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In a previous paper we have proposed a newmethod for proving the existence of “canard solutions” for three- and four-dimensional
singularly perturbed systems with only one fast variable which improves the methods used until now. The aim of this work is to
extend this method to the case of four-dimensional singularly perturbed systems with two slow and two fast variables.This method
enables stating a unique generic condition for the existence of “canard solutions” for such four-dimensional singularly perturbed
systems which is based on the stability of folded singularities (pseudo singular points in this case) of the normalized slow dynamics
deduced from a well-known property of linear algebra. This unique generic condition is identical to that provided in previous
works. Application of this method to the famous coupled FitzHugh-Nagumo equations and to the Hodgkin-Huxley model enables
showing the existence of “canard solutions” in such systems.

1. Introduction

In the beginning of the eighties, Benoı̂t and Lobry [1], Benoı̂t
[2], and then Benoı̂t [3] in his PhD- thesis studied canard
solutions in R3. In the article entitled “Systèmes Lents-
Rapides dansR3 et Leurs Canards,” Benoı̂t [2, p. 170] proved
the existence of canards solution for three-dimensional sin-
gularly perturbed systems with two slow variables and one
fast variable while using “nonstandard analysis” according to
a theorem which stated that canard solutions exist in such
systems provided that the pseudo singular point (this concept
has been originally introduced byArgémi [4]; see Section 2.8)
of the slow dynamics, that is, of the reduced vector field, is of
saddle-type. Nearly twenty years later, Szmolyan and Wech-
selberger [5] extended “Geometric Singular Perturbation
Theory (see Fenichel [6, 7], O’Malley [8], Jones [9], andKaper
[10])” to canards problems in R3 and provided a “standard
version” of Benoı̂t’s theorem [2]. Very recently,Wechselberger
[11] generalized this theorem for 𝑛-dimensional singularly
perturbed systems with 𝑘 slow variables and 𝑚 fast (1). The
methods used by Szmolyan andWechselberger [5] andWech-
selberger [11] require implementing a “desingularization

procedure” which can be summarized as follows: first, they
compute the normal form of such singularly perturbed
systems which is expressed according to some coefficients (𝑎
and 𝑏 for dimension three and 𝑎, ̃𝑏, and 𝑐

𝑗
for dimension

four) depending on the functions defining the original vector
field and their partial derivatives with respect to the variables.
Secondly, they project the “desingularized vector field” (origi-
nally called “normalized slow dynamics” by Benoı̂t [2, p. 166])
of such a normal form on the tangent bundle of the critical
manifold. Finally, they evaluate the Jacobian of the projection
of this “desingularized vector field” at the folded singularity
(originally called pseudo singular points by Argémi [4, p.
336]).This leads Szmolyan andWechselberger [5, p. 427] and
Wechselberger [11, p. 3298] to a “classification of folded singu-
larities (pseudo singular points).” Thus, they showed that for
three-dimensional singularly perturbed systems such folded
singularity is of saddl-type if the following condition is sat-
isfied, 𝑎 < 0 while for four-dimensional singularly perturbed
systems such folded singularity is of saddle-type if 𝑎 < 0.Then,
Szmolyan and Wechselberger [5, p. 439] and Wechselberger
[11, p. 3304] established their Theorem 4.1. which states that
“In the folded saddle and in the folded node case singular
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canards perturb to maximal canard for sufficiently small 𝜀.”
However, in their works neither Szmolyan andWechselberger
[5] norWechselberger [11] did not provide (to our knowledge)
the expression of these constants (𝑎 and 𝑎) which are neces-
sary to state the existence of canard solutions in such systems.

In a previous paper entitled “Canards Existence in Mem-
ristor’s Circuits” (seeGinoux andLlibre [12])we first provided
the expression of these constants and then showed that they
can be directly determined starting from the normalized slow
dynamics and not from the projection of the “desingularized
vector field” of the normal form. This method enabled stating
a unique “generic” condition for the existence of “canard
solutions” for such three- and four-dimensional singularly
perturbed systems which is based on the stability of folded
singularities of the normalized slow dynamics deduced from a
well-known property of linear algebra.This unique condition
which is completely identical to that provided by Benoı̂t [2]
and then by Szmolyan and Wechselberger [5] and finally by
Wechselberger [11] is “generic” since it is exactly the same for
singularly perturbed systems of dimensions three and four
with only one fast variable.

The aim of this work is to extend this method to the case
of four-dimensional singularly perturbed systems with 𝑘 = 2

slow and 𝑚 = 2 fast variables. Since the dimension of the
system is 𝑚 = 𝑘 + 𝑚, such problem is known as “canards
existence in R2+2.” Moreover, in this particular case, where
𝑘 = 𝑚 = 2, the folded singularities of Wechselberger [11, p.
3298] are nothing else but the pseudo singular points of the
late Argémi [4] as we will see below. Following the previous
works, we show that for such four-dimensional singularly
perturbed systems pseudo singular points are of saddle-type if
𝑎 < 0. Then, according toTheorem 4.1. of Wechselberger [11,
p. 3304] we provide the expression of this constant 𝑎 which
is necessary to establish the existence of canard solutions in
such systems. So, we can state that the condition 𝑎 < 0 for
existence of canards in suchR2+2 is “generic” since it is exactly
the same for singularly perturbed systems of dimensions
three and four with only one fast variable.

The outline of this paper is as follows. In Section 1,
definitions of singularly perturbed system, critical manifold,
reduced system, “constrained system,” canard cycles, folded
singularities, and pseudo singular points are recalled. The
method proposed in this paper is presented in Section 2 for
the case of four-dimensional singularly perturbed systems
with two fast variables. In Section 3, applications of this
method to the famous coupled FitzHugh-Nagumo equations
and to the Hodgkin-Huxley model enable showing the
existence of “canard solutions” in such systems.

2. Definitions

2.1. Singularly Perturbed Systems. According to Tikhonov
[13], Jones [9], and Kaper [10] singularly perturbed systems are
defined as

�⃗�

= 𝜀

⃗
𝑓 (�⃗�, ⃗𝑦, 𝜀) ,

⃗𝑦

= ⃗𝑔 (�⃗�, ⃗𝑦, 𝜀) ,

(1)

where �⃗� ∈ R𝑘, ⃗𝑦 ∈ R𝑚, 𝜀 ∈ R+, and the prime denotes
differentiation with respect to the independent variable 𝑡

.
The functions ⃗

𝑓 and ⃗𝑔 are assumed to be 𝐶
∞ functions (in

certain applications these functionswill be supposed to be𝐶𝑟,
𝑟 ⩾ 1) of �⃗�, ⃗𝑦, and 𝜀 in 𝑈 × 𝐼, where 𝑈 is an open subset of
R𝑘 ×R𝑚 and 𝐼 is an open interval containing 𝜀 = 0.

In the case when 0 < 𝜀 ≪ 1, that is, 𝜀 is a small positive
number, the variable �⃗� is called slow variable and ⃗𝑦 is called
fast variable. Using Landau’s notation, 𝑂(𝜀

𝑝
) represents a

function 𝑓 of 𝑢 and 𝜀 such that 𝑓(𝑢, 𝜀)/𝜀𝑝 is bounded for
positive 𝜀 going to zero, uniformly for 𝑢 in the given domain.

In general we consider that �⃗� evolves at an𝑂(𝜀) rate while
⃗𝑦 evolves at an 𝑂(1) slow rate. Reformulating system (1) in

terms of the rescaled variable 𝑡 = 𝜀𝑡
, we obtain

̇
�⃗� =

⃗
𝑓 (�⃗�, ⃗𝑦, 𝜀) ,

𝜀
̇

�⃗� = ⃗𝑔 (�⃗�, ⃗𝑦, 𝜀) .

(2)

The dot represents the derivative with respect to the new
independent variable 𝑡.

The independent variables 𝑡 and 𝑡 are referred to the fast
and slow times, respectively, and (1) and (2) are called the fast
and slow systems, respectively. These systems are equivalent
whenever 𝜀 ̸= 0, and they are labeled singular perturbation
problems when 0 < 𝜀 ≪ 1. The label “singular” stems in
part from the discontinuous limiting behavior in system (1)
as 𝜀 → 0.

2.2. Reduced Slow System. In such case system (2) leads
to a differential-algebraic system (DAE) called reduced slow
system whose dimension decreases from 𝑘 + 𝑚 = 𝑛 to 𝑚.
Then, the slow variable �⃗� ∈ R𝑘 partially evolves in the
submanifold𝑀

0
called the critical manifold (it represents the

approximation of the slow invariant manifold, with an error
of 𝑂(𝜀)). The reduced slow system is

̇
�⃗� =

⃗
𝑓 (�⃗�, ⃗𝑦, 𝜀) ,

0⃗ = ⃗𝑔 (�⃗�, ⃗𝑦, 𝜀) .

(3)

2.3. Slow Invariant Manifold. The critical manifold is defined
by

𝑀
0
fl {(�⃗�, ⃗𝑦) : ⃗𝑔 (�⃗�, ⃗𝑦, 0) = 0⃗} . (4)

Such a normally hyperbolic invariant manifold (4) of the
reduced slow system (3) persists as a locally invariant slow
manifold of the full problem (1) for 𝜀 sufficiently small. This
locally slow invariant manifold is 𝑂(𝜀) close to the critical
manifold.

When 𝐷
⃗𝑥
⃗

𝑓 is invertible, thanks to the Implicit Function
Theorem, 𝑀

0
is given by the graph of a 𝐶

∞ function �⃗� =

�⃗�
0
( ⃗𝑦) for ⃗𝑦 ∈ 𝐷, where 𝐷 ⊆ R𝑘 is a compact, simply

connected domain and the boundary of 𝐷 is a (𝑘 − 1)-
dimensional 𝐶

∞ submanifold (the set 𝐷 is overflowing
invariant with respect to (2) when 𝜀 = 0; see Kaper [10] and
Jones [9]).
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According to Fenichel [6, 7] theory if 0 < 𝜀 ≪ 1 is
sufficiently small, then there exists a function �⃗�( ⃗𝑦, 𝜀) defined
on𝐷 such that the manifold,

𝑀
𝜀
fl {(�⃗�, ⃗𝑦) : �⃗� = �⃗� ( ⃗𝑦, 𝜀)} , (5)

is locally invariant under the flow of system (1). Moreover,
there exist perturbed local stable (or attracting) 𝑀

𝑎
and

unstable (or repelling) 𝑀
𝑟
branches of the slow invariant

manifold 𝑀
𝜀
. Thus, normal hyperbolicity of 𝑀

𝜀
is lost via a

saddle-node bifurcation of the reduced slow system (3). Then,
it gives rise to solutions of “canard” type.

