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Two 4-node generalized conforming quadrilateral membrane elements with drilling DOF, named QAC4𝜃 and QAC4𝜃M, were
successfully developed. Two kinds of quadrilateral area coordinates are used together in the assumed displacement fields of the
new elements, so that the related formulations are quite straightforward and will keep the order of the Cartesian coordinates
unchangeable while the mesh is distorted. The drilling DOF is defined as the additional rigid rotation at the element nodes to
avoid improper constraint. Both elements can pass the strict patch test and exhibit better performance than other similar models.
In particular, they are both free of trapezoidal locking in MacNeal’s beam test and insensitive to various mesh distortions.

1. Introduction

It is well known that adding the drilling degree of freedom
(DOF) at each node of a plane membrane element can
enhance the element performance without increasing the
number of the element nodes. Furthermore, a plane mem-
brane element with drilling DOFs can be combined with a
plate bending element to form a flat-shell element, which
can avoid the problem of singular coefficients associated with
the DOFs in the direction normal to the plane of the shell
element.

The research on drilling DOF can be traced to the 1960s.
Olson and Bearden [1] proposed the first valuable triangular
membrane element with drilling DOF. However, since the
rotations of two adjacent edges are assumed to be equal,
this element may not converge to the correct solution.
Another model, a hybrid displacement triangular element
with drilling DOF, was then proposed by Mohr [2], but
its variational theory is not sufficient. The definition of the
drilling DOFs proposed by Allman [3, 4] can be treated as a
milestone for this topic, in which a quadratic displacement
approximation was introduced to supplement the drilling

DOFs at element nodes. Based on Allman’s work, numerous
researches on plane elements with drilling degrees of freedom
have been accomplished, such as the models proposed by
Bergan and Felippa [5], Cook [6, 7], MacNeal and Harder
[8], Yunus et al. [9], Hughes and Brezzi [10], Ibrahimbegovic
et al. [11], Iura and Atluri [12], Cazzani and Atluri [13], Piltner
and Taylor [14], Geyer and Groenwold [15], Pimpinelli [16],
Groenwold et al. [17], Choi et al. [18], Choo et al. [19],
Zhang and Kuang [20], Kugler et al. [21], and Cen et al. [22].
Long et al. [23–25] presented a new definition on the drilling
DOFs. They treated these DOFs as the additional rigid
rotations at the element nodes, so that the change of the
angle between two adjacent edges along with the element
deformation is allowed, and the rotation of the element edge
has definite relation with the nodal drilling DOFs. Based
on this assumption, the triangular element GT9 series and
the quadrilateral element GQ12 series were developed. These
elements all exhibit good performance [26], and among these
models the quadrilateral element GQ12M8 is the best one.

It is also well known that most quadrilateral elements use
the isoparametric coordinates (𝜉, 𝜂) to express their formu-
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lations. Lee and Bathe [27] have studied the influence of
mesh distortions on the isoparametric membrane elements
and showed that the serendipity family is quite sensitive
to the mesh distortions. They concluded that the nonlin-
ear transformation between the isoparametric (local) and
the Cartesian (global) coordinates leads to such problem.
Although the assumed displacement fields may contain high-
order terms of 𝜉 and 𝜂, their complete order in Cartesian
coordinates 𝑥 and 𝑦 will degrade significantly once the
meshes are distorted, whichwill lead to low accuracy. In order
to make the isoparametric displacement fields satisfy second
order completeness in Cartesian coordinates, even fourth
order isoparametric terms should be introduced, such as the
abovementioned element GQ12M8. This makes the element
formulations quite complicated.

For overcoming this inherent defect of the isoparametric
coordinates, Long et al. [28, 29] developed the first kind of
quadrilateral area coordinate method QACM-I. The QACM-
I possesses an important character: the transformation
between the area and the Cartesian coordinate systems is
always linear. Thus, the disadvantage of the isoparametric
coordinate system is avoided from the outset. Then, this
new natural coordinate system was successfully applied to
develop newfinite elementmodels. Soh et al. [30] constructed
two 8-node plane quadrilateral generalized conforming ele-
ments which are insensitive to mesh distortion. Chen et al.
[31] proposed two 4-node quadrilateral membrane elements
AGQ6-I and AGQ6-II, which exhibit excellent performance
in high-order benchmark examples; particularly, both can
perfectly pass MacNeal’s thin beam test [32]. These two 4-
node elements arouse the interests in further studies on the
QACM-I. Cen et al. [33] derived out the analytical element
stiffness matrix of AGQ6-I and developed a family of the
quadrilateral plane membrane elements [34]. Du and Cen
[35] extended the element AGQ6-I to geometrically non-
linear analysis. Cardoso et al. [36–38] introduced the element
AGQ6-I to develop distortion-immune shell elements for
linear, nonlinear, and dynamic fracture analyses. Wang and
Sun [39] used the element AGQ6-II to formulate a new coro-
tational nonlinear shell element. Chen et al. [40]modified the
element AGQ6-I to make it pass the strict patch test. Li [41]
improved the formulations and generalized them to simulate
coupled solid-deformation/fluid-flow for porous geomateri-
als. Cardoso and Yoon [42], Prathap and Senthilkumar [43],
and Flajs et al. [44] discussed the convergence for related
AGQ6models. Besides the above plane elements, theQACM-
I has also been successfully employed to develop thin plate
[45], Mindlin-Reissner plate [46], laminated composite plate
[47], and shell models [48–51].

