

𝛼
𝑖
[𝑦
𝑖
(𝑊𝑥
𝑖
+ 𝑏) − 1] , (8)

where 𝛼
𝑖
is the Lagrange Multiplier with respect to the 𝑖th

inequality. We can get the following conditions of optimality,
throughdifferentiating𝐿(𝑊, 𝑏, 𝛼)with respect to𝑊 and 𝑏 and
setting the results equal to 0:

𝜕𝐿 (𝑊, 𝑏, 𝛼)

𝜕𝑊
= 0,

𝜕𝐿 (𝑊, 𝑏, 𝛼)

𝜕𝑏
= 0;

(9)

thus, we obtain

𝑊 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝑥
𝑖
,

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0.

(10)

The corresponding Dual Problem can be inferred by means
of substituting (10) into (8):

max
𝛼

𝑊(𝛼) =

𝑛

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝑥
𝑇

𝑖
𝑥
𝑗

s.t.
𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0

𝛼
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(11)

The following equation (12) gives the Karush-Kuhn-
Tucker (KKT) complementary condition:

𝛼
𝑖
[𝑦
𝑖
(𝑊𝑥
𝑖
+ 𝑏) − 1] = 0, 𝑖 = 1, 2, . . . , 𝑛. (12)

As a result of it, only the support vectors (𝑥
𝑖
, 𝑦
𝑖
) (the

closest samples to the optimal separating hyperplane, which
determine the maximal margin) correspond to the nonzero
𝛼
𝑖
𝑠 (all the other 𝛼

𝑖
𝑠 equal to zero); (11), which describes the

Dual Problem, is a typical Convex Quadratic Programming
Optimization Problem. In most cases, the Convex Quadratic
Programming Optimization Problem function can efficiently
converge to the global optimum, by means of adopting some
appropriate optimization techniques. We can acquire the
optimal weight vector 𝑊∗ with (13) after determining the
optimal Lagrange multipliers 𝛼∗

𝑖
:

𝑊
∗
=

𝑛

∑

𝑖=1

𝛼
∗
𝑦
𝑖
𝑥
𝑖
; (13)

therefore, the corresponding optimal bias 𝑏∗ can be expressed
as follows:

𝑏
∗
= 1 −𝑊

∗
𝑥
𝑠
, for 𝑦

𝑠
= +1. (14)
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2.2. Linearly Inseparable Cases

2.2.1. Soft Margin SVM. Soft margin SVM aims to extend
theMaximal SeparatingMargin SVM(so-called, hardmargin
SVM), so that the hyperplane allows a few of noisy data to
exist. On this occasion, a variable 𝜉

𝑖
, named Slack factor,

is introduced to account for the amount of a violation of
classification of the classifier. Classification problem in such
cases can be described as

𝑊𝑥
𝑖
+ 𝑏 ≥ 1 − 𝜉

𝑖
, ∀𝑦

𝑖
= +1,

𝑊𝑥
𝑖
+ 𝑏 ≤ −1 + 𝜉

𝑖
, ∀𝑦

𝑖
= −1;

(15)

that is,

𝑦
𝑖
(𝑊𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (16)

The Primal Problem can be described as

min
𝑊,𝑏

1

2
‖𝑊‖
2
+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖

s.t. 𝑦
𝑖
(𝑊𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
,

𝜉
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(17)

The corresponding Dual Problem Function (Dual Function)
of the soft margin is formulated as

max
𝛼

𝑊(𝛼) =

𝑛

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝑥
𝑇

𝑖
𝑥
𝑗

s.t.
𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0

0 ≤ 𝛼
𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑛.

(18)

KKT complementary condition in such inseparable case
is

𝛼
𝑖
[𝑦
𝑖
(𝑊𝑥
𝑖
+ 𝑏) − 1 + 𝜉

𝑖
] = 0, 𝑖 = 1, 2, . . . , 𝑛, (19)

𝛽
𝑖
𝜉
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛, (20)

where 𝛽
𝑖
’s are the Lagrange Multipliers corresponding to 𝜉

𝑖

that have been introduced to enforce the nonnegativity of 𝜉
𝑖
.

