
Research Article
A Universal Concept for Robust Solving of Shortest Path
Problems in Dynamically Reconfigurable Graphs

Jean Chamberlain Chedjou and Kyandoghere Kyamakya

Institute of Smart Systems Technologies, Transportation Informatics Group (TIG), Universität Klagenfurt, Klagenfurt, Austria

Correspondence should be addressed to Kyandoghere Kyamakya; kyandoghere.kyamakya@aau.at

Received 27 May 2015; Accepted 4 November 2015

Academic Editor: John D. Clayton

Copyright © 2015 J. C. Chedjou and K. Kyamakya. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper develops a flexible analytical concept for robust shortest path detection in dynamically reconfigurable graphs. The
concept is expressed by a mathematical model representing the shortest path problem solver. The proposed mathematical model is
characterized by three fundamental parameters expressing (a) the graph topology (through the “incidence matrix”), (b) the edge
weights (with dynamic external weights’ setting capability), and (c) the dynamic reconfigurability through external input(s) of the
source-destination nodes pair. In order to demonstrate the universality of the developed concept, a general algorithm is proposed
to determine the three fundamental parameters (of the mathematical model developed) for all types of graphs regardless of their
topology, magnitude, and size. It is demonstrated that the main advantage of the developed concept is that arc costs, the origin-
destination pair setting, and the graph topology are dynamically provided by external commands, which are inputs of the shortest
path solver model. This enables high flexibility and full reconfigurability of the developed concept, without any retraining need. To
validate the concept developed, benchmarking is performed leading to a comparison of its performance with the performances of
two well-known concepts based on neural networks.

1. Introduction

The shortest path problem (SPP) is one of the classical com-
binatorial optimization problems [1–3]. This problem relates
to finding the minimum cost path in a predefined source-
destination node pair in a weighted graph network [3]. The
interest devoted to shortest path finding can be explained by
the various potential applications of the SPP in science and
engineering. Indeed, the SPP is essentially involved in many
use cases, in, for example, the following: vehicle routing in
transportation systems [4], traffic routing in communication
networks [5], path planning in robotic systems [6, 7] and
scheduling [8], and video image analysis [9]. Further appli-
cations of SP are found in electronics (e.g., for VLSI physical
design) [10], medical imagery (e.g., for virtual endoscopy)
[11], and image processing (e.g., for energy minimization in
vision) [12], just to name a few.

In intelligent transportation systems, the SPP can be con-
sidered as a subproblem for many broader problems such as
route guidance [4], vehicle dispatching [13], real-time traffic

information sensing [4], and production systems planning.
These specific problems require real-time (e.g., ultrafast)
processing in order to achieve results in extreme short time
deadlines, examples of results being the efficient schedules
and identification of new routes (or paths) in transportation
networks.

In computer science SP algorithms can be used in the
automatic search of directions between physical locations
(e.g., driving directions on web mapping websites like in the
American free online web mapping service (MapQuest) and
also in the desktopwebmapping service (GoogleMaps)) [14].
SP can also be used in applications like networkmanagement
(e.g., finding the most vital node of a shortest path) [15] and
graph structure in the web [16].

Thus, there is an explicit necessity of enriching the state
of the art by developing new and efficient (i.e., extremely fast)
shortest path problem (SPP) solver concepts.The efficiency in
this context relates to some key performance metrics: (a) fast
computing, (b) lowmemory consumption, (c) robustness, (d)
accuracy, and (f) dynamic/runtime reconfigurability.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 345049, 23 pages
http://dx.doi.org/10.1155/2015/345049

2 Mathematical Problems in Engineering

In the aforementioned applications, the shortest path
detection problem is an important problem to be addressed.
This problem has been studied extensively in the fields of
computer science, operations research, and transportation
engineering [4–9]. The well-known polynomial-time algo-
rithms for solving shortest path problems include Bellman’s
dynamic programming algorithm [17], Dijkstra’s algorithm
[18], and Bellman-Ford successive algorithm [19, 20]. How-
ever, polynomial-time algorithms are suitable only for non-
negative costs of edges and for cases of additive linear path
cost models. Thus, these algorithms cannot solve the SPP
in the presence of negative costs [21] or in the presence
of nonlinear/nonadditive path cost models [22]. Further,
polynomial algorithmsmay appear to be too time consuming
(slow) specifically when dealing with real-time applications
in real traffic networks. These algorithms can also fail to
provide the correct solution in certain cases such as when
multiple shortest paths of equal total cost but with differences
in the number of hops (i.e., number of involved edges) exist
in a given graph.