Since the QACM-I contains four area coordinate com-
ponents (𝐿

1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
), among which only two are

independent, users may be confused on how to formulate a
complete high-order polynomial. In view of this disadvan-
tage, Chen et al. [52] proposed the second kind of quadrilat-
eral coordinate method QACM-II. This QACM-II uses two
midlines of opposite sides as the coordinate axes and defines
only two independent coordinate components𝑍

1
and𝑍

2
.The

element formulations expressed by the QACM-II are quite
simpler than those in terms of the QACM-I [52, 53]. In 2010,
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Figure 1: Definition of the quadrilateral area coordinates 𝐿
𝑖
of the

QACM-I.

Long et al. [54] established the third kind of quadrilateral
area coordinate method QACM-III. It takes two diagonals
as the zero coordinate axes to define the two independent
coordinate components 𝑇

1
and 𝑇

2
. All the three kinds of area

quadrilateral coordinate can be used simultaneously in one
element, which will make the formulations quite simple and
straightforward.

In this paper, by combination with the definition of
drilling DOFs proposed by Long et al. [23–25], a new plane
membrane element with drilling DOFs, denoted by QAC4𝜃,
was firstly developed by using the QACM-III. Then, by
introducing a generalized bubble displacement field in terms
of QACM-II into the element QAC4𝜃, a more accurate and
robust element, denoted by QAC4𝜃M, was constructed. Both
elements can pass the strict patch test and exhibit better
performance than other similar models. It is demonstrated
again that the quadrilateral area coordinate methods are
effective tools for developing high-performance quadrilateral
finite element models.

2. Brief Reviews on the Quadrilateral Area
Coordinate Methods

2.1. QACM-I [28, 29]. As shown in Figure 1, the position of
an arbitrary point 𝑃 within a quadrilateral element 1234 is
specified by the area coordinates 𝐿

1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
, which

are defined as

𝐿
𝑖
=
𝐴
𝑖

𝐴
, (𝑖 = 1, 2, 3, 4) , (1)

where 𝐴 is the area of the quadrilateral element; 𝐴
𝑖
(𝑖 =

1, 2, 3, 4) are the areas of the four triangles constructed by
point𝑃 and four element sides 23, 34, 41, and 12, respectively.
𝐿
1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
can be expressed in terms of Cartesian

coordinates (𝑥, 𝑦) as follows:

𝐿
𝑖
=
1

2𝐴
(𝑎
𝑖
+ 𝑏
𝑖
𝑥 + 𝑐
𝑖
𝑦) , (𝑖 = 1, 2, 3, 4) (2)
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with

𝑎
𝑖
= 𝑥
𝑗
𝑦
𝑘
− 𝑥
𝑘
𝑦
𝑗
, 𝑏
𝑖
= 𝑦
𝑗
− 𝑦
𝑘
, 𝑐
𝑖
= 𝑥
𝑘
− 𝑥
𝑖
,

(𝑖 = 1, 2, 3, 4; 𝑗 = 2, 3, 4, 1; 𝑘 = 3, 4, 1, 2) .

(3)

Four dimensionless shape parameters 𝑔
1
, 𝑔
2
, 𝑔
3
, and 𝑔

4
to

each of the quadrangles, as shown in Figure 2,must be defined
as

𝑔
1
=
𝐴


𝐴
, 𝑔
2
=
𝐴


𝐴
, 𝑔
3
= 1 − 𝑔

1
, 𝑔
4
= 1 − 𝑔

2
,

(0 ≤ 𝑔
𝑖
≤ 1) ,

(4)

where𝐴 and𝐴 are the areas ofΔ124 andΔ123, respectively.
Different values of these shape parameters mean different
shapes of a quadrangle. And the area coordinates of four
corner nodes can be obtained:

Node 1 (𝑔
2
, 𝑔
4
, 0, 0)

Node 2 (0, 𝑔
3
, 𝑔
1
, 0)

Node 3 (0, 0, 𝑔
4
, 𝑔
2
)

Node 4 (𝑔
3
, 0, 0, 𝑔

1
) .

(5)

The relations between the area coordinates 𝐿
𝑖
and the

isoparametric coordinates (𝜉, 𝜂) are

𝐿
1
=
1

4
(1 − 𝜉) [𝑔

2
(1 − 𝜂) + 𝑔

3
(1 + 𝜂)]

𝐿
2
=
1

4
(1 − 𝜂) [𝑔

4
(1 − 𝜉) + 𝑔

3
(1 + 𝜉)]

𝐿
3
=
1

4
(1 + 𝜉) [𝑔

1
(1 − 𝜂) + 𝑔

4
(1 + 𝜂)]

𝐿
4
=
1

4
(1 + 𝜂) [𝑔

1
(1 − 𝜉) + 𝑔

2
(1 + 𝜉)] .

(6)

2.2. QACM-II [52]. As shown in Figure 3,𝑀
𝑖
(𝑖 = 1, 2, 3, 4)

are the midside points of element sides 23, 34, 41, and 12,
respectively. Thus, the position of an arbitrary point 𝑃 within
the quadrilateral element 1234 can be uniquely specified by
the two-component area coordinates 𝑍

1
and 𝑍

2
(QACM-II),

which are defined as

𝑍
1
= 4
Ω
1

𝐴
, 𝑍

2
= 4
Ω
2

𝐴
, (7)

where Ω
1
and Ω

2
are the generalized areas of Δ𝑃𝑀

2
𝑀
4
and

Δ𝑃𝑀
3
𝑀
1
, respectively. It must be noted here that the values

of generalized areasΩ
1
andΩ

2
can be both positive and neg-

ative: for Δ𝑃𝑀
2
𝑀
4
(or Δ𝑃𝑀

3
𝑀
1
), if the permutation order

of points 𝑃,𝑀
2
, and𝑀

4
(or 𝑃,𝑀

3
, and𝑀

1
) is anticlockwise,

a positive Ω
1
(or Ω
2
) should be taken; otherwise, Ω

1
(or Ω
2
)

should be negative.
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Figure 3: Definition of the quadrilateral area coordinates 𝑍
𝑖
of

QACM-II.