At the point (saddle point), at which the derivative of the
Lagrange function for the primal problem with respect to 𝜉

𝑖

is zero, the evaluation of the derivative yields

𝛼
𝑖
+ 𝛽
𝑖
= 𝐶. (21)

Simultaneously considering (20) and (21), we acquire

𝜉
𝑖
= 0 if 𝛼

𝑖
< 𝐶. (22)

Consequently, the optimal weight𝑊∗ can be expressed as
follows:

𝑊
∗
=

𝑛

∑

𝑖=1

𝛼
∗

𝑖
𝑦
𝑖
𝑥
𝑖
. (23)

The optimal bias 𝑏∗ can be obtained by means of taking
any sample (𝑥

𝑖
, 𝑦
𝑖
) in the training set, for which we have 0 <

𝛼
∗

𝑖
< 𝐶 and the corresponding 𝜉

𝑖
= 0, and using the sample

in (19)

𝑏
∗
= 1 − 𝜉

𝑖
−∑

𝑠V
𝛼
∗

𝑖
𝑦
𝑖
𝑥
𝑖
𝑥
𝑠
, ∀𝑦

𝑠
= +1. (24)

2.2.2. Kernel Trick Based SVM. For linearly inseparable
cases, kernel trick is another commonly used technique. An
appropriate kernel function, which is based on the inner
product between the given samples, is to be defined as a
nonlinear transformation of samples from the original space
to a feature space with higher or even infinite dimension so
as to make the problems linearly separable. That is, a compli-
cated classification problem cast in a high-dimensional space
nonlinearly is more likely to be linearly separable than in a
low-dimensional space. Actually, we can adopt a nonlinear
mapping function

Φ : 𝑋 → 𝜙 (𝑋) , 𝑅
𝑑
→ 𝐹 (25)

tomap data𝑋 in original (or primal) space into a higher (ever
infinite) dimension space𝐹, such that themappeddata in new
feature space is more likely linearly separable. Thus we can
extend the separating hyperplane function into the following
form:

𝑊 ⋅ 𝜙 (𝑥
𝑖
) + 𝑏 ≥ +1 ∀𝑦

𝑖
= +1,

𝑊 ⋅ 𝜙 (𝑥
𝑖
) + 𝑏 ≤ −1 ∀𝑦

𝑖
= −1;

(26)

that is,

𝑦
𝑖
[𝑊 ⋅ 𝜙 (𝑥

𝑖
)] + 𝑏 ≥ +1, 𝑖 = 1, 2, . . . , 𝑛. (27)

The separating hyperplane is

𝑊 ⋅ 𝜙 (𝑋) + 𝑏 = 0. (28)

The primal problem in such case is

min
𝑤,𝑏

‖𝑊‖
2

2

s.t. 𝑦
𝑖
[𝑊 ⋅ 𝜙 (𝑥

𝑖
) + 𝑏] ≥ +1, 𝑖 = 1, 2, . . . , 𝑛.

(29)

Using the same mathematical trick in linearly separable
SVM, we get the corresponding Dual Function

max
𝛼

𝑊(𝛼) =

𝑛

∑

𝑖=1

𝛼
𝑖

−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝜙(𝑥
𝑖
)
𝑇
𝜙 (𝑥
𝑗
)

s.t.
𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0

𝛼
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(30)
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The KKT complementary condition is

𝛼
𝑖
𝑦
𝑖
[𝑊𝜙 (𝑥

𝑖
) + 𝑏] − 1 = 0, 𝑖 = 1, 2, . . . , 𝑛. (31)

After getting the optimal Lagrange Multipliers 𝛼∗
𝑖
, we

acquire the optimal weight vector and the corresponding
bias that are described with function (32) and function (33),
respectively:

𝑊
∗
=

𝑛

∑

𝑖=1

𝛼
∗

𝑖
𝑦
𝑖
𝜙 (𝑥
𝑖
) , (32)

𝑏
∗
= 1 −∑

𝑠V
𝛼
∗

𝑖
𝑦
𝑖
𝜙 (𝑥
𝑖
) 𝜙 (𝑥
𝑠
) , ∀𝑦

𝑠
= +1. (33)

Fortunately, the inner product like the form of 𝜙(𝑥
𝑖
)𝜙(𝑥
𝑗
)

can be instituted with𝐾(𝑥
𝑖
, 𝑥
𝑗
), that is,

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝜙 (𝑥

𝑖
) 𝜙 (𝑥

𝑗
) ; (34)

thus, we only need to calculate inner product in the original
space not in the feature space, which reduces the calculation
complexity obviously; meanwhile, we are refrained from
searching for the proper nonlinear mapping function 𝜙(𝑋).