2.4. Canards: Singular Canards and Maximal Canards. A
canard is a solution of singularly perturbed dynamical system
(1) following the attracting branch 𝑀

𝑎
of the slow invariant

manifold, passing near a bifurcation point located on the
fold of this slow invariant manifold, and then following the
repelling branch𝑀

𝑟
of the slow invariant manifold.

A singular canard is a solution of reduced slow system (3)
following the attracting branch 𝑀

𝑎,0
of the critical manifold,

passing near a bifurcation point located on the fold of this
critical manifold, and then following the repelling branch𝑀

𝑟,0

of the critical manifold.
A maximal canard corresponds to the intersection of the

attracting and repelling branches 𝑀
𝑎,𝜀

∩ 𝑀
𝑟,𝜀

of the slow
manifold in the vicinity of a nonhyperbolic point.

According to Wechselberger [11, p. 3302],
“Such a maximal canard defines a family of
canards nearby which are exponentially close to
the maximal canard, i.e., a family of solutions of
(1) that follow an attracting branch 𝑀

𝑎,𝜀
of the

slowmanifold and then follow, rather surprisingly,
a repelling/saddle branch 𝑀

𝑟,𝜀
of the slow man-

ifold for a considerable amount of slow time. The
existence of this family of canards is a consequence
of the non-uniqueness of𝑀

𝑎,𝜀
and𝑀

𝑟,𝜀
. However,

in the singular limit 𝜀 → 0, such a family
of canards is represented by a unique singular
canard.”

Canards are special class of solutions of singularly per-
turbed dynamical systems for which normal hyperbolicity
is lost. Canards in singularly perturbed systems with two
or more slow variables (�⃗� ∈ R𝑘, 𝑘 ⩾ 2) and one fast
variable ( ⃗𝑦 ∈ R𝑚, 𝑚 = 1) are robust, since maximal canards
generically persist under small parameter changes (see Benoı̂t
[2, 14], Szmolyan and Wechselberger [5], and Wechselberger
[11, 15]).

2.5. Constrained System. In order to characterize the “slow
dynamics,” that is, the slow trajectory of the reduced slow
system (3) (obtained by setting 𝜀 = 0 in (2)), Takens [16]
introduced the “constrained system” defined as follows:

̇
�⃗� =

⃗
𝑓 (�⃗�, ⃗𝑦, 0) ,

𝐷
⃗𝑦
⃗𝑔 ⋅

̇
�⃗� = − (𝐷

⃗𝑥
⃗𝑔 ⋅

⃗
𝑓) (�⃗�, ⃗𝑦, 0) ,

0⃗ = ⃗𝑔 (�⃗�, ⃗𝑦, 0) .

(6)

Since, according to Fenichel [6, 7], the critical manifold
⃗𝑔(�⃗�, ⃗𝑦, 0) may be considered as locally invariant under the

flow of system (1), we have

𝑑 ⃗𝑔

𝑑𝑡

(�⃗�, ⃗𝑦, 0) = 0 ⇐⇒ 𝐷
⃗𝑥
⃗𝑔 ⋅

̇
�⃗� + 𝐷

⃗𝑦
⃗𝑔 ⋅

̇
�⃗� = 0⃗. (7)

By replacing ̇
�⃗� by ⃗

𝑓(�⃗�, ⃗𝑦, 0) leads to

𝐷
⃗𝑥
⃗𝑔 ⋅

⃗
𝑓 (�⃗�, ⃗𝑦, 0) + 𝐷

⃗𝑦
⃗𝑔 ⋅

̇
�⃗� = 0⃗. (8)

This justifies the introduction of the constrained system.
Now, let adj(𝐷

⃗𝑦
⃗𝑔) denote the adjoint of the matrix 𝐷

⃗𝑦
⃗𝑔

which is the transpose of the cofactor matrix𝐷
⃗𝑦
⃗𝑔; then while

multiplying the left-hand side of (6) by the inverse matrix
(𝐷
⃗𝑦
⃗𝑔)
−1 obtained by the adjoint method we have

̇
�⃗� =

⃗
𝑓 (�⃗�, ⃗𝑦, 0) ,

det (𝐷
⃗𝑦
⃗𝑔)

̇
�⃗� = − (adj (𝐷

⃗𝑦
⃗𝑔) ⋅ 𝐷

⃗𝑥
⃗𝑔 ⋅

⃗
𝑓) (�⃗�, ⃗𝑦, 0) ,

0⃗ = ⃗𝑔 (�⃗�, ⃗𝑦, 0) .

(9)

2.6. Normalized Slow Dynamics. Then, by rescaling the time
by setting 𝑡 = − det(𝐷

⃗𝑦
⃗𝑔)𝜏 we obtain the following system

which has been called by Benoı̂t [2, p. 166] “normalized slow
dynamics”:

̇
�⃗� = − det (𝐷

⃗𝑦
⃗𝑔)

⃗
𝑓 (�⃗�, ⃗𝑦, 0) ,

̇
�⃗� = (adj (𝐷

⃗𝑦
⃗𝑔) ⋅ 𝐷

⃗𝑥
⃗𝑔 ⋅

⃗
𝑓) (�⃗�, ⃗𝑦, 0) ,

0⃗ = ⃗𝑔 (�⃗�, ⃗𝑦, 0) ,

(10)

where the overdot now denotes the time derivation with
respect to 𝜏.

Let us notice that Argémi [4] proposed to rescale time by
setting 𝑡 = − det(𝐷

⃗𝑦
⃗𝑔) sgn(det(𝐷

⃗𝑦
⃗𝑔))𝜏 in order to keep the

same flow direction in (10) as in (9).

2.7. DesingularizedVector Field. By application of the Implicit
FunctionTheorem, let suppose that we can explicitly express
from (4), say, without loss of generality, 𝑥

1
as a function 𝜙

1
of

the other variables. This implies that 𝑀
0
is locally the graph

of a function 𝜙
1
: R𝑘 → R𝑚 over the base 𝑈 = ( ⃗𝜒, ⃗𝑦), where

⃗𝜒 = (𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘
). Thus, we can span the “normalized

slow dynamics” on the tangent bundle at the critical manifold
𝑀
0
at the pseudo singular point. This leads to the so-called

desingularized vector field:

̇
�⃗� = − det (𝐷

⃗𝑦
⃗𝑔)

⃗
𝑓 ( ⃗𝜒, ⃗𝑦, 0) ,

̇
�⃗� = (adj (𝐷

⃗𝑦
⃗𝑔) ⋅ 𝐷

⃗𝑥
⃗𝑔 ⋅

⃗
𝑓) ( ⃗𝜒, ⃗𝑦, 0) .

(11)

2.8. Pseudo Singular Points and Folded Singularities. As
recalled by Guckenheimer and Haiduc [17, p. 91], pseudo
singular points have been introduced by the late Argémi [4]
for low-dimensional singularly perturbed systems and are
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defined as singular points of the “normalized slow dynamics”
(10). Twenty-three years later, Szmolyan and Wechselberger
[5, p. 428] called such pseudo singular points folded sin-
gularities. In a recent publication entitled “A Propos de
Canards”Wechselberger [11, p. 3295] proposed to define such
singularities for 𝑛-dimensional singularly perturbed systems
with 𝑘 slow variables and 𝑚 fast as the solutions of the
following system:

det (𝐷
⃗𝑦
⃗𝑔) = 0,

(adj (𝐷
⃗𝑦
⃗𝑔) ⋅ 𝐷

⃗𝑥
⃗𝑔 ⋅

⃗
𝑓) (�⃗�, ⃗𝑦, 0) = 0⃗,

⃗𝑔 (�⃗�, ⃗𝑦, 0) = 0⃗.

(12)

Thus, for dimensions higher than three, his concept
encompasses that of Argémi. Moreover, Wechselberger [11,
p. 3296] proved that folded singularities form a (𝑘 − 2)-
dimensional manifold. Thus, for 𝑘 = 2 the folded singularities
are nothing else than the pseudo singular points defined by
Argémi [4], while for 𝑘 ⩾ 3 the folded singularities are no
more points but a (𝑘 − 2)-dimensional manifold. Moreover,
let us notice on one hand that the original system (1) includes
𝑛 = 𝑘 + 𝑚 variables and on the other hand that system (12)
comprises 𝑝 = 2𝑚 + 1 equations. However, in the particular
case 𝑘 = 𝑚 = 2, two equations of system (12) are linearly
dependent. So, such system only comprises 𝑝 = 2𝑚 = 2𝑘

equations. So, all the variables (unknowns) of system (12) can
be determined.The solutions of this system are called pseudo
singular points. We will see in Section 3 that the stability
analysis of these pseudo singular points will give rise to a
condition for the existence of canard solutions in the original
system (1).

3. Four-Dimensional Singularly Perturbed
Systems with Two Fast Variables

Four-dimensional singularly perturbed dynamical system (2)
with 𝑘 = 2 slow variables and𝑚 = 2 fast may be written as

�̇�
1
= 𝑓
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (13a)

�̇�
2
= 𝑓
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (13b)

𝜀 ̇𝑦
1
= 𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (13c)

𝜀 ̇𝑦
2
= 𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (13d)

where �⃗� = (𝑥
1
, 𝑥
2
)
𝑡
∈ R2, ⃗𝑦 = (𝑦

1
, 𝑦
2
) ∈ R2, 0 < 𝜀 ≪ 1,

and the functions 𝑓
𝑖
and 𝑔

𝑖
are assumed to be 𝐶2 functions of

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
).