Thus, the local coordinates of the corner nodes and mid-
side points can be obtained:

Node 1 (−𝑔
1
− 𝑔
2
, −𝑔
1
− 𝑔
4
)

Node 2 (𝑔
1
+ 𝑔
2
, −𝑔
2
− 𝑔
3
)

Node 3 (𝑔
3
+ 𝑔
4
, 𝑔
2
+ 𝑔
3
)

Node 4 (−𝑔
3
− 𝑔
4
, 𝑔
1
+ 𝑔
4
)

𝑀
1
(1, 0) 𝑀

2
(0, 1)

𝑀
3
(−1, 0) 𝑀

4
(0, −1) .

(8)

The relations between the QACM-II and the QACM-I are

𝑍
1
=
1

𝐴
[(𝑎
3
− 𝑎
1
) + (𝑏
3
− 𝑏
1
) 𝑥 + (𝑐

3
− 𝑐
1
) 𝑦] + 𝑔

1

𝑍
2
=
1

𝐴
[(𝑎
4
− 𝑎
2
) + (𝑏
4
− 𝑏
2
) 𝑥 + (𝑐

4
− 𝑐
2
) 𝑦] + 𝑔

2

with 𝑔
1
= 𝑔
2
− 𝑔
1
, 𝑔
2
= 𝑔
3
− 𝑔
2
.

(9)

And 𝑍
1
and 𝑍

2
can also be expressed in terms of 𝜉 and 𝜂 as

follows:
𝑍
1
= 𝜉 + 𝑔

2
𝜉𝜂

𝑍
2
= 𝜂 + 𝑔

1
𝜉𝜂.

(10)

It can be seen that the new area coordinates 𝑍
1
and 𝑍

2

will degenerate to the isoparametric coordinates 𝜉 and 𝜂 for
rectangular element cases.
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Figure 4: Definition of the quadrilateral area coordinates 𝑇
𝑖
of the QACM-III.

2.3. QACM-III [54]. As shown in Figure 4, 13 and 24 are the
two diagonals of the quadrilateral 1234. Then, the position
of an arbitrary point 𝑃 within or outside the quadrilateral
1234 can be uniquely specified by the two-component area
coordinates 𝑇

1
and 𝑇

2
(QACM-III), which are defined as

𝑇
1
=
𝑆
1

𝐴
, 𝑇

2
=
𝑆
2

𝐴
, (11)

where 𝑆
1
and 𝑆
2
are the generalized areas of Δ𝑃42 and Δ𝑃13,

respectively. The values of generalized areas 𝑆
1
and 𝑆

2
can

be both positive and negative: for Δ𝑃42 (or Δ𝑃13), if the
permutation order of the points 𝑃, 4, and 2 (or 𝑃, 1, and 3) is
anticlockwise, a positive 𝑆

1
(or 𝑆
2
) should be taken; otherwise,

𝑆
1
(or 𝑆
2
) should be negative.

Then, the local coordinates of the corner nodes can be
written as

node 1 (−𝑔
1
, 0) node 2 (0, −𝑔

2
)

node 3 (𝑔
3
, 0) node 4 (0, 𝑔

4
) .

(12)

The relations between the QACM-III and the QACM-I
are

𝑇
1
= 𝑔
3
− 𝐿
1
− 𝐿
2
= 𝐿
3
+ 𝐿
4
− 𝑔
1

𝑇
2
= 𝑔
4
− 𝐿
2
− 𝐿
3
= 𝐿
4
+ 𝐿
1
− 𝑔
2
.

(13)

And𝑇
1
and𝑇
2
can also be expressed in terms of 𝜉 and 𝜂 as fol-

lows:

𝑇
1
=
1

4
[𝜉 + 𝜂 + (𝑔

3
− 𝑔
1
) (1 + 𝜉𝜂)]

𝑇
2
=
1

4
[−𝜉 + 𝜂 + (𝑔

4
− 𝑔
2
) (1 − 𝜉𝜂)] .

(14)

3. Definition of the Drilling DOFs

As shown in Figure 5, Long et al. [23–25] defined the drilling
DOFs 𝜃

𝑖
as the additional rigid rotations at the element

nodes.
The characteristics of this definition are as follows.

(1) The change of the angle between two adjacent sides
along with the element deformation is allowed.

(2) The rotation 𝜃 of the element side has definite relation
with the nodal drilling freedom 𝜃

𝑖
.

In this definition, the displacement fields within the
domain of an element are assumed to include two parts:

u = u0 + u𝜃 = {
𝑢
0

V0
} + {

𝑢
𝜃

V𝜃
} , (15)

where u0 are the displacement fields determined by the
nodal translational displacements and u𝜃 are the additional
displacement fields only determined by the vertex rigid
rotations.