A dynamic algorithm was developed as an extension of
polynomial Dijkstra’s and Bellman-Ford algorithms in order
to analyze shortest path tree problems [23]. Despite the
fact that the dynamic algorithm can easily adapt to changes
in the graph topology, it is however very time consuming
and the convergence is an issue specifically for huge size
problems [23]. Further methods have been developed to
address SP problems while assuming integer values of the
costs of edges such as the scaling technique [24], the integer
matrix multiplication technique [25], the fast integer sorting
technique [26], and the component hierarchy technique
[27]. These methods are not valid for noninteger values of
edge weights and therefore are not applicable to real-life or
technical systems.

A first basic mathematical approach for SPP solving
consists of modeling the shortest path detection problem
into a linear programming constrained problem, which is
further solved using Dantzig’s simplex method [28]. This
method is prone to failures and the accuracy is poor [29].
Several interesting contributions for SPP solving presented in
the related literature do involve selected artificial intelligence
concepts. Genetic algorithm (GA) [29] and particle swarm
optimization (PSO) [30] can solve both deterministic and
stochastic shortest path problems. In both cases, the solutions
converge towards the optimal paths. However, GA is com-
putationally very expensive compared to PSO [30] while the
PSO also needs additional heuristics. Likewise, evolutionary
algorithms (EA) are prone to invalid paths detection [30].
Heuristic search algorithms (e.g., 𝐴∗) [21] are developed to
make use of additional knowledge in order to reduce the
search efforts; however, heuristic search algorithms depend
on the quality of the heuristic function used.This dependency
affects the accuracy of results. Further, when the search area
increases, more computation effort is required [21]. Hence,
the solutions provided by heuristic algorithms are possibly
less accurate and cost inefficient.

The concept of cellular automata (CA) has been inten-
sively used to address SP problems in complex graphs
[31–33]. Despite the potential significant improvement of

the computing speed due to the parallel nature of the CA
concept (i.e., CA is suitable for parallel computing), the
reconfigurability is however an issue due to the strong
dependence of the CA concept on initial conditions/states
[34].

Another interesting SPP solver concept does involve
artificial neural networks (ANN). The ANN SPP solver has
been given tremendous attention due to its capability of
performing parallel computing as well as its easy hardware
implementability [35]. However, the basic ANN approach is
prone to limitations such as lack of adaptability to dynamic
graph topological changes and poor accuracy of results [35–
37]. The Hopfield neural networks were developed based on
linear programming to provide approximate solutions (to
SPP) faster than the aforementioned algorithmic solutions
[35, 38–40]. Mehmet Ali and Kamoun [36] proposed a
variation of Hopfield neural networks as a new concept that
can adapt to external varying conditions. This method fails
however to converge towards valid solutions. Further, the
computing performance degrades with increasingmagnitude
and size of the graph. To address these last mentioned
limitations, Park and Choi [37] proposed a concept that is
capable of handling graphs with huge sizes. This last-named
concept is however prone to convergence issues [41]. The
dependent variable Hopfield neural network (DVHNN) [41]
was also proposed as a new neural network concept capable
of addressing the inherent limitations of the previously men-
tioned classical concepts involving neural networks. Specif-
ically, it was demonstrated that the DVHNN can efficiently
tackle issues related to accuracy, convergence, and reliability
when dealing with SPP [41]. Despite these strong points of
the DVHNN, the method cannot efficiently handle real-time
SPP detection problems in reconfigurable graphs since new
training or retraining (of the neural network) is needed for
each new source-destination node-pair setting. Furthermore,
the DVHNNdoes not consider negative cost of edges and the
accuracy degrades with the increasing costs of edges (higher
values of weight values). This is justified by the assump-
tion in [41] which considered only small values of edge
costs.