3.1. Critical Manifold. The critical manifold equation of
system (13a), (13b), (13c), and (13d) is defined by setting 𝜀 = 0

in ((13c) and (13d)). Thus, we obtain

𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 0, (14a)

𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 0. (14b)

By application of the Implicit Function Theorem, let us
suppose that we can explicitly express from ((14a) and (14b)),
say, without loss of generality, 𝑥

1
and 𝑦

1
as functions of the

other variables:

𝑥
1
= 𝜙
1
(𝑥
2
, 𝑦
1
, 𝑦
2
) , (15a)

𝑦
1
= 𝜙
2
(𝑥
1
, 𝑥
2
, 𝑦
2
) . (15b)

3.2. Constrained System. The constrained system is obtained
by equating with zero the time derivative of 𝑔

1,2
(𝑥
1
, 𝑥
2
, 𝑦
1
,

𝑦
2
):

𝑑𝑔
1

𝑑𝑡

=

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
+

𝜕𝑔
1

𝜕𝑦
1

̇𝑦
1
+

𝜕𝑔
1

𝜕𝑦
1

̇𝑦
2
= 0, (16a)

𝑑𝑔
2

𝑑𝑡

=

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
+

𝜕𝑔
2

𝜕𝑦
1

̇𝑦
1
+

𝜕𝑔
2

𝜕𝑦
1

̇𝑦
2
= 0. (16b)

Equations (16a) and (16b) may be written as

𝜕𝑔
1

𝜕𝑦
1

̇𝑦
1
+

𝜕𝑔
1

𝜕𝑦
1

̇𝑦
2
= −(

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
) , (17a)

𝜕𝑔
2

𝜕𝑦
1

̇𝑦
1
+

𝜕𝑔
2

𝜕𝑦
1

̇𝑦
2
= −(

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
) . (17b)

By solving the system of (17a) and (17b) with two
unknowns ( ̇𝑦

1
, ̇𝑦
2
) we find

̇𝑦
1
=

− ((𝜕𝑔
1
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
1
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
2
/𝜕𝑦
2
) + ((𝜕𝑔

2
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
2
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
1
/𝜕𝑦
2
)

det [𝐽
(𝑦
1
,𝑦
2
)
]

, (18a)

̇𝑦
2
=

− ((𝜕𝑔
1
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
1
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
2
/𝜕𝑦
1
) + ((𝜕𝑔

2
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
2
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
1
/𝜕𝑦
1
)

det [𝐽
(𝑦
1
,𝑦
2
)
]

. (18b)
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So, we have the following constrained system:

�̇�
1
= 𝑓
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

�̇�
2
= 𝑓
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

̇𝑦
1
=

− ((𝜕𝑔
1
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
1
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
2
/𝜕𝑦
2
) + ((𝜕𝑔

2
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
2
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
1
/𝜕𝑦
2
)

det [𝐽
(𝑦
1
,𝑦
2
)
]

,

̇𝑦
2
=

− ((𝜕𝑔
1
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
1
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
2
/𝜕𝑦
1
) + ((𝜕𝑔

2
/𝜕𝑥
1
) �̇�
1
+ (𝜕𝑔
2
/𝜕𝑥
2
) �̇�
2
) (𝜕𝑔
1
/𝜕𝑦
1
)

det [𝐽
(𝑦
1
,𝑦
2
)
]

,

0 = 𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

0 = 𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) .

(19)

3.3. Normalized Slow Dynamics. By rescaling the time by
setting 𝑡 = − det[𝐽

(𝑦
1
,𝑦
2
)
]𝜏 we obtain the “normalized slow

dynamics”:

�̇�
1
= −𝑓
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) det [𝐽

(𝑦
1
,𝑦
2
)
]

= 𝐹
1
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑦
1
) ,

�̇�
2
= −𝑓
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) det [𝐽

(𝑦
1
,𝑦
2
)
]

= 𝐹
2
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑦
1
) ,

̇𝑦
1
= (

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
2

𝜕𝑦
2

− (

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
1

𝜕𝑦
2

= 𝐺
1
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑦
1
) ,

̇𝑦
2
= (

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
2

𝜕𝑦
1

− (

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
1

𝜕𝑦
1

= 𝐺
2
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑦
1
) ,

0 = 𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

0 = 𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

(20)

where the overdot now denotes the time derivation with
respect to 𝜏.

3.4. Desingularized System on the Critical Manifold. Then,
since we have supposed that 𝑥

1
and 𝑦

1
may be explicitly

expressed as functions of the other variables ((15a) and (15b)),
they can be used to project the normalized slow dynamics

(20) on the tangent bundle of the critical manifold. So, we
have

�̇�
2
= −𝑓
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) det [𝐽

(𝑦
1
,𝑦
2
)
] = 𝐹
2
(𝑥
2
, 𝑦
2
) ,

̇𝑦
2
= (

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
2

𝜕𝑦
1

− (

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
1

𝜕𝑦
1

= 𝐺
2
(𝑥
2
, 𝑦
2
) .

(21)

3.5. Pseudo Singular Points. Pseudo singular points are
defined as singular points of the “normalized slow dynamics,”
that is, as the set of points for which we have

det [𝐽
(𝑦
1
,𝑦
2
)
] = 0, (22a)

(

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
2

𝜕𝑦
2

− (

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
1

𝜕𝑦
2

= 0,

(22b)

(

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
2

𝜕𝑦
1

− (

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
1

𝜕𝑦
1

= 0,

(22c)

𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 0, (22d)

𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 0. (22e)

Remark 1. Let us notice on one hand that (22b) and (22c)
are linearly dependent and on the other hand that contrary
to previous works we do not use the “desingularized vector
field” (21) but the “normalized slow dynamics” (20).
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The Jacobian matrix of system (20) reads

𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
=

(

(

(

(

(

(

(

(

𝜕𝐹
1

𝜕𝑥
1

𝜕𝐹
1

𝜕𝑥
2

𝜕𝐹
1

𝜕𝑦
1

𝜕𝐹
1

𝜕𝑦
2

𝜕𝐹
2

𝜕𝑥
1

𝜕𝐹
2

𝜕𝑥
2

𝜕𝐹
2

𝜕𝑦
1

𝜕𝐹
2

𝜕𝑦
2

𝜕𝐺
1

𝜕𝑥
1

𝜕𝐺
1

𝜕𝑥
2

𝜕𝐺
1

𝜕𝑦
1

𝜕𝐺
1

𝜕𝑦
2

𝜕𝐺
2

𝜕𝑥
1

𝜕𝐺
2

𝜕𝑥
2

𝜕𝐺
2

𝜕𝑦
1

𝜕𝐺
2

𝜕𝑦
2

)

)

)

)

)

)

)

)

. (23)

3.6. Extension of Benoı̂t’s Generic Hypothesis. Without loss
of generality, it seems reasonable to extend Benoı̂t’s generic
hypotheses introduced for the three-dimensional case to the
four-dimensional case. So, first, let us suppose that by a
“standard translation” the pseudo singular point can be shifted
at the origin 𝑂(0, 0, 0, 0) and that by a “standard rotation”
of 𝑦
1
-axis that the slow manifold is tangent to (𝑥

2
, 𝑥
3
, 𝑦
1
)-

hyperplane, so we have

𝑓
1
(0, 0, 0, 0) = 𝑔

1
(0, 0, 0, 0) = 0,

𝜕𝑔
1

𝜕𝑥
2








(0,0,0,0)

=

𝜕𝑔
1

𝜕𝑥
3








(0,0,0,0)

=

𝜕𝑔
1

𝜕𝑦
1








(0,0,0,0)

= 0.

(24)

Then, let us make the following assumptions for the non-
degeneracy of the folded singularity:

𝑓
2 (

0, 0, 0, 0) ̸= 0;

𝜕𝑔
1

𝜕𝑥
1








(0,0,0,0)

̸= 0;

𝜕
2
𝑔
1

𝜕𝑦
2

1









(0,0,0,0)

̸= 0.

(25)

According to these generic hypotheses ((24)-(25)), the
Jacobian matrix (23) reads

𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)

= (

0 0 0 0

−𝑓
2

𝜕𝑃

𝜕𝑥
1

−𝑓
2

𝜕𝑃

𝜕𝑥
2

−𝑓
2

𝜕𝑃

𝜕𝑦
1

−𝑓
2

𝜕𝑃

𝜕𝑦
2

𝑎
31

𝑎
32

𝑎
33

𝑎
34

𝑎
41

𝑎
42

𝑎
43

𝑎
44

),

(26)

where

𝑃 = det [𝐽
(𝑦
1
,𝑦
2
)
] ,

𝑎
3𝑖
= −𝑓
2

𝜕𝑔
2

𝜕𝑥
2

𝜕
2
𝑔
1

𝜕𝑦
2
𝜕𝑥
𝑖

+

𝜕𝑔
2

𝜕𝑦
2

(𝑓
2

𝜕
2
𝑔
1

𝜕𝑥
2
𝜕𝑥
𝑖

+

𝜕𝑔
1

𝜕𝑥
1

𝜕𝑓
1

𝜕𝑥
𝑖

)

for 𝑖 = 1, 2,

𝑎
3𝑖
= −𝑓
2

𝜕𝑔
2

𝜕𝑥
2

𝜕
2
𝑔
1

𝜕𝑦
2
𝜕𝑦
𝑖

+

𝜕𝑔
2

𝜕𝑦
2

(𝑓
2

𝜕
2
𝑔
1

𝜕𝑥
2
𝜕𝑦
𝑖

+

𝜕𝑔
1

𝜕𝑥
1

𝜕𝑓
1

𝜕𝑦
𝑖

)

for 𝑖 = 3, 4,

𝑎
4𝑖
= 𝑓
2

𝜕𝑔
2

𝜕𝑥
2

𝜕
2
𝑔
1

𝜕𝑦
1
𝜕𝑥
𝑖

−

𝜕𝑔
2

𝜕𝑦
1

(𝑓
2

𝜕
2
𝑔
1

𝜕𝑥
2
𝜕𝑥
𝑖

+

𝜕𝑔
1

𝜕𝑥
1

𝜕𝑓
1

𝜕𝑥
𝑖

)

for 𝑖 = 1, 2,

𝑎
4𝑖
= 𝑓
2

𝜕𝑔
2

𝜕𝑥
2

𝜕
2
𝑔
1

𝜕𝑦
1
𝜕𝑦
𝑖

−

𝜕𝑔
2

𝜕𝑦
1

(𝑓
2

𝜕
2
𝑔
1

𝜕𝑥
2
𝜕𝑦
𝑖

+

𝜕𝑔
1

𝜕𝑥
1

𝜕𝑓
1

𝜕𝑦
𝑖

)

for 𝑖 = 3, 4.