The element nodal displacement vector q𝑒 is defined by

q𝑒 = [𝑢
1
V
1
𝜃
1
𝑢
2
V
2
𝜃
2
𝑢
3
V
3
𝜃
3
𝑢
4
V
4
𝜃
4
]
T
. (16)

4. Formulations of the New Elements
QAC4𝜃 and QAC4𝜃M

According to the definition of drilling DOFs, the element
boundary displacement can be assumed as

𝑢
𝑖𝑗
= 𝑢
0

𝑖𝑗
+ 𝑢
𝜃𝑖𝑗

V
𝑖𝑗
= V0
𝑖𝑗
+ V
𝜃𝑖𝑗
,

(𝑖𝑗 = 12, 23, 34, 41) ,

(17)

where the translational displacements 𝑢
𝑖𝑗
and V
𝑖𝑗
can be inter-

polated by the nodal displacements

{

{

{

𝑢
0

12

V0
12

}

}

}

= −
𝑇
1

𝑔
1

{
𝑢
1

V
1

} −
𝑇
2

𝑔
2

{
𝑢
2

V
2

} ,

{

{

{

𝑢
0

23

V0
23

}

}

}

= −
𝑇
2

𝑔
2

{
𝑢
2

V
2

} +
𝑇
1

𝑔
3

{
𝑢
3

V
3

} ,
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Figure 5: DOFs of a membrane element.

{

{

{

𝑢
0

34

V0
34

}

}

}

=
𝑇
1

𝑔
3

{
𝑢
3

V
3

} +
𝑇
2

𝑔
4

{
𝑢
4

V
4

} ,

{

{

{

𝑢
0

41

V0
41

}

}

}

=
𝑇
2

𝑔
4

{
𝑢
4

V
4

} −
𝑇
1

𝑔
1

{
𝑢
1

V
1

} .

(18)

The element boundary displacements caused by the
additional vertex rigid rotations can be assumed by using the
QACM-III:

{

{

{

𝑢
𝜃

23

V𝜃
23

}

}

}

= {
𝑏
1

𝑐
1

}𝑇
1
𝑇
2
(
𝑇
2
𝜃
2

𝑔2
2
𝑔
3

+
𝑇
1
𝜃
3

𝑔
2
𝑔2
3

) ,

{

{

{

𝑢
𝜃

34

V𝜃
34

}

}

}

= {
𝑏
2

𝑐
2

}𝑇
1
𝑇
2
(
𝑇
1
𝜃
3

𝑔2
3
𝑔
4

−
𝑇
2
𝜃
4

𝑔
3
𝑔2
4

) ,

{

{

{

𝑢
𝜃

41

V𝜃
41

}

}

}

= {
𝑏
3

𝑐
3

}𝑇
1
𝑇
2
(−
𝑇
2
𝜃
4

𝑔2
4
𝑔
1

−
𝑇
1
𝜃
1

𝑔
4
𝑔2
1

) ,

{

{

{

𝑢
𝜃

12

V𝜃
12

}

}

}

= {
𝑏
4

𝑐
4

}𝑇
1
𝑇
2
(−
𝑇
1
𝜃
1

𝑔2
1
𝑔
2

+
𝑇
2
𝜃
2

𝑔
1
𝑔2
2

) .

(19)

It can be seen that, at the element corners (nodes), these
boundary additional displacements are always equal to zero,
and their normal derivatives of each edge are given by

𝜕

𝜕𝑛

{

{

{

𝑢
𝜃

𝑖𝑗

V𝜃
𝑖𝑗

}

}

}

𝑖

=
1

𝑑
𝑚

{
𝑏
𝑚

𝑐
𝑚

}𝜃
𝑖
,

𝜕

𝜕𝑛

{

{

{

𝑢
𝜃

𝑖𝑗

V𝜃
𝑖𝑗

}

}

}

𝑗

=
1

𝑑
𝑚

{
𝑏
𝑚

𝑐
𝑚

}𝜃
𝑗
,

(𝑖𝑗𝑚 = 124, 231, 342, 413) .

(20)

The element displacement fields can be assumed in
QACM-III as follows:

𝑢 = 𝛼
1
+ 𝛼
2
𝑇
1
+ 𝛼
3
𝑇
2
+ 𝛼
4
𝑇
1
𝑇
2
+ 𝛼
5
𝑇
2

1
+ 𝛼
6
𝑇
2

2
,

V = 𝛽
1
+ 𝛽
2
𝑇
1
+ 𝛽
3
𝑇
2
+ 𝛽
4
𝑇
1
𝑇
2
+ 𝛽
5
𝑇
2

1
+ 𝛽
6
𝑇
2

2
.

(21)

In order to determine the constant 𝛼
𝑖
, six generalized con-

forming conditions are introduced:

4

∑

𝑖=1

(𝑢 − 𝑢)
𝑖
= 0,

4

∑

𝑖=1

𝜉
𝑖
𝜂
𝑖
(𝑢 − 𝑢)

𝑖
= 0,

∫
𝑙𝑖𝑗

(𝑢 − 𝑢) 𝑑𝑠 = 0 (𝑖𝑗 = 23, 34, 41, 12) .