In fact, the kernel trick cannot always guarantee the
mapped problems to be absolutely linearly separable, so
soft margin SVM and kernel based SVM are integrated to
exert the different advantages of them two and thus can
solve the linearly inseparable problems more efficiently. The
corresponding Dual form for the constrained optimization
problem in the kernel soft margin SVM is listed as follows:

max
𝛼

𝑊(𝛼) =

𝑛

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝐾(𝑥
𝑖
, 𝑥
𝑗
)

s.t.
𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0

0 ≤ 𝛼
𝑖
≤ 𝐶, 𝑖 = 0, 1, . . . , 𝑛.

(35)

Accordingly, the optimal classifier is

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝛼
∗

𝑖
𝑦
𝑖
𝐾(𝑥
𝑖
, 𝑥) + 𝑏

∗
, (36)

where

𝑏
∗
= 1 −

𝑛

∑

𝑖=1

𝛼
∗

𝑖
𝑦
𝑖
𝐾(𝑥
𝑖
, 𝑥
𝑠
) , ∀𝑦

𝑠
= +1. (37)

The most frequently used kernel functions are

(i) 𝐾(𝑥, 𝑦) = 𝑥 ⋅ 𝑦;

(ii) 𝐾(𝑥, 𝑦) = (𝑥 ⋅ 𝑦 + 𝑐)ℎ, 𝑐 ≥ 0;
(iii) 𝐾(𝑥, 𝑦) = exp{−‖𝑥 − 𝑦‖2/2𝜎2};
(iv) 𝐾(𝑥, 𝑦) = tanh(𝑘𝑥 ⋅ 𝑦 − 𝛿), 𝑘 > 0.

The third one is the RBF kernel function, which is used in our
experiments.

3. Process of Principal Component Analysis

Principal Components Analysis (PCA), as was firstly intro-
duced by Pearson in 1901, is a methodology that can be used
to reduce the number of explicative variables of a dataset. In
this paper, PCA is used for dimension reduction.

The main procedure of PCA is introduced as follows.
Given a dataset 𝐷, where 𝐷 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}, 𝑥
𝑖
∈ 𝑅
𝑑,

𝑖 = 1, 2, . . . , 𝑛. Essentially, dataset𝐷 is a 𝑛 × 𝑑matrix. Firstly,
𝐷
 should be normalized to get matrix with 𝑑 normalized
𝑛 dimensional column vectors, in case that attributes with
large domains dominate with smaller ones (the following
procedures will be exerted on these column vectors). Then,
𝐾 orthonormal vectors will be calculated to act as a basis
for the normalized input data, which are referred to as
the principal components. Let 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝐾
denote these 𝐾

mutually perpendicular unit vectors; they should satisfy the
following requirements:

COV (𝑌
𝑖
, 𝑌
𝑗
) = 0, where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝐾} , 𝑖 ̸= 𝑗. (38)

Thirdly, these principal components are sorted descendingly
according to their “significance.” Finally, those first several
components will be chosen to reconstruct a good approxima-
tion of the original data.Thus the dimension size of the data is
reduced; that is, PCA can be used to reduce data dimension.

4. The Proposed Methods

In this paper, we select the Stalog Heart Disease Dataset,
which is from the UCI (University of California at Irvine)
Machine Learning Repository, as our experimental data. The
dataset contains 270 tuples; each tuple includes thirteen data
attributes and one class attribute. The detail of the dataset is
described with Table 1.

Because the value ranges of different attributes vary
greatly, the tuples in Stalog Heart Disease Dataset are pre-
processed as follows. Firstly, to facilitate the following experi-
ments, we change the values of the attribute “class” into
1 and −1, respectively. That is, let 1 represent “presence,”
and −1 represent “absence.” Then tuples in the dataset are
normalized by column to [−1, 1]. In the normalized process,
only the front thirteen data attributes are considered. We
name such attribute data normalization process as System
Normalization. The actual normalization procedure for each
column vector 𝐶

𝑗
, 𝑗 = 1, 2, . . . , 𝑑, in Dataset 𝐷 is illustrated

with (39).
Let𝐷

(𝑖,𝑗)
represent the 𝑖th element of 𝐶

𝑗
.