(27)

Thus, we have the following Cayley-Hamilton eigenpoly-
nomial associated with such Jacobian matrix (26) evaluated
at the pseudo singular point, that is, at the origin:

𝜆
4
− 𝜎
1
𝜆
3
+ 𝜎
2
𝜆
2
− 𝜎
3
𝜆 + 𝜎
4
= 0, (28)

where 𝜎
1
= Tr(𝐽) is the sum of all first-order diagonal minors

of 𝐽, that is, the trace of the Jacobian matrix 𝐽, 𝜎
2
represents

the sum of all second-order diagonal minors of 𝐽, and 𝜎
3

represents the sum of all third-order diagonal minors of 𝐽. It
appears that 𝜎

4
= |𝐽| = 0 since one row of the Jacobianmatrix

(26) is null. So, the eigenpolynomial reduces to

𝜆 (𝜆
3
− 𝜎
1
𝜆
2
+ 𝜎
2
𝜆 − 𝜎
3
) = 0. (29)

But, according to Wechselberger [11], 𝜎
3
vanishes at

a pseudo singular point as it is easy to prove it. So, the
eigenpolynomial (29) is reduced to

𝜆
2
(𝜆
2
− 𝜎
1
𝜆 + 𝜎
2
) = 0. (30)

Let 𝜆
𝑖
be the eigenvalues of eigenpolynomial (30) and

let us denote by 𝜆
3,4

= 0 the obvious double root of this
polynomial. We have

𝜎
1
= Tr (𝐽

(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
) = 𝜆
1
+ 𝜆
2
=

𝜕𝑔
2

𝜕𝑥
1

𝜕𝑔
1

𝜕𝑦
1

𝜕𝑓
1

𝜕𝑦
2

,

𝜎
2
=

3

∑

𝑖=1






𝐽
𝑖𝑖

(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)






= 𝜆
1
𝜆
2
= (

𝜕𝑔
1

𝜕𝑦
1

)

2

⋅ [𝑓
2

2
(

𝜕
2
𝑔
2

𝜕𝑥
2

2

𝜕
2
𝑔
2

𝜕𝑦
2

2

− (

𝜕
2
𝑔
2

𝜕𝑥
2
𝜕𝑦
2

)

2

)

+ 𝑓
2

𝜕𝑔
2

𝜕𝑥
1

(

𝜕
2
𝑔
2

𝜕𝑦
2

2

𝜕𝑓
1

𝜕𝑥
2

−

𝜕
2
𝑔
2

𝜕𝑥
2
𝜕𝑦
2

𝜕𝑓
1

𝜕𝑦
2

)] ,

(31)
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where 𝜎
1

= Tr(𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
) = 𝑝 is is the sum of all first-

order diagonal minors of 𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
, that is, the trace of the

Jacobian matrix 𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
, and 𝜎

2
= ∑
3

𝑖=1
|𝐽
𝑖𝑖

(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
| = 𝑞

represents the sum of all second-order diagonal minors of
𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
. Thus, the pseudo singular point is of saddle-type

iff the following conditions 𝐶
1
and 𝐶

2
are verified:

𝐶
1
: Δ = 𝑝

2
− 4𝑞 > 0,

𝐶
2
: 𝑞 < 0.

(32)

Condition 𝐶
1
is systematically satisfied provided that

condition 𝐶
2
is verified. Thus, the pseudo singular point is of

saddle-type iff 𝑞 < 0.

3.7. Canard Existence inR2+2. Following the works of Wech-
selberger [11] it can be stated, while using a standard polyno-
mial change of variables, that any 𝑛-dimensional singularly
perturbed systems with 𝑘 slow variables (𝑘 ⩾ 2) and 𝑚 fast
(𝑚 ⩾ 1) (1) can be transformed into the following “normal
form”:

̇𝑥
1
= 𝑎𝑥
2
+
̃
𝑏𝑦
2
+ 𝑂 (𝑥

1
, 𝜖, 𝑥
2

2
, 𝑥
2
𝑦
2
, 𝑦
2

2
) ,

̇𝑥
2
= 1 + 𝑂 (𝑥

1
, 𝑥
2
, 𝑦
2
, 𝜖) ,

𝜖 ̇𝑦
1
= 𝑐𝑦
1
+ 𝑂 (𝜖𝑥

1
, 𝜖𝑥
2
, 𝜖𝑦
2
, 𝑥
2

1
, 𝑥
2

2
, 𝑦
2

2
, 𝑥
2
𝑦
2
) ,

𝜖 ̇𝑦
2
= − (𝑥

1
+ 𝑦
2

2
)

+ 𝑂 (𝜖𝑥
1
, 𝜖𝑥
2
, 𝜖𝑦
2
, 𝜖
2
, 𝑥
2

1
𝑦
2
, 𝑦
3

2
, 𝑥
1
𝑥
2
𝑦
2
) .

(33)

We establish in the Appendix for any four-dimensional
singularly perturbed systems (13a), (13b), (13c), and (13d)with
𝑘 = 2 slow and𝑚 = 2 fast variables that

𝑎 =

1

2

[𝑓
2

2
(

𝜕
2
𝑔
2

𝜕𝑥
2

2

𝜕
2
𝑔
2

𝜕𝑦
2

2

− (

𝜕
2
𝑔
2

𝜕𝑥
2
𝜕𝑦
2

)

2

)

+ 𝑓
2

𝜕𝑔
2

𝜕𝑥
1

(

𝜕
2
𝑔
2

𝜕𝑦
2

2

𝜕𝑓
1

𝜕𝑥
2

−

𝜕
2
𝑔
2

𝜕𝑥
2
𝜕𝑦
2

𝜕𝑓
1

𝜕𝑦
2

)] ,

̃
𝑏 = −

𝜕𝑔
2

𝜕𝑥
1

𝜕𝑓
1

𝜕𝑦
2

,

𝑐 =

𝜕𝑔
1

𝜕𝑦
1

.

(34)

Thus, in his paper Wechselberger [11, p. 3304] provided
in the framework of “standard analysis” a generalization
of Benoı̂t’s theorem [2] for any 𝑛-dimensional singularly
perturbed systems with 𝑘 slow variables (𝑘 ⩾ 2) and 𝑚

fast (𝑚 ⩾ 1). According to his theorem presented below as
Theorem 2 he proved the existence of canard solutions for the
original system (1).

Theorem 2. In the folded saddle case of system (33) singular
canards perturb to maximal canards solutions for sufficiently
small 𝜀 ≪ 1.

Proof. See Wechselberger [11].

Since ourmethod does not use the “desingularized vector
field” (21) but the “normalized slow dynamics” (20), we have
the following proposition.

Proposition 3. If the normalized slow dynamics (20) has a
pseudo singular point of saddle-type, that is, if the sum 𝜎

2

of all second-order diagonal minors of the Jacobian matrix of
the normalized slow dynamics (20) evaluated at the pseudo
singular point is negative, that is, if 𝜎

2
< 0 then, according

to Theorem 2, system (13a), (13b), (13c), and (13d) exhibits a
canard solution which evolves from the attractive part of the
slow manifold towards its repelling part.

Proof. By making some smooth changes of time and smooth
changes of coordinates (see theAppendix) we brought system
(13a), (13b), (13c), and (13d) to the following “normal form”:

̇𝑥
1
= 𝑎𝑥
2
+
̃
𝑏𝑦
2
+ 𝑂 (𝑥

1
, 𝜖, 𝑥
2

2
, 𝑥
2
𝑦
2
, 𝑦
2

2
) ,

̇𝑥
2
= 1 + 𝑂 (𝑥

1
, 𝑥
2
, 𝑦
2
, 𝜖) ,

𝜖 ̇𝑦
1
= 𝑐𝑦
1
+ 𝑂 (𝜖𝑥

1
, 𝜖𝑥
2
, 𝜖𝑦
2
, 𝑥
2

1
, 𝑥
2

2
, 𝑦
2

2
, 𝑥
2
𝑦
2
) ,

𝜖 ̇𝑦
2
= − (𝑥

1
+ 𝑦
2

2
)

+ 𝑂 (𝜖𝑥
1
, 𝜖𝑥
2
, 𝜖𝑦
2
, 𝜖
2
, 𝑥
2

1
𝑦
2
, 𝑦
3

2
, 𝑥
1
𝑥
2
𝑦
2
) .

(35)

Then,we deduce that the condition for the pseudo singular
point to be of saddle-type is 𝑎 < 0. According to (32) it is easy
to verify that

𝜎
1
= Tr (𝐽

(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
) = 𝜆
1
+ 𝜆
2
= −

̃
𝑏𝑐,

𝜎
2
=

3

∑

𝑖=1






𝐽
𝑖𝑖

(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)






= 𝜆
1
𝜆
2
= 2𝑎𝑐

2
.

(36)

So, the condition for which the pseudo singular point is of
saddle-type, that is, 𝜎

2
< 0, is identical to that proposed by

Wechselberger [11, p. 3298] in his theorem; that is, 𝑎 < 0.

So, Proposition 3 can be used to state the existence of
canard solution for such systems. Application of Proposi-
tion 3 to the coupled FitzHugh-Nagumo equations, presented
in Section 4, which is a four-dimensional singularly per-
turbed systemwith two slow and two fast variables will enable
proving, as many previous works such as those of Tchizawa
and Campbell [18] and Tchizawa [19–24], the existence of
“canard solutions” in such system. According to Tchizawa
[25], it is very important to notice on one hand that the
fast equation has 2 dimensions in the system R2+2 and
on the other hand that the fast system can give attractive,
repulsive, or attractive-repulsive part at each pseudo singular
point. Then, Tchizawa [25] has established that the jumping
direction can be shown using the eigenvectors. In the same
way wewill find again the results of Rubin andWechselberger
[26] concerning the existence of “canard solutions” in the
Hodgkin-Huxley model but with a set of more realistic
parameters used in Chua et al. [27, 28].
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4. Coupled FitzHugh-Nagumo Equations

The FitzHugh-Nagumomodel [29, 30] is a simplified version
of the Hodgkin-Huxley model [31] which models in a
detailed manner activation and deactivation dynamics of a
spiking neuron. By coupling two FitzHugh-Nagumo models
Tchizawa and Campbell [18] and Tchizawa [19, 24] obtained
the following four-dimensional singularly perturbed system
with two slow and two fast variables:

𝑑𝑥
1

𝑑𝑡

=

1

𝑐

(𝑦
1
+ 𝑏𝑥
1
) , (37a)

𝑑𝑥
2

𝑑𝑡

=

1

𝑐

(𝑦
2
+ 𝑏𝑥
2
) , (37b)

𝜀

𝑑𝑦
1

𝑑𝑡

= 𝑥
1
−

𝑦
3

1

3

+ 𝑦
2
, (37c)

𝜀

𝑑𝑦
2

𝑑𝑡

= 𝑥
2
−

𝑦
3

2

3

+ 𝑦
1
, (37d)

where 0 < 𝜀 ≪ 1 and 𝑏 is the “canard parameter” or “duck
parameter” while 𝑐 is a scale factor.