(22)

The conforming conditions for V are similar to those for 𝑢.
Then, the constants 𝛼

𝑖
and 𝛽

𝑖
in (21) can be solved:

𝛼 = L−1R
𝑢
q
𝑢

𝛽 = L−1RVqV,
(23)
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where

q
𝑢
= [𝑢1 𝑢2 𝑢3 𝑢4 𝜃1 𝜃2 𝜃3 𝜃4]

T

qV = [V1 V
2
V
3
V
4
𝜃
1
𝜃
2
𝜃
3
𝜃
4]

T
,

L =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

4 𝑔
3
− 𝑔
1
𝑔
4
− 𝑔
2

0 𝑔
2

1
+ 𝑔
2

3
𝑔
2

2
+ 𝑔
2

4

0 𝑔
3
− 𝑔
1
𝑔
2
− 𝑔
4

0 𝑔
2

1
+ 𝑔
2

3
−𝑔
2

2
− 𝑔
2

4

1
𝑔
3

2
−
𝑔
2

2
−
𝑔
2
𝑔
3

6

𝑔
2

3

3

𝑔
2

2

3

1
𝑔
3

2

𝑔
4

2

𝑔
3
𝑔
4

6

𝑔
2

3

3

𝑔
2

4

3

1 −
𝑔
1

2

𝑔
4

2
−
𝑔
4
𝑔
1

6

𝑔
2

1

3

𝑔
2

4

3

1 −
𝑔
1

2
−
𝑔
2

2

𝑔
1
𝑔
2

6

𝑔
2

1

3

𝑔
2

2

3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

R
𝑢
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 1 0 0 0 0

1 −1 1 −1 0 0 0 0

0
1

2

1

2
0 0

𝑏
1

12
−
𝑏
1

12
0

0 0
1

2

1

2
0 0

𝑏
2

12
−
𝑏
2

12

1

2
0 0

1

2
−
𝑏
3

12
0 0

𝑏
3

12

1

2

1

2
0 0

𝑏
4

12
−
𝑏
4

12
0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

RV =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1 1 0 0 0 0

1 −1 1 −1 0 0 0 0

0
1

2

1

2
0 0

𝑐
1

12
−
𝑐
1

12
0

0 0
1

2

1

2
0 0

𝑐
2

12
−
𝑐
2

12

1

2
0 0

1

2
−
𝑐
3

12
0 0

𝑐
3

12

1

2

1

2
0 0

𝑐
4

12
−
𝑐
4

12
0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(24)

Let

H
𝑢
= L−1R

𝑢
, HV = L−1RV. (25)

Thus, the displacement fields can be written in the following:

𝑢 =

4

∑

𝑖=1

𝑁
0

𝑖
𝑢
𝑖
+

4

∑

𝑖=1

𝑁
𝑢𝜃𝑖
𝜃
𝑖
, V =

4

∑

𝑖=1

𝑁
0

𝑖
V
𝑖
+

4

∑

𝑖=1

𝑁V𝜃𝑖𝜃𝑖, (26)

where the shape functions of translational displacements are

𝑁
0

𝑖
= 𝐻
𝑢,1𝑖
+ 𝐻
𝑢,2𝑖
𝑇
1
+ 𝐻
𝑢,3𝑖
𝑇
2
+ 𝐻
𝑢,4𝑖
𝑇
1
𝑇
2

+ 𝐻
𝑢,5𝑖
𝑇
2

1
+ 𝐻
𝑢,6𝑖
𝑇
2

2

= 𝐻V,1𝑖 + 𝐻V,2𝑖𝑇1 + 𝐻V,3𝑖𝑇2 + 𝐻V,4𝑖𝑇1𝑇2

+ 𝐻V,5𝑖𝑇
2

1
+ 𝐻V,6𝑖𝑇

2

2
,

(𝑖 = 1, 2, 3, 4) .

(27)

And the shape functions of additional displacement fields
related to the vertex rigid rotations are

𝑁
𝑢𝜃𝑖
= 𝐻
𝑢,1𝑗
+ 𝐻
𝑢,2𝑗
𝑇
1
+ 𝐻
𝑢,3𝑗
𝑇
2
+ 𝐻
𝑢,4𝑗
𝑇
1
𝑇
2

+ 𝐻
𝑢,5𝑗
𝑇
2

1
+ 𝐻
𝑢,6𝑗
𝑇
2

2
,

𝑁V𝜃𝑖 = 𝐻V,1𝑗 + 𝐻V,2𝑗𝑇1 + 𝐻V,3𝑗𝑇2 + 𝐻V,4𝑗𝑇1𝑇2

+ 𝐻V,5𝑗𝑇
2

1
+ 𝐻V,6𝑗𝑇

2

2
,

𝑖 = 1, 2, 3, 4, 𝑗 = 𝑖 + 4, 𝑗 > 4.

(28)

The element strain fields are given by

𝜀 = B
𝑞
q𝑒, (29)

where

B
𝑞
= [B1 B

2
B
3
B
4] ,

B
𝑖
=

[
[
[
[
[
[
[
[

[

𝜕𝑁
0

𝑖

𝜕𝑥
0

𝜕𝑁
𝑢𝜃𝑖

𝜕𝑥

0
𝜕𝑁
0

𝑖

𝜕𝑦

𝜕𝑁V𝜃𝑖

𝜕𝑦

𝜕𝑁
0

𝑖

𝜕𝑦

𝜕𝑁
0

𝑖

𝜕𝑥

𝜕𝑁
𝑢𝜃𝑖

𝜕𝑦
+
𝜕𝑁V𝜃𝑖

𝜕𝑥

]
]
]
]
]
]
]
]

]