𝐷
(𝑖,𝑗)
=

𝐷
(𝑖,𝑗)
− (max (𝐶

𝑗
) +min (𝐶

𝑗
)) /2

(max (𝐶
𝑗
) −min (𝐶

𝑗
)) /2

∀𝑖, 𝑗, 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑑.

(39)

To demonstrate the performance of SVM classifier, we
often adopt cross validation method to get the accuracy
of the class model. Traditionally, when using 𝐾-fold cross
validation, the input dataset is randomly divided into 𝐾
subsets, so that all the subsets have almost the same number



6 Mathematical Problems in Engineering

Table 1: Description of the UCI Stalog Heart Disease Dataset.

Number Attributes Full name of attributes Value types

1 age Age in years Real

2 sex Sex (1 = male; 0 = female) Binary

3 cp cp: chest pain type (1 = typical angina; 2 = atypical angina; 3 = nonanginal pain; 4 = asymptomatic) Nominal

4 trestbps Resting blood pressure (in mmHg on admission to the hospital) Real

5 chol Serum cholesterol in mg/dL Real

6 fbs (Fasting blood sugar >120mg/dL) (1 = true; 0 = false) Binary

7 restecg Resting electrocardiographic results (values 0, 1, 2) Nominal

8 thalach Maximum heart rate achieved Real

9 exang Exercise induced angina (1 = yes; 0 = no) Binary

10 oldpeak ST depression induced by exercise relative to rest Real

11 slope The slope of the peak exercise ST segment Ordered

12 ca Number of major vessels (0–3) colored by fluoroscopy Real

13 thal 3 = normal; 6 = fixed defect; 7 = reversible defect Nominal

14 num Diagnosis of heart disease (angiographic disease status: 1 = absence; 2 = presence) Binary

of samples. In the training phase of the classification model,
each subset will act as testing subset only once and will act as
training subset 𝐾 − 1 times. In other words, when using 𝐾-
fold classification validation, 𝐾 classification models will be
founded, each of them using𝐾−1 subsets as training set, and
the remaining one subset as testing set.The final classification
performance is to be appraised by using the average result of
the𝐾 classification models.

In this paper, the stratified sample technology is adopted
to generate the 𝐾 folds (subsets); thus each subset will have
the same number of positive samples and the same number
of negative samples; the ratio between positive samples and
negative samples of each subset is just the same as that of
the whole dataset. That is, the acquired subsets will keep
the statistical distribution of the original dataset. Algorithm 1
describes the main process of the Stratified Cross Validation.

4.1. Multilevel Grid Search. In this paper, we select 𝐶-SVC
as our SVM classifier, and the RBF kernel as the kernel
function. Thus we need to decide the values of the pun-
ishment parameter 𝐶 of 𝐶-SVC and the parameter 𝑔 of
the RBF kernerl function. Generally, Grid Search technique
is the most frequently used skill for deciding the optimal
value of these two parameters. Given initial value ranges
and search steps for the two parameters, respectively, Grid
Search algorithm will iteratively check every value pair of 𝐶
and 𝑔 to try to obtain the optimal values of the value pair.
Different settings of the initial value ranges and the steps
for these two parameters will influence greatly the optimum
results. Meanwhile, because the Grid Search method is of
typical exhaustive search technology, the search process is
time consuming.

Here, we present an adapted grid search method named
Multilevel Grid Search (MGS), which effectively spares the

search time and gets the same search result as the traditional
grid search process.

Algorithm 2 reveals the details of our Multilevel Grid
Search method.

Figures 2 and 3 show the parameters optimization results
of the MGSmethod. Figure 2(a) gives the Grid Search results
on S-DATA3; Figure 2(b) demonstrates the Grid Search
results on PCA and System Normalization process based S-
DATA3; Figures 2(c)-2(d) demonstrate the Multilevel Grid
Search process on PCA and System Normalization process
based S-DATA3; the situation of Figure 3 is about the same
as Figure 2, but its experimental data is R-DATA6.

Figures 2(a) and 3(a) show that PCA has little influence
on the classification accuracy of SVM, and averagely, experi-
mental results in our study show that when adopting proper
PCA threshold, PCA based SVM has similar classification
accuracy as traditional SVM algorithms.