4.1. Slow Manifold and Constrained System. The slow man-
ifold equation of system (37a), (37b), (37c), and (37d) is
defined by setting 𝜀 = 0 in (37c) and (37d). Thus, we obtain

𝑑𝑥
1

𝑑𝑡

=

1

𝑐

(𝑦
1
+ 𝑏𝑥
1
) ,

𝑑𝑥
2

𝑑𝑡

=

1

𝑐

(𝑦
2
+ 𝑏𝑥
2
) ,

𝑑𝑦
1

𝑑𝑡

= −

(1/𝑐) (𝑦2
+ 𝑏𝑥
2
) + (𝑦

2

2
/𝑐) (𝑦

1
+ 𝑏𝑥
1
)

𝑦
2

1
𝑦
2

2
− 1

,

𝑑𝑦
2

𝑑𝑡

= −

(1/𝑐) (𝑦
1
+ 𝑏𝑥
1
) + (𝑦

2

1
/𝑐) (𝑦

2
+ 𝑏𝑥
2
)

𝑦
2

1
𝑦
2

2
− 1

,

0 = 𝑥
1
−

𝑦
3

1

3

+ 𝑦
2
,

0 = 𝑥
2
−

𝑦
3

2

3

+ 𝑦
1
.

(38)

4.2. Normalized Slow Dynamics. Then, by rescaling the time
by setting 𝑡 = − det[𝐽

(𝑦
1
,𝑦
2
)
]𝜏 = −(𝑦

2

1
𝑦
2

2
− 1) we obtain the

“normalized slow dynamics”:

𝑑𝑥
1

𝑑𝑡

= −

1

𝑐

(𝑦
1
+ 𝑏𝑥
1
) (𝑦
2

1
𝑦
2

2
− 1)

= 𝐹
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

𝑑𝑥
2

𝑑𝑡

= −

1

𝑐

(𝑦
2
+ 𝑏𝑥
2
) (𝑦
2

1
𝑦
2

2
− 1)

= 𝐹
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

𝑑𝑦
1

𝑑𝑡

=

1

𝑐

(𝑦
2
+ 𝑏𝑥
2
) +

𝑦
2

2

𝑐

(𝑦
1
+ 𝑏𝑥
1
)

= 𝐺
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

𝑑𝑦
2

𝑑𝑡

=

1

𝑐

(𝑦
1
+ 𝑏𝑥
1
)

+

𝑦
2

1

𝑐

(𝑦
2
+ 𝑏𝑥
2
) 𝐺
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

0 = 𝑥
1
−

𝑦
3

1

3

+ 𝑦
2
,

0 = 𝑥
2
−

𝑦
3

2

3

+ 𝑦
1
.

(39)

4.3. Pseudo Singular Points. From (22a), (22b), (22c), (22d),
and (22e), the pseudo singular points of system (37a), (37b),
(37c), and (37d) are defined by

det [𝐽
(𝑦
1
,𝑦
2
)
] = 𝑦
2

1
𝑦
2

2
− 1 = 0, (40a)

(

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
2

𝜕𝑦
2

− (

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
1

𝜕𝑦
2

=

1

𝑐

(𝑦
2
+ 𝑏𝑥
2
) +

𝑦
2

2

𝑐

(𝑦
1
+ 𝑏𝑥
1
) = 0,

(40b)

(

𝜕𝑔
1

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
1

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
2

𝜕𝑦
1

− (

𝜕𝑔
2

𝜕𝑥
1

�̇�
1
+

𝜕𝑔
2

𝜕𝑥
2

�̇�
2
)

𝜕𝑔
1

𝜕𝑦
1

=

1

𝑐

(𝑦
1
+ 𝑏𝑥
1
) +

𝑦
2

1

𝑐

(𝑦
2
+ 𝑏𝑥
2
) = 0,

(40c)

𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 𝑥
1
−

𝑦
3

1

3

+ 𝑦
2
= 0, (40d)

𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 𝑥
2
−

𝑦
3

2

3

+ 𝑦
1
= 0. (40e)

According to Tchizawa and Campbell [18] and Tchizawa
[19, 20], there are six pseudo singular points with the last four
depending on the parameter 𝑏:

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = (±

4

3

, ∓

4

3

, ±1, ∓1) , (41a)

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= (±

√(3 − √9 − 4𝑏
2
) /𝑏 (3 + 2√9 − 4𝑏

2
)

3√2𝑏

,

∓

√(3 − √9 − 4𝑏
2
) /𝑏 (9 − 8𝑏

2
+ 3√9 − 4𝑏

2
)

6√2𝑏
2

,

∓
√

3 − √9 − 4𝑏
2

2𝑏

, ∓

√2𝑏

√
3 − √9 − 4𝑏

2

),

(41b)
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(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= (±

(3 − 2√9 − 4𝑏
2
)√(3 + √9 − 4𝑏

2
) /𝑏

3√2𝑏

,

∓

√(3 + √9 − 4𝑏
2
) /𝑏 (9 − 8𝑏

2
− 3√9 − 4𝑏

2
)

6√2𝑏
2

,

∓
√

3 − √9 − 4𝑏
2

2𝑏

, ∓

√2𝑏

√
3 − √9 − 4𝑏

2

).

(41c)

4.4. Canard Existence in Coupled FitzHugh-Nagumo Equa-
tions. The Jacobian matrix of system (39) evaluated at the
pseudo singular points (41a) reads

𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)

=

(

(

(

(

(

0 0

2 (3 + 4𝑏)

3𝑐

−

2 (3 + 4𝑏)

3𝑐

0 0 −

2 (3 + 4𝑏)

3𝑐

2 (3 + 4𝑏)

3𝑐

𝑏

𝑐

𝑏

𝑐

1

𝑐

−

3 + 8𝑏

3𝑐

𝑏

𝑐

𝑏

𝑐

−

3 + 8𝑏

3𝑐

1

𝑐

)

)

)

)

)

.

(42)

Remark 4. Although the pseudo singular points have not been
shifted at the origin extension of Benoı̂t’s generic hypotheses
(24)-(25) are satisfied. In other words, we have 𝜎

4
= 𝜎
3
= 0.

According to (31) we find that

𝑝 = 𝜎
1
= Tr (𝐽) = +

2

𝑐

,

𝑞 = 𝜎
2
= −

16𝑏 (3 + 4𝑏)

9𝑐
2

.

(43)

Thus, according to Proposition 3, the pseudo singular
points are of saddle-type if and only if:

−

16𝑏 (3 + 4𝑏)

9𝑐
2

< 0. (44)

So, we have conditions 𝐶
1
and 𝐶

2
:

𝐶
1
: Δ =

4 (3 + 8𝑏)
2

9𝑐
2

> 0,

𝐶
2
: 𝑞 = −

16𝑏 (3 + 4𝑏)

9𝑐
2

< 0.

(45)

Let us choose arbitrarily 𝑏 as the “canard parameter” or
“duck parameter.” Obviously, it appears that the condition
𝐶
1
is still satisfied. Finally, the pseudo singular points are of

saddle-type if and only if we have

𝑏 > 0 or

𝑏 < −

3

4

.

(46)

Remark 5. Let us notice that the pseudo singular points are
of node-type if −3/4 < 𝑏 < 0 as stated by Tchizawa and
Campbell [18] and Tchizawa [19, 20].

The Jacobian matrix 𝐽
(𝐹
1
,𝐹
2
,𝐺
1
,𝐺
2
)
of system (39) evaluated

at the pseudo singular points (41b) reads

(

(

(

(

(

(

(

(

(

(

0 0 −

4√9 − 4𝑏
2

3𝑐

−

2 (−9 + 4𝑏
2
+ 3√9 − 4𝑏

2
)

3𝑏𝑐

0 0

2 (−9 + 4𝑏
2
+ 3√9 − 4𝑏

2
)

3𝑏𝑐

4√9 − 4𝑏
2

3𝑐

3 + √9 − 4𝑏
2

2𝑐

𝑏

𝑐

3 + √9 − 4𝑏
2

2𝑏𝑐

3 − 4√9 − 4𝑏
2

3𝑐

𝑏

𝑐

3 − √9 − 4𝑏
2

2𝑐

3 + 4√9 − 4𝑏
2

3𝑐

3 − √9 − 4𝑏
2

2𝑏𝑐

)

)

)

)

)

)

)

)

)

)

. (47)

Remark 6. Although the pseudo singular points have not been
shifted at the origin extension of Benoı̂t’s generic hypotheses
(24)-(25) are satisfied. In other words, we have 𝜎

4
= 𝜎
3
= 0.

According to (31) we find that

𝑝 = 𝜎
1
= Tr (𝐽) = +

3

𝑏𝑐

,

𝑞 = 𝜎
2
=

16 (9 − 4𝑏
2
)

9𝑐
2

.

(48)

Thus, according to Proposition 3, the pseudo singular
points are of saddle-type if and only if

16 (9 − 4𝑏
2
)

9𝑐
2

< 0

Δ = 𝑝
2
− 4𝑞 > 0, 𝑞 < 0.

(49)
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So, we have conditions 𝐶
1
and 𝐶

2
:

𝐶
1
: Δ = (

3

𝑏𝑐

)

2

−

64 (9 − 4𝑏
2
)

9𝑐
2

> 0,

𝐶
2
: 𝑞 =

16 (9 − 4𝑏
2
)

9𝑐
2

< 0.

(50)

Let us choose arbitrarily 𝑏 as the “canard parameter” or
“duck parameter.” Obviously, it appears that if the condition
𝐶
2
is verified, then the condition 𝐶

1
is de facto satisfied.

Finally, the pseudo singular points are of saddle-type if and
only if we have

𝑏 >

3

2

or

𝑏 < −

3

2

.

(51)

Remark 7. Because of the symmetry of these coupled
FitzHugh-Nagumo equations, the Jacobian matrix of system
(39) evaluated at the pseudo singular points (41c) provides the
same result as just above.