, (𝑖 = 1, 2, 3, 4) ,

{{{{{

{{{{{

{

𝜕𝑁
0

𝑖

𝜕𝑥

𝜕𝑁
0

𝑖

𝜕𝑦

}}}}}

}}}}}

}

=
𝐻
𝑢,2𝑖

2𝐴
{
𝑦
4
− 𝑦
2

𝑥
2
− 𝑥
4

} +
𝐻
𝑢,3𝑖

2𝐴
{
𝑦
1
− 𝑦
3

𝑥
3
− 𝑥
1

}

+
𝐻
𝑢,4𝑖

2𝐴
{
(𝑦
4
− 𝑦
2
) 𝑇
2
+ (𝑦
1
− 𝑦
3
) 𝑇
1

(𝑥
2
− 𝑥
4
) 𝑇
2
+ (𝑥
3
− 𝑥
1
) 𝑇
1

}

+
𝐻
𝑢,5𝑖

𝐴
{
(𝑦
4
− 𝑦
2
) 𝑇
1

(𝑥
2
− 𝑥
4
) 𝑇
1

}

+
𝐻
𝑢,6𝑖

𝐴
{
(𝑦
1
− 𝑦
3
) 𝑇
2

(𝑥
3
− 𝑥
1
) 𝑇
2

} ,
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{{{

{{{

{

𝜕𝑁
0

𝑢𝜃𝑖

𝜕𝑥

𝜕𝑁
0

𝑢𝜃𝑖

𝜕𝑦

}}}

}}}

}

=
𝐻
𝑢,2𝑗

2𝐴
{
𝑦
4
− 𝑦
2

𝑥
2
− 𝑥
4

} +
𝐻
𝑢,3𝑗

2𝐴
{
𝑦
1
− 𝑦
3

𝑥
3
− 𝑥
1

}

+
𝐻
𝑢,4𝑗

2𝐴
{
(𝑦
4
− 𝑦
2
) 𝑇
2
+ (𝑦
1
− 𝑦
3
) 𝑇
1

(𝑥
2
− 𝑥
4
) 𝑇
2
+ (𝑥
3
− 𝑥
1
) 𝑇
1

}

+
𝐻
𝑢,5𝑗

𝐴
{
(𝑦
4
− 𝑦
2
) 𝑇
1

(𝑥
2
− 𝑥
4
) 𝑇
1

}

+
𝐻
𝑢,6𝑗

𝐴
{
(𝑦
1
− 𝑦
3
) 𝑇
2

(𝑥
3
− 𝑥
1
) 𝑇
2

} ,

(30)

and 𝜕𝑁0V𝜃𝑖/𝜕𝑥 and 𝜕𝑁0V𝜃𝑖/𝜕𝑦 can be obtained following a
similar procedure.

Finally, the element stiffness matrix is given by

k
𝑞𝑞
= ∬
𝐴

BT
𝑞
DB
𝑞
𝑡𝑑𝐴, (31)

whereD is the elastic matrix. This element is named QAC4𝜃.

In order to make further improvement on element
QAC4𝜃, a generalized bubble displacement field u

𝜆
is intro-

duced with the following generalized conforming conditions:

∫
𝑙𝑖𝑗

u
𝜆
𝑑𝑠 = ∫

𝑙𝑖𝑗

{
𝑢
𝜆

V
𝜆

}𝑑𝑠 = 0, (𝑖𝑗 = 12, 23, 34, 41) . (32)

u
𝜆
is assumed to be expressed in terms of the QACM-II:

𝑢
𝜆
= 𝜆
1
𝑍
2

1
+ 𝜆
2
𝑍
2

2
+ 𝜆
3
𝑍
1
+ 𝜆
4
𝑍
2
+ 𝜆
5

V
𝜆
= 𝜆


1
𝑍
2

1
+ 𝜆


2
𝑍
2

2
+ 𝜆


3
𝑍
1
+ 𝜆


4
𝑍
2
+ 𝜆


5
.

(33)

Substitution of (33) into (32) yields

𝜆
2
= 𝜆
1

𝜆
3
=
2 (𝑔
1
− 𝑔
2
)

3
𝜆
1

𝜆
4
=
2 (𝑔
2
− 𝑔
3
)

3
𝜆
1

𝜆
5
=
2 (𝑔
1
𝑔
3
+ 𝑔
2
𝑔
4
) − 5

3
𝜆
1
.

(34)

And 𝜆
𝑖
(𝑖 = 1 ∼ 5) have similar relations.Thus, the shape fun-

ctions of this additional displacement field can be obtained:

𝑁
𝜆1
= 𝑍
2

1
+ 𝑍
2

2
+
2 (𝑔
1
− 𝑔
2
)

3
𝑍
1
+
2 (𝑔
2
− 𝑔
3
)

3
𝑍
2

+
2 (𝑔
1
𝑔
3
+ 𝑔
2
𝑔
4
) − 5

3
.

(35)

Then, the corresponding strain vector can be written as

𝜀
𝜆
= {
𝜀
𝜆𝑥

𝜀
𝜆𝑦

} = B
𝜆
{
𝜆
1

𝜆


1

} = B
𝜆
𝜆, (36)

where

B
𝜆
=

[
[
[
[
[
[
[

[

𝜕𝑁
𝜆1

𝜕𝑥
0

0
𝜕𝑁
𝜆1

𝜕𝑦

𝜕𝑁
𝜆1

𝜕𝑦

𝜕𝑁
𝜆1

𝜕𝑥

]
]
]
]
]
]
]

]

,

𝜕𝑁
𝜆1

𝜕𝑥
=
2 (𝑏
3
− 𝑏
1
)

𝐴
𝑍
1
+
2 (𝑏
4
− 𝑏
2
)

𝐴
𝑍
2

+
2 (𝑏
3
− 𝑏
1
) (𝑔
1
− 𝑔
2
)

3𝐴

+
2 (𝑏
4
− 𝑏
2
) (𝑔
2
− 𝑔
3
)

3𝐴

𝜕𝑁
𝜆1

𝜕𝑦
=
2 (𝑐
3
− 𝑐
1
)

𝐴
𝑍
1
+
2 (𝑐
4
− 𝑐
2
)

𝐴
𝑍
2

+
2 (𝑐
3
− 𝑐
1
) (𝑔
1
− 𝑔
2
)

3𝐴

+
2 (𝑐
4
− 𝑐
2
) (𝑔
2
− 𝑔
3
)

3𝐴
.