5. Experimental Results

In this paper, the UCI Stalog heart-disease dataset is used
to test our method. The main purpose of our study is
to create a more efficient and available SVM model. The
original dataset is processed based on the holdout method;
that is, the given data are partitioned into two indepen-
dent sets, one as training set, the other as test set. Two-
thirds of the original data are allocated to the training
set; the remaining one-third is allocated to the test data.
Firstly, we repeat stratified subsampling based holdout
method 10 times to generate 10 stratified datasets S-DATA1,
S-DATA2, . . . , S-DATA10; then, random subsampling based
holdout method is repeated 10 times to generate R-DATA1,
R-DATA2, . . . ,R-DATA10; in this paper, the experiments are
mainly based on S-DATA1, S-DATA3, . . . , S-DATA9, and R-
DATA2, R-DATA4, . . . ,R-DATA10.
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Require: 𝐷,𝐾
Ensure: 𝐷

1
, 𝐷
2
, . . . , 𝐷

𝐾
, 𝐴𝐶𝐶

𝑎V𝑒𝑟𝑎𝑔𝑒
(1) Calculate the row size (𝑆

𝑟
) of dataset𝐷;

(2) Count the number of positive samples (𝑁+) and negative samples (𝑁−), respectively;

(3) 𝑇
1
= ⌈
𝑁
+

𝐾
⌉;

(4) 𝑇
2
= ⌈
𝑁
−

𝐾
⌉;

(5) 𝑖 = 1;
(6) 𝑈 = 𝐷;
(7) for (𝑖 < 𝐾) do
(8) 𝐷

𝑖
= 𝜙;

(9) Sample 𝑇
1
positive samples from 𝑈;

(10) Sample 𝑇
2
negative samples from 𝑈;

(11) Add those sampled samples into subset𝐷
𝑖
;

(12) 𝑈 = 𝑈 − 𝐷
𝑖
;

(13) 𝑖 = 𝑖 + 1;
(14) end for
(15)𝐷

𝑖
= 𝑈;

(16) 𝑖 = 1;
(17) for (𝑖 ≤ 𝐾) do
(18) using subset𝐷

𝑖
as testing set, the remaining 𝐾 − 1 subsets as training set;

(19) using the training set to create classification model of SVM;
(20) using the testing set to generate the accuracy rate 𝐴𝐶𝐶

𝑖
;

(21) 𝑖 = 𝑖 + 1;
(22) end for

(23) 𝐴𝐶𝐶
𝑎V𝑒𝑟𝑎𝑔𝑒 =

1

𝑘

𝐾

∑

𝑖=1

𝐴𝐶𝐶
𝑖

(24) return the average accuracy rate 𝐴𝐶𝐶
𝑎V𝑒𝑟𝑎𝑔𝑒;

Algorithm 1: Stratified Cross Validation.

Require: 𝐾,𝑋, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐴𝐶𝐶
Ensure: 𝐵𝑒𝑠𝑡

𝐶
, 𝐵𝑒𝑠𝑡

𝑔
, 𝐴𝐶𝐶

(1) INPUT: 𝐶min, 𝐶max, 𝑏𝑖𝑔𝐶𝑠𝑡𝑒𝑝;
(2) INPUT: 𝑔min, 𝑔max, 𝑏𝑖𝑔𝑔𝑠𝑡𝑒𝑝;
(3) GridSearch(𝑇𝑟𝑎𝑖𝑛

𝑙𝑎𝑏𝑒𝑙
, 𝑇𝑟𝑎𝑖𝑛

𝑑𝑎𝑡𝑎
, 𝐶min, 𝐶max, 𝑔min, 𝑔max, 𝑏𝑖𝑔𝐶𝑠𝑡𝑒𝑝, 𝑏𝑖𝑔𝑔𝑠𝑡𝑒𝑝, 𝐾);

(4) 𝐶
𝑠𝑡𝑒𝑝
= 0.5, 𝑔

𝑠𝑡𝑒𝑝
= 0.5

(5) while 𝐴𝐶𝐶 ̸= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐴𝐶𝐶 do
(6) Record the best ACC and the corresponding 𝐶, 𝑔;