5. Hodgkin-Huxley Model

The original Hodgkin-Huxley model [31] is described by
the following system of four nonlinear ordinary differential
equations:

𝑑𝑉

𝑑𝑡

=

1

𝐶M
[𝐼 − 𝑔K𝑛

4
(𝑉 − 𝑉K) − 𝑔Na𝑚

3
ℎ (𝑉 − 𝑉Na)

− 𝑔L (𝑉 − 𝑉L)] ,

(52a)

𝑑𝑛

𝑑𝑡

= 𝛼
𝑛 (

𝑉) (1 − 𝑛) − 𝛽
𝑛 (

𝑉) 𝑛, (52b)

𝑑𝑚

𝑑𝑡

= 𝛼
𝑚 (

𝑉) (1 − 𝑚) − 𝛽
𝑚 (

𝑉)𝑚, (52c)

𝑑ℎ

𝑑𝑡

= 𝛼
ℎ (

𝑉) (1 − ℎ) − 𝛽
ℎ (

𝑉) ℎ, (52d)

where:

𝛼
𝑛
(𝑉) =

0.01 (𝑉 + 10)

(exp ((𝑉 + 10) /10) − 1)

, (53a)

𝛽
𝑛
(𝑉) = 0.125 exp(

𝑉

80

) , (53b)

𝛼
𝑚 (

𝑉) =

0.1 (𝑉 + 25)

(exp ((𝑉 + 25) /10) − 1)

, (53c)

𝛽
𝑚
(𝑉) = 4 exp(

𝑉

18

) , (53d)

𝛼
ℎ (

𝑉) = 0.07 exp(

𝑉

20

) , (53e)

𝛽
𝑛
(𝑉) =

1

(exp ((𝑉 + 30) /10) + 1)

. (53f)

The first equation (52a) results from the application of
Kirchhoff ’s law to the space clamped squid giant axon. Thus,
the total membrane current 𝐶M𝑑𝑉/𝑑𝑡 for which 𝐶M repre-
sents the specific membrane capacity and𝑉 the displacement
of the membrane potential from its resting value is equal to
the sum of the following intrinsic currents:

𝐼K = 𝑔K𝑛
4
(𝑉 − 𝑉K) ,

𝐼Na = 𝑔Na𝑚
3
ℎ (𝑉 − 𝑉Na) ,

𝐼L = 𝑔L (𝑉 − 𝑉L) ,

(54)

where 𝐼K is a delayed rectifier potassium current, 𝐼Na is
fast sodium current, and 𝐼L is the “leakage current.” The
parameter 𝐼 is the total membrane current density, inward
positive, that is, the total current injected into the space
clamped squid giant axon, and 𝑉K, 𝑉Na, and 𝑉L are the
equilibrium potentials of potassium, sodium, and “leakage
current,” respectively. The maximal specific conductance
degrees of the ionic currents are denoted by 𝑔K, 𝑔Na, and
𝑔L, respectively. Functions 𝛼𝑛,𝑚,ℎ and 𝛽

𝑛,𝑚,ℎ
are gates’ opening

and closing rates depending on 𝑉. Variable 𝑚 denotes the
activation of the sodium current, variable ℎ the inactivation
of the sodium current, and variable 𝑛 the activation of the
potassium current.These dimensionless gating variables vary
in the range [0, 1].

Let us notice that the variables and symbols in ((52a),
(52b), (52c), and (52d) and (53a), (53b), (53c), (53d), (53e),
and (53f)) originally chosen by Hodgkin and Huxley and are
different from those found in recent literatures, where the
reference polarity of the voltage𝑉 and the reference direction
of the current 𝐼 are defined as the negative of the voltages and
currents. We have opted to adopt the reference assumption
in Hodgkin and Huxley [31] for ease in comparison of our
results with those fromHodgkin andHuxley (formore details
see Chua et al. [27, 28]). The parameter values are exactly
those chosen in the original Hodgkin-Huxley [31] works:

𝐶M = 1.0 𝜇F/cm2,

𝑉Na = −115mV,

𝑉K = 12mV,

𝑉L = −10.613mV,

𝑔Na = 120mS/cm2,

𝑔K = 36mS/cm2,

𝑔L = 0.3mS/cm2.

(55)

According to Suckley and Biktashev [32] and Suckley
[33], dimensionless functions 𝑛, ℎ, and𝑚 called gates’ instant
equilibrium values, that is, steady-state relation for gating
variables 𝑛, ℎ, and 𝑚, respectively, as well as 𝜏

𝑛
, 𝜏
ℎ
, and 𝜏

𝑚

called gates dynamics timescales in ms, that is, time constant
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for gating variables 𝑛, ℎ, and 𝑚, respectively, may be defined
as follows:

𝑛 (𝑉) =

𝛼
𝑛 (

𝑉)

𝛼
𝑛
(𝑉) + 𝛽

𝑛
(𝑉)

, (56a)

ℎ (𝑉) =

𝛼
ℎ
(𝑉)

𝛼
ℎ
(𝑉) + 𝛽

ℎ
(𝑉)

, (56b)

𝑚(𝑉) =

𝛼
𝑚
(𝑉)

𝛼
𝑚 (

𝑉) + 𝛽
𝑚 (

𝑉)

, (56c)

𝜏
𝑛 (

𝑉) =

1

𝛼
𝑛
(𝑉) + 𝛽

𝑛
(𝑉)

, (56d)

𝜏
ℎ
(𝑉) =

1

𝛼
ℎ (

𝑉) + 𝛽
ℎ (

𝑉)

, (56e)

𝜏
𝑚
(𝑉) =

1

𝛼
𝑚
(𝑉) + 𝛽

𝑚
(𝑉)

. (56f)

By using (56a), (56b), (56c), (56d), (56e), and (56f), the
original Hodgkin-Huxley model [31] reads

𝑑𝑉

𝑑𝑡

=

1

𝐶M
[𝐼 − 𝑔K𝑛

4
(𝑉 − 𝑉K) − 𝑔Na𝑚

3
ℎ (𝑉 − 𝑉Na)

− 𝑔L (𝑉 − 𝑉L)] ,

(57a)

𝑑𝑛

𝑑𝑡

=

𝑛 − 𝑛

𝜏
𝑛

, (57b)

𝑑ℎ

𝑑𝑡

=

ℎ − ℎ

𝜏
ℎ

, (57c)

𝑑𝑚

𝑑𝑡

=

𝑚 − 𝑚

𝜏
𝑚

. (57d)

Now, in order to apply the singular perturbation method
to the Hodgkin-Huxley model, two small multiplicative
parameters 𝜀 ≪ 1 are introduced. According to Suckley and
Biktashev [32], Suckley [33], and Rubin and Wechselberger
[26], the existence of two different timescales of evolution
for couples of dynamic variables (𝑛, ℎ) and (𝑚,𝑉) enables
justifying such an introduction. So, in order to differentiate
slow variables from fast variables, Suckley and Biktashev
[32], Suckley [33], and Rubin and Wechselberger [26] have
plotted the inverse of “time constant for gating variable 𝑖,”
that is, 𝜏

𝑖

−1 according to 𝑉 with 𝑖 = 𝑛, ℎ,𝑚. In Figure 1,
they have been plotted for the original functions 𝛼

𝑖
and

𝛽
𝑖
(53a). However, let us notice that this plot is exactly

the same as those presented by Rubin and Wechselberger
[26] (Figure 1) for a nondimensionalized three-dimensional
Hodgkin-Huxley singularly perturbed system obtained after
the following variable changes: 𝑉 → −𝑉 and 𝐼 → −𝐼; then
𝑉 → 𝑉 + 65 and finally 𝑉 → 𝑉/100.

Figure 1 shows a plot of the functions 𝜏
𝑖

−1 according to 𝑉

with 𝑖 = 𝑛, ℎ,𝑚 over the physiological range. We observe that
𝜏
𝑚

−1 is of an order of magnitude bigger than 𝜏
ℎ

−1 and 𝜏
𝑛

−1,
which are of comparable size. Indeed, we can deduce that the
values of times scales are approximately 𝜏

𝑚

−1
≈ 10ms−1 while

−120 −100 −80 −60 −40 −20 0 20

𝜏−1m

𝜏−1n

𝜏−1h

V

0

2

4

𝜏
−
1

i

6

8

10

Figure 1: Graph of 1/𝜏
𝑖
(ms−1) against 𝑉 (mV).

𝜏
𝑛

−1
≈ 𝜏
ℎ

−1
≈ 1ms−1. Then, it appears that𝑚 corresponds to

the fast variable while 𝑛 and ℎ correspond to slow variables.
Moreover, since the activation of the sodium channel 𝑚 is
directly related to the dynamics of the membrane (action)
potential 𝑉, Rubin and Wechselberger [26] consider that 𝑚
and 𝑉 evolve on the same fast timescale. So, the Hodgkin-
Huxleymodelmay be transformed into a singularly perturbed
systemwith two timescales in which the slow variables are 𝑛, ℎ
and the fast variables are𝑚,𝑉.

So, according toAwiszus et al. [34], Suckley andBiktashev
[32], Suckley [33], and Rubin and Wechselberger [26] small
multiplicative parameters 0 < 𝜀 ≪ 1 in the original vector
field of theHodgkin-Huxley equations (57a), (57b), (57c), and
(57d) may be identified while factorizing the right-hand side
of (57a) by 𝑔Na and set:

𝑔Na →

𝑔Na
𝑔Na

= 1,

𝑔K →

𝑔K
𝑔Na

= 0.3,

𝑔L →

𝑔L
𝑔Na

= 0.0025.

(58)

Other parameters are kept as for the original Hodgkin-
Huxley model [31]:

𝐶M = 1.0 𝜇F/cm2,

𝑉Na = −115mV,

𝑉K = 12mV,

𝑉L = −10.613mV.

(59)
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Then, by posing 𝐼 → 𝐼/𝑔Na, 𝜀 = 𝐶M/𝑔Na = 1/120,
and (𝑛, ℎ,𝑚, 𝑉) = (𝑥

1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) to be consistent with the

notations of Section 3, we obtain

𝑑𝑥
1

𝑑𝑡

=

𝑥
1
− 𝑥
1

𝜏
1

= 𝑓
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (60a)

𝑑𝑥
2

𝑑𝑡

=

𝑥
2
− 𝑥
2

𝜏
2

= 𝑓
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (60b)

𝜀

𝑑𝑦
1

𝑑𝑡

=

𝑦
1
− 𝑦
1

𝜏
3

= 𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (60c)

𝜀

𝑑𝑦
2

𝑑𝑡

= 𝐼 − 𝑔K𝑥
4

1
(𝑦
2
− 𝑉K) − 𝑔Na𝑦

3

1
𝑥
2
(𝑦
2
− 𝑉Na)

− 𝑔L (𝑦2 − 𝑉L) = 𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) ,

(60d)

where (𝑥
1
, 𝑥
2
, 𝑦
1
) = (𝑛, ℎ,𝑚) and 𝜏

1,2,3
= 𝜏
𝑛,ℎ,𝑚

.
Let us notice that the multiplicative parameter 𝜀 has been

introduced artificially in (60c). This is due to the fact that it
has been stated above that the timescale of variable𝑚, that is,
𝑦
1
, is tenth times greater than the timescale of variables 𝑛 and

ℎ, that is, of variables 𝑥
1
and 𝑥

2
. Moreover, this parameter

is identical to those used in (60d) since it has been also
considered that𝑚 and𝑉, that is,𝑦