(37)

The final element stiffness matrix of the element is

k𝑒 = k
𝑞𝑞
− kT
𝜆𝑞
k−1
𝜆𝜆
k
𝜆𝑞
, (38)

where

k
𝑞𝑞
= ∬BT

𝑞
DB
𝑞
𝑡𝑑𝐴

k
𝜆𝜆
= ∬BT

𝜆
DB
𝜆
𝑡𝑑𝐴

k
𝜆𝑞
= ∬BT

𝜆
DB
𝑞
𝑡𝑑𝐴.

(39)

This element is named QAC4𝜃M.

5. Numerical Examples

Seven benchmark problems, which are listed in Table 1, have
been used for evaluating the performance of the elements.
The results solved by the other 14 element models listed in
Table 2 are also given for comparison.

Example 1 (patch test). The constant strain/stress patch test
using irregular mesh is shown in Figure 6. Let Young’s
modulus 𝐸 = 1000, Poisson’s ratio 𝜇 = 0.25, and thickness
of the patch 𝑡 = 1. Both QAC4𝜃 and QAC4𝜃M can present
exact solutions.
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1
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𝜇 = 0.25E = 1000

Figure 6: Patch test of constant stress/strain state.

Table 1: List of benchmark problems.

Number Benchmark problems (figure number) Results
1 Patch test (Figure 6)
2 Cook’s skew beam (Figure 7) Table 3
3 Beam divided by five quadrilateral elements (Figure 8) Table 4
4 Beam divided by four quadrilateral elements (Figure 9) Table 5
5 MacNeal’s thin beam (Figure 10) Table 6
6 Thin curving beam (Figure 11) Table 7
7 Beam divided by two elements with distortion parameter (Figure 12) Table 8

Table 2: List of element models for comparison.

Number Element model Reference
1 Q4 4-node isoparametric element
2 Q6 4-node isoparametric element with internal parameters Wilson et al. [55]
3 QM6 4-node isoparametric element with internal parameters Taylor et al. [56]
4 P-S Hybrid stress element Pian and Sumihara [57]
5 QUAD4 4-node element in MSC/NASTRAN MacNeal and Harder [32]
6 Q4S Membrane element with drilling DOFs MacNeal and Harder [8]
7 GQ12 Membrane element with drilling DOFs Long and Xu [23]
8 GQ12M8 Membrane element with drilling DOFs Long and Xu [23]
10 D-type Membrane element with drilling DOFs Ibrahimbegovic et al. [11]
11 Groenwold1995 Membrane element with drilling DOFs Groenwold and Stander [58]
12 AQR8 Membrane element with drilling DOFs Aminpour [59]
13 RGD20 Refined hybrid element Chen and Cheung [60]
14 Q8 8-node isoparametric element

Example 2 (Cook’s skew beam). This example, in which a
skew cantilever with shear distributed load at the free edge,
as shown in Figure 7, was proposed by Cook et al. [61].
The results of vertical deflection at point C, the maximum
principal stress at point A, and the minimum principal stress
at point B are listed in Table 3.

Example 3 (cantilever beam divided by five quadrilateral
elements). The cantilever beam, as shown in Figure 8, is

divided by five irregular quadrilateral elements. And two
loading cases are considered: (a) pure bending undermoment
𝑀 and (b) linear bending under transverse force 𝑃. Young’s
modulus 𝐸 = 1500, and Poisson’s ratio ] = 0.25. The results
of the vertical deflection VA at point A and the stress 𝜎

𝑥B at
point B are given in Table 4.

Example 4 (cantilever beam divided by five quadrilateral
elements). As shown in Figure 9, the cantilever beam is
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Table 3: Results of Cook’s beam.

Element 𝑉
𝐶

𝜎Amax 𝜎Bmin

2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8
Q4 11.80 18.29 22.08 0.1217 0.1873 0.2242 −0.0960 0.1524 −0.1869
Q6 21.61 23.04 23.69 0.1930 0.2237 0.2345 −0.1783 0.1867 −0.1992
D-type 20.68 22.98 23.63 — — — — — —
GQ12 20.89 23.06 23.67 0.1802 0.2209 0.2315 −0.1784 −0.1950 −0.2007
GQ12M8 22.49 23.44 23.78 0.2083 0.2338 0.2361 −0.2216 −0.2045 −0.2028
QAC4𝜃 21.00 23.05 23.66 0.1917 0.2241 0.2318 −0.1877 −0.1938 −0.2009
QAC4𝜃M 22.25 23.42 23.78 0.2147 0.2358 0.2364 −0.2092 −0.2033 −0.2027
Reference values 23.96 0.2362 −0.2023

Table 4: Results of cantilever beam with five elements.

Elements Load I Load II
VA 𝜎

𝑥B VA 𝜎
𝑥B

Q4 45.7 −1761 50.7 −2448
Q6 98.4 −2428 100.4 −3354
GQ12 95.5 −2989 96.0 −4096
GQ12M8 100.0 −3000 101.0 −4147
QAC4𝜃 100.0 −3000 98.6 −3931
QAC4𝜃M 100.0 −3000 101.0 −3977
Exact 100.0 −3000 102.6 −4050

𝜇 = 1/3

E = 1.0

P = 1

x

y

44

16

48

44
A

B C

Figure 7: Cook’s skew beam problem.

divided by four irregular quadrilateral elements. The results
of the deflections at the tip points A and B are shown in
Table 5.