(7) 𝐶mid =
𝐶max + 𝐶min

2

(8) 𝑔mid =
𝑔max + 𝑔min

2

(9) if 𝐶 ≥ 𝐶mid then
(10) 𝐶min = 𝐶mid
(11) else
(12) 𝐶max = 𝐶mid
(13) end if
(14) if 𝑔 ≥ 𝑔mid then
(15) 𝑔min = 𝑔mid
(16) else
(17) 𝑔max = 𝑔mid
(18) end if
(19) GridSearch(𝑇𝑟𝑎𝑖𝑛

𝑙𝑎𝑏𝑒𝑙
, 𝑇𝑟𝑎𝑖𝑛

𝑑𝑎𝑡𝑎
, 𝐶min, 𝐶max, 𝑔min, 𝑔max, 𝐶𝑠𝑡𝑒𝑝, 𝑔𝑠𝑡𝑒𝑝, 𝐾);

(20) end while
(21) return 𝐵𝑒𝑠𝑡

𝐶
, 𝐵𝑒𝑠𝑡

𝑔
.

Algorithm 2: Multilevel Grid Search (MGS).
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(a) SVM parameters selection result [GS method]: Best 𝑐 = 22.6274;
Best 𝑔 = 0.0625; CV Accuracy = 83.3333%
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(b) SVM parameters selection result [GS method]: Best 𝑐 = 11.3137;
Best 𝑔 = 0.015625; CV Accuracy = 81.6667%
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(c) SVM parameters selection result [MGS method]: Best 𝑐 = 4; Best
𝑔 = 0.015625; CV Accuracy = 80.5556%
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(d) SVM parameters selection result [MGS method]: Best 𝑐 = 11.3137;
Best 𝑔 = 0.015625; CV Accuracy = 81.6667%

Figure 2: MGS on S-DATA3.
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(a) SVM parameters selection result [GS method]: Best 𝑐 = 1; Best 𝑔 =
0.022097; CV Accuracy = 86.1111%
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(b) SVM parameters selection result [GS method]: Best 𝑐 = 8; Best 𝑔 =
0.015625; CV Accuracy = 87.2222%
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(c) SVM parameters selection result [MGS method] Best 𝑐 = 1; Best
𝑔 = 0.0625; CV Accuracy = 86.1111%
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(d) SVM parameters selection result [MGS method] Best 𝑐 = 32; Best
𝑔 = 0.0039063; CV Accuracy = 87.2222%

Figure 3: MGS on R-DATA6.
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Figure 4: Roc curve for scaled and unscaled data.
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Figure 5: PCA results on two different datasets.

To study the necessity of our System Normalization
process, lots of experiments are done on our datasets, and
the results show that System Normalization exerts a great
influence on the classification result of SVM; that is, it can
effectively advance the classification accuracy of SVM. For
simplicity, only part of the results are demonstrated. Figure 4
shows the influence of normalization on the classification
result using traditional SVM classifier.

SVM is a promising machine learning algorithm, which
has solid theory foundation and good generalization ability.
But the training time of even the fastest SVMs can be
extremely slow. In this paper, PCA is adopted to reduce the
dimension of our data. Here, the threshold of PCA is 85%.

Figure 5 shows the PCA results on the Stalog Herat Dis-
easeDataset. As shown in Figure 5, the SystemNormalization
process has no obvious effect on PCA. Further study shows

that, when adopting proper threshold (in this study, it is 85%),
PCA has no direct influence on the classification accuracy of
SVM. Figure 6 shows the ROC curve of SVM classifier on
two different sampled Heart Disease Datasets: one is random
sampled and the other is stratified sampled. It is obvious
that PCA based SVM has similar classification accuracy as
traditional SVM, but it can reduce the time complexity in
some extent (about a 25% reduction).

We name the classifier based on PCA and MGS methods
as PMSVM, and we call the classifier based on PCA strategy
as PLSVM. All experimental results are compared with
that of the famous LIBSVM algorithm. To demonstrate the
performances of PMSVM, PLSVM with that of LIBSVM,
Confusion Matrix, Sensitivity, Specialty, Precision, ROC
curve, and AUC are used as the main evaluative criteria
for classification accuracy; meanwhile, the time overhead is
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Figure 6: ROC curve on original data and PCA processed data (5-fold CV).

checked formeasuring the efficiency of ourmethod. All SVM
algorithms are based on𝐶-SVC classificationmodel and RBF
kernel function.