In view of the above underlined limitations which are
inherent to most neural network based concepts, a new
neural network approach (called dynamic neural network
(DNN)) was introduced and some interesting related works
do demonstrate the effectiveness and efficiency of the DNN
approach (see [42] and the references therein). However,
despite the very good features of the DNN for SPP solving,
some crucial limitations are underscored in [42], which
are specifically related to the convergence failure observed
under specific parameter settings. Another interesting issue
worth mentioning is the route to convergence. This issue,
which is extremely sensitive to changes in both initial values
and the parameter settings of the dynamic mathematical
model, is characterized by the duration of the transient
phase and the computing time needed to reach conver-
gence.

Thekey/main objective of this paper is to contribute to the
enrichment of the SPP related state of the art by proposing
a new approach expressed in form of ordinary differential

Mathematical Problems in Engineering 3

equations. These equations do in essence represent a novel
NAOP SPP solver model. This new form of NAOP can/does
efficiently overcome the limitations of the abovementioned
DVHNN and DNN concepts in [41] and [42], respectively.
For proof of concept and for stress-testing purposes of
the novel NAOP SPP solver approach developed, extensive
benchmarking is conducted whereby its performance is com-
pared with that of the competing concepts presented in [41,
42]. The performance metrics involved in the benchmarking
are the convergence under high values of edge costs, the
convergence in the presence of negative edge-cost values,
the convergence potential under various parameter settings,
the transient phase cancellation/duration, and the necessary
computing time until convergence.

The rest of the paper is organized as follows. Section 2
describes at an abstract level the new proposed NAOP SPP
solver concept for dynamically reconfigurable network
graphs. A synoptic representation of this concept is proposed
and a description of the key parameters as well as the
complete system model is presented. Section 3 presents the
general methodology for finding shortest paths in graphs
through NAOP. The BDMM application to the shortest
path problem is then addressed. The resulting coupled ODE
equations are derived. The comprehensive benchmarking of
the novel NAOP SPP solver is presented in Section 4 whereby
a series of selected examples published in [41] (i.e., DVHNN
concept) and [42] (i.e., DNN concept) is systematically
considered. SPP solving is carried out using the NAOP SPP
simulator on the one hand and the concepts in [41, 42] on the
other hand. Some graph scenarios addressed and published
in [41, 42] are considered and systematic benchmarking of
the new NAOP solver concept with the concepts in [41, 42]
is performed. The performance metrics used for the diverse
comparisons are hereby mainly the simulation duration until
convergence (computational efficiency) and the robustness
(convergence). Regarding reconfigurability, it is only valid for
the novel NAOP based SPP solver; the other concepts cannot
support it. The benchmarking results obtained are used to
underscore both the effectiveness and the efficiency of the
novel NAOP SPP solver concept in complex and dynamically
reconfigurable network graphs while considering even neg-
ative as well as high values of edge costs. Lastly, Section 5
presents a series of concluding remarks. A summary of the
core contributions of this paper is presented. Further, selected
interesting open research questions (under investigation in
some of our ongoing subsequent works) are listed in an
outlook.

2. General Methodology Based on Nonlinear
Adaptive Optimization (NAOP) for
Modeling Shortest Path Problems (SPP)

In some of our recent contributions/papers (see [43, 44]),
the NAOP concept has been successfully used for solving
differential equations (ODEs and/or PDEs). We now want to
demonstrate that theNAOP concept can be efficiently used as
a general and robust framework for modeling shortest path
problems (SPP) even in dynamically reconfigurable graphs.

Attributes
of nodes (V)

Incidence
matrix (A)

Costs of
edges (U)

NAOP simulator Output

State of edges
connectivity

(shortest path)

0

1

1

0

0

1

1

...
...

x1
x2
x3
x4
x5
x6

xN

In
pu

t c
om

m
an

ds

Figure 1: Synoptic representation of the system describing the
NAOP based SPP solver concept. The input commands (or external
commands) 𝑉 and 𝑈 are used, respectively, for assigning attributes
to nodes and values (or costs) to edges. The matrix 𝐴 is the
incidence matrix of the graph under investigation. The output 𝑥

𝑖

(𝑖 = 1, 2, 3, . . . , 𝑁) expresses the belonging (i.e., value is 1) or not
(i.e., value is 0) to the shortest path (SP) of all edges of the graph
under investigation.

This section provides a full description of the proposed
NAOP concept for finding shortest paths in complex and
dynamically reconfigurable graphs/networks. The abstract
input/out logical diagram of this concept is schematically
presented in Figure 1. The proposed concept does take three
basic inputs as illustrated in Figure 1.