Example 5 (MacNeal’s beam). Consider the thin beams
presented in Figure 10. Three different mesh shapes, rect-
angular, parallelogram, and trapezoidal, are adopted. This
example, proposed by MacNeal and Harder [32], is a famous

2

1 1 2 3 3

41122 P = 150

M = 2000

P = 150

P = 150

A

B

Figure 8: Cantilever beam with five irregular elements.

816 4

12

20

12121212

40

A

B

Figure 9: Cantilever beam modeled with four irregular elements.

6

0.2 P = 1

(a)

P = 1

45∘

(b)

45∘

P = 1

45∘

(c)

Figure 10: MacNeal’s beam.
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Table 5: Results of cantilever with four elements.

Elements Tip deflections Normalized values
Point A Point B Average Point A Point B Average

D-type — — 0.3065 — — 0.861
Q4S — — 0.2978 — — 0.837
Groenwold1995 — — 0.3086 — — 0.867
GQ12 0.3337 0.3324 0.3331 0.938 0.934 0.936
GQ12M 0.3420 0.3404 0.3412 0.961 0.957 0.959
QAC4𝜃 0.3523 0.3516 0.3520 0.990 0.988 0.989
QAC4𝜃M 0.3523 0.3516 0.3520 0.990 0.988 0.989
Reference value 0.3558 1.000

Table 6: The normalized results of the tip deflection for MacNeal’s beam.

Elements Load P LoadM
Mesh (a) Mesh (b) Mesh (c) Mesh (a) Mesh (b) Mesh (c)

Q4 0.093 0.035 0.003 0.093 0.031 0.022
Q6 0.993 0.677 0.106 1.000 0.759 0.093
QM6 0.993 0.623 0.044 1.000 0.722 0.037
QUAD4 0.904 0.080 0.071 — — —
P-S 0.993 0.798 0.221 1.000 0.852 0.167
RGD20 0.981 0.625 0.047 — — —
AQR8 0.993 0.986 0.977 — — —
Q4S 0.993 0.986 0.988 — — —
QAC4𝜃 0.904 0.867 0.906 0.910 0.8804 0.930
QAC4𝜃M 0.993 0.984 0.988 1.000 0.992 0.998
Exact 1.000 (−0.1081) 1.000 (−0.0054)

Table 7: The tip deflection of a thin curving beam.

h/R Q4 QM6 QUAD4 GQ12 GQ12M QAC4𝜃 QAC4𝜃M Exact
0.03 0.024 0.339 0.615 0.670 0.897 0.712 1.000 1.000
0.006 0.001 0.022 0.163 0.612 0.896 0.645 1.008 1.000

benchmark for testing the sensitivity tomesh distortion of the
4-node quadrilateral membrane elements.

There are two loading cases under consideration: pure
bending and transverse linear bending. Young’s modulus of
the beam 𝐸 = 107; Poisson’s ratio 𝜇 = 0.3; the thickness of the
beam 𝑡 = 0.1. The results of the tip deflection are shown in
Table 6.

Example 6 (thin curving beam). As shown in Figure 11, a
cantilever thin curving beam is subjected to a transverse
force at the tip. And it is also divided by five elements. Two
thickness-radius ratios, (i) ℎ/𝑅 = 0.03 and (ii) ℎ/𝑅 = 0.006,
are considered. The results of the tip displacement are listed
in Table 7.

Example 7 (cantilever beam divided by two elements contain-
ing a parameter of distortion). The cantilever beam shown
in Figure 12 is divided by two elements. The shape of the
two elements varies with the distorted parameter 𝑒. When

Table 8: Results of the tip deflection of a cantilever beam with
distorted parameter 𝑒.

𝑒 0 0.5 1 2 3 4 4.9
Q4 28.0 21.0 14.1 9.7 8.3 7.2 6.2
Q8 100 100 99.3 89.3 59.7 31.6 19.0
QM6 100 80.9 62.7 54.4 53.6 51.2 46.8
P-S 100 81.0 62.9 55.0 54.7 53.1 49.8
GQ12 100 97.9 86.3 48.7 24.9 13.3 8.0
GQ12M 100 98.7 93.9 74.1 51.0 33.4 23.3
QAC4𝜃 100 99.9 98.9 99.8 102.0 102.2 100.3
QAC4𝜃M 100 100 100 100 100 100 100
Exact 100

𝑒 = 0, both elements are rectangular. But with the increase
of 𝑒, the mesh will be distorted more andmore seriously.This
is another famous benchmark for testing the sensitivity to the
mesh distortion. For pure bending problem, the results of the
tip deflection at point A are listed in Table 8.
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Figure 11: Bending of a thin curved beam.

5 5

A
2

M = 2000

x

y e

E = 1500, 𝜇 = 0.25, t = 1

Figure 12: Cantilever beam divided by two elements.

6. Conclusions

In this paper, two membrane elements with drilling DOFs,
named QAC4𝜃 and QAC4𝜃M, are developed by using
the quadrilateral area coordinate methods QACM-II and
QACM-III. In their formulations, the additional rigid rota-
tions at the element nodes are considered as the drilling
DOFs, so that these two elements can allow the change of
the angle between two adjacent sides along with the ele-
ment deformations. Furthermore, since the quadrilateral area
coordinates can keep the order of the Cartesian coordinates
unchangeable while the mesh is distorted, the new elements
exhibit better performance than other similar models and
insensitivity to mesh distortion. It is demonstrated again that
the quadrilateral area coordinate methods are effective tools
for developing high-performance quadrilateral finite element
models.
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