Confusion Matrix is a useful tool to a classifier for
describing the classification results for different classes. Given
𝑄 classes, the ConfusionMatrix is a𝑄×𝑄matrix, the element
𝐶𝑀
𝑖,𝑗

describes the number of samples that a classifier
classifies class 𝑖 into class 𝑗. For an ideal classifier that
has 100% classification accuracy, all the samples should be
described with the elements on the main diagonal of the
Confusion Matrix. That is, let ‖𝐷‖ represent the number of
total samples of dataset𝐷; we can get the following:

𝑄

∑

𝑖=1

𝐶𝑀
𝑖,𝑗
= ‖𝐷‖ , 𝑖 = 𝑗. (40)

Table 2 gives an example for a 2-class classifiers, where,
TruePositive represents the number of positive samples that
are correctly classified as positive samples; FauseNegative rep-
resents the number of positive samples that are wrongly
classified as negative samples; TrueNegative represents the
number of negative samples that are correctly classified as
negative samples; FalsePositive represents the number of neg-
ative samples that are wrongly classified as positive samples.

The following results of Sensitivity, Specialty, Precision,
and so forth, closely rely on the contents of ConfusionMatrix.
Let Pos represent the total number of positive samples, and let
Neg represent the total number of negative samples; it is easy
to get the following relations, which are described as

Pos = TruePositive + FalseNegative,

Neg = TrueNegative + FasePositive.
(41)

Table 2: Confision matrix for 2-class classifiers.

Class Positive Negative
Positive TruePositive FauseNegative
Negative FalsePositive TrueNegative

“Sensitivity” is the ratio between TruePositive and Pos.That
is, it is the ratio of truly classified positive samples. Sensitivity
can be described as

Sensitivity =
TruePositive

Pos
. (42)

“Specificity” is the ratio between TrueNegative and Neg. In
anotherword, it is the ratio of truly sampled negative samples.
Specificity can be defined as

Specificity =
TrueNegative

Neg
. (43)

Precision gives the ratio between the number of truly
classified positive samples and the total number of samples
that are classified as true samples. Precision can be described
as

Precision =
TruePositive

TruePositive + FalsePositive
. (44)

ROC curve is a useful visual tool for comparing the
performances of different classification models. ROC is
the abbreviation of Receiver Operating Characteristic. ROC
curve displays the comparative performance evaluation
between the true positive rate and the false positive rate
of a given classifier. Here, AUC means the area under the
curve (ROC), and it can express the accuracy of a given
classificationmodel. Figure 7 demonstrates the ROC curve of
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Figure 7: 5-fold and 10-fold ROC curve on 10 stratified sampled datasets.

of standard LIBSVM on 10 stratified sampled datasets using
5-fold cross validation and 10-fold cross validation methods,
respectively. As we can see from the classification results,
shown with Figure 7, that there are no obvious differences
between the results of 5-fold cross validation method and
that of 10-fold cross validation method. So, we will adopt
the 5-fold cross validation technology as our default cross
validation way in the following experiments, and the cross
validation technology we used is referred as Stratified Cross
Validation (SCV), as is mentioned in Algorithm 1.

Figure 8 demonstrates the ROC curve of PMSVM,
PLSVM, and LIBSVM. Here, both parameters, 𝐶 and 𝑔,
of PLSVM and LIBSVM are set to the constant experience

value 0.1. As is shown in Figure 8, the classification results
of PLSVM and LIBSVM are quite similar; the difference
between them is that PLSVM can effectively progress the
classification efficiency by 25% or so, because of the PCA
process adopted.Generally, the classification performances of
the PMSVM, which is based on our PCA andMGS strategies,
have obvious advantages; the classification accuracy is more
than that of PLSVM and LIBSVM; meanwhile, the running
time of PMSVMis significantly shorter than that of them; that
is, the time consuming of our PMSVM has about a reduction
of 75% or so than that of traditional LIBSVM.