1
and𝑦
2
, evolve on the same

fast timescale.
According to theGeometric Singular PerturbationTheory,

the zero-order approximation in 𝜀 of the slow manifold
associated with the Hodgkin-Huxley model (60a), (60b),
(60c), and (60d) is obtained by posing 𝜀 = 0 in (60c) and
(60d). So, the slow manifold is given by

𝑥
2
=

𝐼 − 𝑔K𝑥
4

1
(𝑦
2
− 𝑉K) − 𝑔L (𝑦2 − 𝑉L)

𝑔Na𝑦
3

1
(𝑦
2
− 𝑉Na)

, (61a)

𝑦
1
= 𝑦
1
(𝑦
2
) . (61b)

Then, the fast foliation is within the planes 𝑥
1
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

and 𝑥
2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

The fold curve is defined as the location of the points,
where 𝑔

1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 0, 𝑔

2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 0, and

det[𝐽
(𝑔
1
,𝑔
2
)
] = 0. For theHodgkin-Huxleymodel (60a), (60b),

(60c), and (60d), the fold curve is thus given by (61a) and

(61b) and by the determinant of the Jacobian matrix of the
following fast foliation:

𝑑𝑦
1

𝑑𝑡

=

𝑦
1
− 𝑦
1

𝜏
3

= 𝑔
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) , (62a)

𝑑𝑦
2

𝑑𝑡

= 𝐼 − 𝑔K𝑥
4

1
(𝑦
2
− 𝑉K) − 𝑔Na𝑦

3

1
𝑥
2
(𝑦
2
− 𝑉Na)

− 𝑔L (𝑦2 − 𝑉L) = 𝑔
2
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) .

(62b)

The Jacobian matrix of the fast foliation (62a) and (62b)
reads

𝐽
(𝑔
1
,𝑔
2
)

= (

𝑦
1


𝜏
3
− 𝜏


3
(𝑦
1
− 𝑦
1
)

𝜏
2

3

−

1

𝜏
3

− (𝑔K𝑥
4
+ 𝑔Na𝑦

3

1
𝑥
2
+ 𝑔L) −3𝑔Na𝑦

2

1
𝑥
2
(𝑦
2
− 𝑉Na)

) ,

(63)

where () denotes the derivative with respect to 𝑦
2
. Then,

taking into account (61b), that is, 𝑦
1
= 𝑦
1
, we have

𝐽
(𝑔
1
,𝑔
2
)

= (

𝑦
1



𝜏
3

−

1

𝜏
3

− (𝑔K𝑥
4

1
+ 𝑔Na𝑦

3

1
𝑥
2
+ 𝑔L) −3𝑔Na𝑦

2

1
𝑥
2
(𝑦
2
− 𝑉Na)

) .

(64)

So, the determinant of the Jacobian matrix of the fast
foliation (62a) and (62b) is

det (𝐽
(𝑔
1
,𝑔
2
)
) = −

1

𝜏
3

[𝑔K𝑥
4

1
+ 𝑔Na𝑦

3

1
𝑥
2
+ 𝑔L

+ 3𝑔Na𝑦1

𝑦
2

1
𝑥
2
(𝑦
2
− 𝑉Na)] .

(65)

Thus, the condition for the fold curve is det(𝐽
(𝑔
1
,𝑔
2
)
) = 0,

which gives

𝑔K𝑥
4

1
+ 𝑔Na𝑦

3

1
𝑥
2
+ 𝑔L + 3𝑔Na𝑦1


𝑦
2

1
𝑥
2
(𝑦
2
− 𝑉Na) = 0. (66)

Therefore

𝑥
2
= −

𝑔K𝑥
4

1
+ 𝑔L

𝑔Na𝑦
2

1
(𝑦
1
+ 3𝑦
1


(𝑦
2
− 𝑉Na))

. (67)

By subtracting (61a) from (67) we obtain 𝑥
1

𝑥
1
= 𝑥
1𝑓

= [

−𝐼 [𝑦
1
+ 3𝑦
1


(𝑦
2
− 𝑉Na)] + 𝑔L (𝑉Na − 𝑉L) 𝑦1 + 3𝑦

1


(𝑦
2
− 𝑉Na) (𝑦2 − 𝑉L)

𝑔K [(𝑉K − 𝑉Na) 𝑦1 − 3𝑦
1


(𝑦
2
− 𝑉Na) (𝑦2 − 𝑉K)]

]

1/4

. (68)

Plugging this value of 𝑥
1
(68) into (67) provides

𝑥
2
= 𝑥
2𝑓

=

𝐼 + 𝑔L (𝑉K − 𝑉L)

𝑔Na𝑦
2

1
[(𝑉Na − 𝑉K) 𝑦1 + 3𝑦

1


(𝑦
2
− 𝑉Na) (𝑦2 − 𝑉K)]

.

(69)

So, the fold curve is given by the set of parametric
equations ((68)-(69)) in terms of 𝑦

2
.

The pseudo singular points are given by (22a), (22b), (22c),
(22d), and (22e) which read for the Hodgkin-Huxley model
(60a), (60b), (60c), and (60d):

𝑦
1
− 𝑦
1

𝜏
3

= 0, (70a)
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𝐼 − 𝑔K𝑥
4

1
(𝑦
2
− 𝑉K) − 𝑔Na𝑦

3

1
𝑥
2
(𝑦
2
− 𝑉Na) − 𝑔L (𝑦2

− 𝑉L) = 0,

(70b)

[

4𝑔K𝑥
3

1
(𝑦
2
− 𝑉K) (𝑥1 − 𝑥

1
)

𝜏
1

+

𝑔Na𝑦
3

1
(𝑦
2
− 𝑉Na) (𝑥2 − 𝑥

2
)

𝜏
2

] = 0,

(70c)

[

4𝑔K𝑥
3

1
(𝑦
2
− 𝑉K) (𝑥1 − 𝑥

1
)

𝜏
1

+

𝑔Na𝑦
3

1
(𝑦
2
− 𝑉Na) (𝑥2 − 𝑥

2
)

𝜏
2

]

1

𝜏
3

= 0,

(70d)

𝜏
3
(𝑔K𝑥
4

1
+ 𝑔Na𝑦

3

1
𝑥
2
+ 𝑔L) + 3𝑔Na𝑦

2

1
𝑥
2
(𝑦
2
− 𝑉Na)

⋅ (𝜏
3
𝑦


1
+ (𝑦
1
− 𝑦
1
) 𝜏


3
) = 0.

(70e)

Let us notice that (70c) and (70d) are identical. Moreover,
the definition of 𝜏

3
(56f) enables simplifying system (70a),

(70b), (70c), (70d), and (70e). Thus, we have

𝐼 − 𝑔K𝑥
4

1
(𝑦
2
− 𝑉K) − 𝑔Na𝑦

3

1
𝑥
2
(𝑦
2
− 𝑉Na)

− 𝑔L (𝑦2 − 𝑉L) = 0,

(71a)

4𝑔K𝑥
3

1
(𝑦
2
− 𝑉K) (𝑥1 − 𝑥

1
)

𝜏
1

+

𝑔Na𝑦
3

1
(𝑦
2
− 𝑉Na) (𝑥2 − 𝑥

2
)

𝜏
2

= 0,

(71b)

𝑔K𝑥
4

1
+ 𝑔Na𝑦

3

1
𝑥
2
+ 𝑔L + 3𝑔Na𝑦

2

1
𝑦


1
𝑥
2
(𝑦
2
− 𝑉Na) = 0. (71c)

Moreover, (71a) and (71c) indicate that the pseudo singular
point belongs to the slowmanifold and to the fold curve. So, let
us replace in (71b) the variables 𝑥

1
and 𝑥

2
by the variables 𝑥

1𝑓

and 𝑥
2𝑓

given by (68) and (69), respectively, which represent
the parametric equations of fold curve

4𝑔K𝑥
3

1𝑓
(𝑦
2
− 𝑉K) (𝑥1𝑓 − 𝑥

1
)

𝜏
1

+

𝑦
3

1
(𝑦
2
− 𝑉Na) (𝑥2𝑓 − 𝑥

2
)

𝜏
2

= 0.

(72)

Thus, it appears that (72) depends on the variable 𝑦
2
, on

the functions gates dynamics timescales 𝜏
1
(𝑦
2
) and 𝜏

2
(𝑦
2
),

and on the bifurcation parameter 𝐼. According to Rubin and
Wechselberger [26], the function 𝑦

2
(𝐼), solution of (72), is

independent of time multiplicative constants 𝑘
1
and 𝑘

2
that

one could set in factor of 𝜏
1
(𝑦
2
) and 𝜏

2
(𝑦
2
).

So, following their works, let us plot the function 𝑦
2
(𝐼)

solution of (72) for various values of these time constants by
posing successively in (72) 𝑘

1
= 1, 3, 4.75 and 7 and while

fixing 𝑘
2
= 1. The result is presented in Figure 2.

Let us notice that this plot (the function 𝑦
2
(𝐼) solution of

(71a), (71b), and (71c) has been plotted with Mathematica©

−20 −15 −10 −5

kn = 7

kn = 4.75

kn = 3
kn = 1

I

0

−5

0

5

y
2

Figure 2: Function 𝑦
2
(𝐼) for various values of parameter 𝑘

𝑛
=

1, 3, 4.75, 7 exhibiting the the bifurcation parameter value 𝐼
𝐶

≈

−4.8.

while using the Contour Plot Function used for representing
implicit function since such function cannot be expressed
explicitly) is exactly the same as those presented by Rubin
and Wechselberger [26] (Fig. 8-9) for a nondimension-
alized three-dimensional Hodgkin-Huxley singularly per-
turbed system which had been obtained after the following
variable changes: 𝑉 → −𝑉 and 𝐼 → −𝐼; then 𝑉 → 𝑉 + 65

and finally 𝑉 → 𝑉/100.
We observe from Figure 2 that the bifurcation parameter

value 𝐼
𝐶

≈ −4.8 is exactly identical (in absolute value) to
those obtained by Rubin and Wechselberger [26]. Numerical
resolution (this resolution has been made while using the
function FindRoot inMathematica©) of (72) provides a better
approximation of the bifurcation parameter value:

𝐼
𝐶
= −4.82988 𝜇A. (73)

This value corresponds to a voltage 𝑦
2
= −3.18136mV.

For 𝐼 ≈ −4.1, the coordinate of the pseudo singular point
can be computed numerically:

(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= (0.362513, 0.521793, 0.0733782, −2.81908) .