The first input is an external command 𝑉 (see Figure 1),
which is used for assigning one of the three possible attributes
(i.e., source, destination, or intermediate) to each of the 𝑀
nodes of the graph under investigation. The command 𝑉 is
defined as follows: �⃗� = [𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑀−1
, 𝛿
𝑀
]
𝑇, whereby 𝛿

𝑗
=

1 when the node with index 𝑗 is a source node, 𝛿
𝑗
= −1 when

the node with index 𝑗 is a destination node, and 𝛿
𝑗
= 0 when

the node with index 𝑗 is a candidate intermediate node on the
shortest path (in fact, after origin and destination nodes are
both fixed, all remaining nodes of the graph are “candidate”
intermediate nodes on the final shortest path).

The second input 𝐴 (see Figure 1) expresses the topology
of the graph under investigation. The incidence matrix
denoted by𝐴 is𝑀×𝑁matrix, whose elements can only take
three possible values from the set {−1, 0, 1}. In essence, the
matrix 𝐴 expresses the states of connectivity/incidence of all
edges to nodes (incidencematrix). A directed edge going onto
a node is denoted in the matrix 𝐴 by −1 while 1 denotes a
directed edge leaving a node. The state of an edge, which is
not connected to any node, is expressed by 0. In the matrix
𝐴, each column corresponds to a given edge and each row
does correspond to a given node. This is clearly illustrated in
(10b).

The third input 𝑈 (see Figure 1) is used for assigning
weight values to all 𝑁 (directed) edges of the graph. The
vector 𝑈 is defined in terms of the elements 𝑐

𝑖
as follows:

�⃗� = [𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑁−1
, 𝑐
𝑁
]
𝑇. The coefficients 𝑐

𝑖
represent the

weight values (i.e., costs) of all edges of the graph.

4 Mathematical Problems in Engineering

The output in Figure 1 expresses the state of connectivity
(i.e., belonging to the SP) of all edges. The states of edges are
represented by the variables 𝑥

𝑖
. A value 𝑥

𝑖
= 1means that the

edge with index 𝑖 is part of the shortest path; otherwise, 𝑥
𝑖
= 0

means it is not.
The concept developed here is general and scalable

regarding graph size and magnitude and possibly bidirec-
tional connectivity between nodes.

The NAOP concept in Figure 1 has already been success-
fully applied for solving both nonlinear ordinary differential
equations (ODEs) and partial differential equations (PDEs)
[43, 44]. The aim of this paper is to demonstrate that the
NAOP concept (see Figure 1) can also be efficiently used as
a universal framework to realize a robust SPP solver (called
NAOP SPP simulator). Some aspects of the “universality”
flavor of this NAOP SPP solver are expressed amongst
others by the fact that this concept is applicable to various
types of graphs/networks regardless of size, magnitude, and
nature/form of the costs of edges (negative and/or positive
values). And although it is not addressed in this paper (this
issue will be extensively handled in a subsequent work), this
concept is also applicable for cases where the path cost is non-
additive, that is, nonlinear (e.g., see a possible case where SPP
is combinedwith network/graph reliability considerations (in
such a case, every edge has 2 weights: a deterministic weight
(𝑤
𝑖
) related to the SPP problem and a probability value (𝑝

𝑖
)

related to the graph reliability perspective; then the path cost
is 𝑐
1
+ 𝑐
2
, whereby 𝑐

1
is the sum of all 𝑤

𝑖
belonging to the

path and 𝑐
2
is the product of all 𝑝

𝑖
belonging to the path)

or a case where the contribution of every edge belonging to
the total path cost related to the “driving energy consumption
perspective” is the sumof (a) edge length and (b) square of the
edge’s maximum (or current) driving speed).

During the past/last decades, tremendous attention has
been devoted to the development of new methods, con-
cepts, algorithms, and tools based on the neurocomputing
paradigm (e.g., use of neural networks) for finding short-
est paths in networks/graphs [1–9, 13, 17, 29, 30, 35, 36,
41, 42]. However, already published works are mainly just
focusing on proof-of-concept examples and do not solve a
series of fundamental issues related amongst other things
to a systematic and general (or universal) methodological
framework for efficiently solving shortest path problems in
graphs of complex topologies. An open challenge is related to
suggesting and validating a successful and systematic concept
for controlling and mastering the following key performance
metrics: accuracy, precision, robustness, flexibility, reconfig-
urability, and universality.