Tables 3 and 4 show the overall situations between
PMSVM and LIBSVM (here, parameters𝐶 and 𝑔 of PMSVM
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Figure 8: ROC curve of LIBSVM, PLSVM, and PMSVM.

and LIBSVM are acquired through Multilevel Grid Search
and Grid Search, resp.). Figure 9 demonstrates the time
overhead of PMSVM, PLSVM, and LIBSVM.

In the whole experiment, Stratified Sampling and Ran-
dom Sampling methods show no direct influences on clas-
sification results of PMSVM, PLSVM, and LIBSVM, but
Stratified Cross Validation provides more reliable results.
And the influence of Stratified Sample technology on the
classification results of imbalanced data is what we will study
further in our future work.

6. Conclusions

In this paper, an optimized Support VectorMachine classifier,
named PMSVM, is proposed, in which System Normaliza-
tion, PCA, and MGS methods are used to try to average up
the performances of SVM. Experimental results show that
SystemNormalization can effectively assure the classification
accuracy (Figure 4). PCA (Principal Component Analysis)
can play a role of dimensionality reduction. As shown in
our experiments, chosing proper threshold value, PCA can
both economize classification time and assure classification



Mathematical Problems in Engineering 13

Table 3: Comparison of the accuracy and efficiency of algorithms on stratified sampled data.

Dataset Algorithm Parameters Time (S) Accuracy
𝐶 𝑔 Sensitivity Specificity Precision AUC CVA (%)

S-DATA1 LIBSVM 90.5097 0.011049 19.740543 0.813 0.890 0.856 0.94463 84.4444
PMSVM 2.82840 0.176780 4.6617020 0.838 0.910 0.882 0.97575 84.4444

S-DATA3 LIBSVM 22.6274 0.062500 20.844411 0.813 0.910 0.878 0.93363 83.8889
PMSVM 11.3137 0.015625 4.9883590 0.763 0.870 0.824 0.91788 81.6667

S-DATA5 LIBSVM 0.35355 0.125000 20.070109 0.788 0.880 0.840 0.91075 84.4444
PMSVM 0.50000 0.125000 4.8111860 0.788 0.880 0.840 0.91910 84.4444

S-DATA7 LIBSVM 1.41420 0.353550 20.134157 0.838 0.920 0.893 0.91213 85.0000
PMSVM 8.00000 0.044194 4.7952370 0.880 0.910 0.877 0.92675 85.0000

S-DATA9 LIBSVM 0.17678 0.083880 19.628079 0.800 0.880 0.842 0.92212 85.5556
PMSVM 2.82840 0.250000 4.8249560 0.863 0.920 0.896 0.94350 86.6667

Table 4: Comparison of the accuracy and efficiency of algorithms on random sampled datasets.

Dataset Algorithm Parameters Time (S) Accuracy
𝐶 𝑔 Sensitivity Specificity Precision AUC CVA (%)

R-DATA2 LIBSVM 0.50000 0.1767800 19.610260 0.805 0.857 0.825 0.90640 82.2222
PMSVM 256.000 0.0039063 5.5637770 0.780 0.857 0.825 0.96925 83.8889

R-DATA4 LIBSVM 1.00000 0.0888388 19.566909 0.842 0.913 0.877 0.94345 87.7778
PMSVM 2.82840 0.0883880 4.1918490 0.842 0.923 0.889 0.95078 87.7778

R-DATA6 LIBSVM 1.00000 0.0220970 19.573738 0.802 0.909 0.878 0.93628 86.1111
PMSVM 8.00000 0.0156250 4.5530740 0.802 0.929 0.903 0.94762 87.2222

R-DATA8 LIBSVM 0.17678 1.0000000 19.871964 0.785 0.911 0.873 0.89034 83.8889
PMSVM 4.00000 0.0312500 5.1134920 0.797 0.861 0.818 0.91580 83.3333

R-DATA10 LIBSVM 0.12500 0.1767800 19.638424 0.750 0.885 0.826 0.89020 84.4444
PMSVM 0.25000 0.0883880 4.8284440 0.763 0.885 0.829 0.89890 83.8889
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Figure 9: Comparison of time consuming.

accuracy.Themost prominent character in our study iswhen-
ever adopting our PCA and Multilevel Grid Search (MGS)
methods, the time consuming of our PMSVM algorithm can

be reduced by 75% or so, averagely, and meanwhile can get
similar or better classification accuracy than the classical
LIBSVM algorithm.
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