(74)

According to Proposition 3 we can state that the eigen-
polynomial of the Jacobian matrix associated with the “nor-
malized slow dynamics” of theHodgkin-Huxleymodel (60a),
(60b), (60c), and (60d) reads

𝜆
4
− 𝜎
1
𝜆
3
+ 𝜎
2
𝜆
2
− 𝜎
3
𝜆 + 𝜎
4
= 0 (75)

for which it is easy to prove that 𝜎
4

= 𝜎
3

= 0. So, this
eigenpolynomial reduces to

𝜆
2
(𝜆
2
− 𝜎
1
𝜆 + 𝜎
2
) = 0. (76)
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Figure 3: Phase portrait, canard solution, and slow manifold of the
Hodgkin-Huxley system (60a), (60b), (60c), and (60d) in the (𝑛, ℎ,
𝑉) phase space.

According to (31) we find that

𝑝 = Tr (𝐽) = 144.933,

𝑞 = 𝜎
2
= −362.924.

(77)

Thus, according to Proposition 3, the pseudo singular
point is of saddle-type. Moreover, numerical computation of
the eigenvalues of this Jacobianmatrix evaluated at the pseudo
singular point provides

(𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
) = (−2.46224, 147.396, 0, 0) . (78)

So, according to Proposition 3, this pseudo singular point
is of saddle-type and canard solution may occur in the four-
dimensional Hodgkin-Huxley singularly perturbed system
(60a), (60b), (60c), and (60d) for the original set of parameter
values.

In Figures 3, 4, and 5 canard solution of the four-
dimensional Hodgkin-Huxley singularly perturbed system
for the “canard value” of 𝐼 ≈ −4.1 has been plotted in the
(𝑥
1
, 𝑥
2
, 𝑦
2
) phase space and then in the (𝑥

1
, 𝑦
2
) phase plane.

The green point represents the pseudo singular point. The
trajectory curve, that is, the canard solution, has been plotted
in red while the fold curve is in yellow.We observe in Figure 3
that when the trajectory curve reaches the fold at the pseudo
singular point it “jumps” suddenly to the other part of the slow
manifold before being reinjected towards the pseudo singular
point.

6. Discussion

In a previous paper entitled “Canards Existence in Memris-
tor’s Circuits” (see Ginoux and Llibre [12]) we have proposed

−20 0−40−80 −60−100
V

0.4

0.5

n

0.6

0.7

Figure 4: Phase portrait, canard solution, and slow manifold of the
Hodgkin-Huxley system (60a), (60b), (60c), and (60d) in the (𝑉, 𝑛)
phase plane.
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−80 −60 −40 −20−100
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Figure 5: Phase portrait, canard solution, and slow manifold of the
Hodgkin-Huxley system (60a), (60b), (60c), and (60d) in the (𝑉, ℎ)
phase plane.

a newmethod for proving the existence of “canard solutions”
for three- and four-dimensional singularly perturbed systems
with only one fast variable which improves the methods used
until now. This method enabled stating a unique “generic”
condition for the existence of “canard solutions” for such
three- and four-dimensional singularly perturbed systems
which is based on the stability of folded singularities of
the normalized slow dynamics deduced from a well-known
property of linear algebra. This unique condition which is



Mathematical Problems in Engineering 15

completely identical to that provided by Benoı̂t [2] and
then by Szmolyan and Wechselberger [5] and finally by
Wechselberger [11] was considered as “generic” since it
was exactly the same for singularly perturbed systems of
dimensions three and four with only one fast variable. In
this work we have extended this new method to the case of
four-dimensional singularly perturbed systems with two slow
and two fast variables and we have stated that the condition
for the existence of “canard solutions” in such systems is
exactly identical to those proposed in our previous paper.This
result confirms the genericity of the condition (𝜎

2
< 0); we

have highlighted and provide a simple and efficient tool for
testing the occurrence of “canard solutions” in any three- or
four-dimensional singularly perturbed systems with one or
two fast variables. Applications of this method to the famous
coupled FitzHugh-Nagumo equations and to the Hodgkin-
Huxley model has enabled showing the existence of “canard
solutions” in such systems. However, in this paper, only the
case of pseudo singular points or folded singularities of saddle-
type has been analyzed. Of course, the case of of pseudo
singular points or folded singularities of node-type and focus-
type could be also studied with the same method.

Appendix

Changes of coordinates leading to the normal forms of
four-dimensional singularly perturbed systems with two fast
variables are given in the following section.

Normal Form of 4D Singularly Perturbed
Systems with Two Fast Variables

Let us consider the four-dimensional singularly perturbed
dynamical system (13a), (13b), (13c), and (13d) with 𝑘 = 2 slow
variables and𝑚 = 2 fast and let us make the following change
of variables:

𝑥
1
= 𝛼
2
𝑥,

𝑥
2
= 𝛼𝑦,

𝑦
1
= 𝛼
2
𝑧,

𝑦
2
= 𝛼𝑢,

where 𝛼 ≪ 1.

(A.1)

By taking into account extension of Benoı̂t’s generic
hypothesis ((24), (25)) and while using Taylor series expan-
sion, system (13a), (13b), (13c), and (13d) becomes

�̇� =

𝜕𝑓
1

𝜕𝑦

𝑦 +

𝜕𝑓
1

𝜕𝑢

𝑢,

̇𝑦 = 𝑓
2
(𝑥, 𝑦, 𝑧, 𝑢) ,

(

𝜀

𝛼

) �̇� =

𝜕𝑔
1

𝜕𝑧

𝑧 +

1

2

𝜕
2
𝑔
1

𝜕𝑦
2
𝑦
2
+

1

2

𝜕
2
𝑔
1

𝜕𝑢
2
𝑢
2
+

𝜕
2
𝑔
1

𝜕𝑦𝜕𝑢

𝑦𝑢,

(

𝜀

𝛼

) �̇� =

𝜕𝑔
2

𝜕𝑥

𝑥 +

1

2

𝜕
2
𝑔
2

𝜕𝑦
2
𝑦
2
+

1

2

𝜕
2
𝑔
2

𝜕𝑢
2
𝑢
2
+

𝜕
2
𝑔
2

𝜕𝑦𝜕𝑢

𝑦𝑢.

(A.2)

Then, let us make the standard polynomial change of
variables:

𝑋 = 𝐴𝑥 + 𝐵𝑦
2
,

𝑌 =

𝑦

𝑓
2

,

𝑍 = 𝐶𝑦 + 𝐷𝑧 + 𝐸𝑢,

𝑈 = 𝐹𝑦 + 𝐺𝑢.

(A.3)

From (A.3) we deduce that

𝑥 =

𝑋 − 𝐵𝑓
2

2
𝑌
2

𝐴

,

𝑦 = 𝑓
2
𝑌,

𝑧 =

1

𝐷

[𝑍 − 𝐶𝑓
2
𝑌 −

𝐸

𝐺

(𝑈 − 𝐹𝑓
2
𝑌)] ,

𝑢 =

𝑈 − 𝐹𝑓
2
𝑌

𝐺

.

(A.4)

The time derivative of system (A.3) gives

�̇� = 𝐴�̇� + 2𝐵𝑦 ̇𝑦,

�̇� =

̇𝑦

𝑓
2

,

̇
𝑍 = 𝐶 ̇𝑦 + 𝐷�̇� + 𝐸�̇�,

�̇� = 𝐹�̇� + 𝐺�̇�.

(A.5)

Then, multiplying the third and fourth equation of (A.5)
by (𝜀/𝛼) while replacing in (A.5) �̇�, ̇𝑦, �̇�, and �̇� by the right-
hand side of system (A.2) leads to

�̇� = 𝐴�̇� + 2𝐵𝑦 ̇𝑦,

�̇� =

̇𝑦

𝑓
2

,

(

𝜀

𝛼

)
̇

𝑍 = (

𝜀

𝛼

)𝐶 ̇𝑦 + (

𝜀

𝛼

)𝐷�̇� + (

𝜀

𝛼

)𝐸�̇�,

(

𝜀

𝛼

) �̇� = (

𝜀

𝛼

)𝐹 ̇𝑦 + (

𝜀

𝛼

)𝐺�̇�.

(A.6)

Since 𝜀/𝛼 ≪ 1, the first terms of the right-hand side of
the third and fourth equation of (A.6) can be neglected. So
we have

�̇� = 𝐴(

𝜕𝑓
1

𝜕𝑦

𝑦 +

𝜕𝑓
1

𝜕𝑢
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2
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2
𝑦
2
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1

2

𝜕
2
𝑔
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2
𝑢
2
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𝜕
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1
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2

𝜕𝑥
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1

2
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2
𝑦
2
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1

2

𝜕
2
𝑔
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𝜕𝑢
2
𝑢
2
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+

𝜕
2
𝑔
2

𝜕𝑦𝜕𝑢

𝑦𝑢) ,

(

𝜀

𝛼

) �̇� = 𝐺(

𝜕𝑔
2

𝜕𝑥

𝑥 +

1

2

𝜕
2
𝑔
2

𝜕𝑦
2
𝑦
2
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1

2

𝜕
2
𝑔
2

𝜕𝑢
2
𝑢
2

+

𝜕
2
𝑔
2

𝜕𝑦𝜕𝑢

𝑦𝑢) .

(A.7)

Then, by replacing in (A.7)𝑥,𝑦, 𝑧, and𝑢 by the right-hand
side of (A.4) and by identifying with the following system in
which we have posed (𝜀/𝛼) = 𝜖:

�̇� = 𝑎𝑌 +
̃
𝑏𝑈 + 𝑂 (𝑋, 𝜖, 𝑌

2
, 𝑌𝑈,𝑈

2
) ,

�̇� = 1 + 𝑂 (𝑋, 𝑌, 𝑈, 𝜖) ,

𝜖
̇

𝑍 = 𝑐𝑍 + 𝑂 (𝜖𝑋, 𝜖𝑌, 𝜖𝑈,𝑋
2
, 𝑦
2
𝑈,𝑈
2
, 𝑌𝑈) ,

𝜖�̇� = − (𝑋 + 𝑈
2
)

+ 𝑂 (𝜖𝑋, 𝜖𝑌, 𝜖𝑈, 𝜖
2
, 𝑋
2
𝑈,𝑈
3
, 𝑋𝑌𝑈) ,

(A.8)

we find

𝑎 = 𝐴(

𝜕𝑓
1

𝜕𝑦

−

𝐹

𝐺
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1
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(A.9)

where
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1
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2
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2
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2
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(A.10)

Finally, we deduce

𝑎 =

1

2
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2

2
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(A.11)

This is the result we established in Section 2.7.
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