The key contribution of this paper is to develop a
comprehensiveNAOPSPP solver concept for finding shortest
paths in complex and dynamically reconfigurable graphs
which satisfactorily addresses and solves the abovementioned
key challenges. The overall superiority of this concept is
demonstrated in extensive benchmarking where the above-
listed performance metrics are used.

The next section presents with full details the steps
involved in the design of the NAOP SPP solver concept. The
derivation of the related coupled ODE mathematical models
is systematically performed.

3. General Methodology for Modeling the
Shortest Path Problem through NAOP:
Expression of the Lagrange Function and
Derivation of the NAOP
Mathematical Model

3.1. Transforming SPP Problem into an Optimization Problem.
We now consider the derivation of the Lagrange function
corresponding to the shortest path problem. We provide a
description of the key steps involved in the mathematical
modeling of the shortest path problem as a multivariable
nonlinear optimization problem. Finally, we explain the pro-
cess leading to the derivation of the set of coupled nonlinear
ODEs, which correspond to the model of the NAOP SPP
solver simulator.

The first step relates to the derivation of the correspond-
ing Lagrange function (see (4)), which is viewed as the
total energy of the system. In this context, the optimization
problem is represented by an objective function (see (1))
subject to constraints ((2) and (3)). These constraints make
the problem NP-hard. In order to solve NP-hard problems,
the constrained optimization problem can be transformed
into an unconstrained optimization problem by using relax-
ation methods. Several methods have been proposed by the
relevant literature (see [9, 13, 17–22, 28, 29]). Some of these
methods are direct substitution, constrained variation, and
Lagrange multipliers [6], just to name a few.

The shortest path problem can be considered as a mul-
tivariable constrained optimization problem. This type of
problem can be formulated mathematically by (1), (2), (3),
and (4). In these equations, �⃗� = [𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑀−1
, 𝜆
𝑀
]
𝑇

is the vector of multipliers variables 𝜆
𝑚

and ⃗𝛾 = [𝛾
1
, 𝛾
2
,

. . . , 𝛾
𝑁−1

, 𝛾
𝑁
]
𝑇 is the vector of multipliers variables 𝛾

𝑛
. The

decision variable �⃗� = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁−1
, 𝑥
𝑁
]
𝑇 is the state vec-

tor of all edges 𝑥
𝑖
involved in the graph under consideration.

Thus, the dimension of �⃗� is equal to𝑁 (dim(�⃗�) = 𝑁), where
𝑁 is the size of the graph. The function 𝑓(�⃗�) represents the
total cost of the graph under investigation. The optimization
constraints 𝑔

𝑚
(�⃗�) = 0 are formulated in order to ensure

the connectivity of each node belonging to the shortest path,
while the constraints ℎ

𝑛
(�⃗�) = 0 impose the binarization of

all components of the decision variable vector �⃗�. These last-
named constraints (ℎ

𝑛
(�⃗�) = 0) are formulated to ensure

the convergence of all components 𝑥
𝑖
of the vector �⃗� to

binary variables (0 or 1). Thus, according to the definition
of the optimization constraints, the indexes 𝑖, 𝑚, and 𝑛 are
defined as follows: 𝑖 = 1, 2, 3, . . . , 𝑁; 𝑚 = 1, 2, 3, . . . ,𝑀; 𝑛 =

1, 2, 3, . . . , 𝑁. The integers 𝑀 and 𝑁 represent, respectively,
the magnitude and the size of the graph. Hence,

Min [𝑓 (�⃗�)] = 0 (1)

𝑔
𝑚
(�⃗�) = 0 (2)

ℎ
𝑛
(�⃗�) = 0 (3)

�̃� = 𝑓 (�⃗�) +

𝑀

∑

𝑚=1

𝜆
𝑚
𝑔
𝑚
(�⃗�) +

𝑁

∑

𝑛=1

𝛾
𝑛
ℎ
𝑛
(�⃗�) . (4)

Mathematical Problems in Engineering 5

The second step exploits the concept of neuron dynamics as
an optimization strategy that maps the optimization problem
unto the energy of a neural network (e.g., aHopfield network)
in order to find the optimal solution. In this context, we
represent this energy by the Lagrange form and the mini-
mization of the Lagrange function leads to a stable state (due
to the already proven convergence of the Basic Differential
Multiplier Method (BDMM); see [38, 43, 44]).

Applying theBDMMto the Lagrange function in (4) leads
to the derivation of

�̇�
𝑖
= −𝛼𝜕

𝑥𝑖
(�̃�) , (5a)

�̇�
𝑚
= 𝛽𝜕
𝜆𝑚
(�̃�) , (5b)

̇𝛾
𝑛
= 𝛽𝜕
𝛾𝑛
(�̃�) . (5c)

The symbols 𝜕
𝑥𝑖
, 𝜕
𝜆𝑚
, and 𝜕

𝛾𝑛
denote the partial derivatives

with respect to 𝑥
𝑖
, 𝜆
𝑚
, and 𝛾

𝑛
, respectively. As already

mentioned above, the variables 𝑥
𝑖
are the components of

the vector of decision variables �⃗�, while 𝜆
𝑚

and 𝛾
𝑛
are

components of the vectors of multiplier variables �⃗� and ⃗𝛾,
respectively.

The set of (5a), (5b), and (5c) is the characteristicmodel of
BDMM [38, 43, 44]. This model (from which the coefficients
of the coupled ODEs for a given graph are calculated) reveals
the coupling between the dynamics of decision variable 𝑥

𝑖

with the dynamics of multiplier variables 𝜆
𝑚

and 𝛾
𝑛
. The

parameters 𝛼 and 𝛽 are step sizes for updating decision
variables and multiplier variables, respectively. The values of
these parameters are chosen through a stability or conver-
gence analysis (see Section 3.3). A similar study (i.e., stability
analysis) is considered (in [43, 44]) and it is demonstrated
that the sign of the damped mass matrix depends on the
parameters 𝛼 and 𝛽. Specifically, it is demonstrated (see
[43, 44]) that the convergence is ensured for positive definite
damped mass matrix. Thus, the values of 𝛼 and 𝛽 must
be chosen accordingly. However, the convergence analysis
in [43, 44] was considered in the design of a general and
robust framework for ultrafast solving of ordinary and/or
partial differential equations. Our aim in this paper is to
extend the convergence analysis developed in [43, 44] to the
case of the design of a novel, general, and robust SPP solver
concept to which we have assigned the acronym of NAOP
SPP solver. The output of the NAOP SPP solver is expressed
by the solutions 𝑥

𝑖
of (5a). 𝑥

𝑖
are decision variables of the

optimization process. These solutions, which reveal the state
of edges connectivity, will converge to binary variables (0 or
1), 0 meaning that this edge does not belong to the SP and 1
meaning that it does.

The next subsection (see Section 3.2) shows how the set of
(5a), (5b), and (5c) is used to derive the coupledmathematical
model of the NAOP SPP solver simulator.

3.2. Derivation of the Mathematical Model of the NAOP SPP
Solver Simulator. We provide in this part a full explanation
of the systematic concept leading to the ODE based math-
ematical modeling of the shortest path problem as well as
the design and implementation of the appropriate NAOP SPP

solver simulator. Our focus is on finding the shortest path
from a source node (𝑠) to a destination node (𝑡). The paths
in the graph 𝐺 = (𝑉, 𝐸) can be expressed by the objective
function in (1), where the function 𝑓(�⃗�) in (6) represents the
total cost corresponding to the graph under investigation. In
(6),𝑁 is the size of the graph. Hence,

𝑓 (�⃗�) =

𝑁

∑

𝑖=1

𝑐
𝑖
𝑥
𝑖
. (6)

The minimization of the total cost in (6) corresponds to the
shortest path calculation whereby this path is defined starting
from a given source node (𝑠) to a destination node (𝑡).

The next step of themodeling process is related to the for-
mulation of the optimization problem’s constraints. Two key
constraints are considered in order to fulfill some key require-
ments of the problem formulation. These requirements are
summarized by the following conditions or constraints: (a)
connectivity of nodes (by edges) and the participation of
incident edges belonging to the path regarding, respectively,
inflow nodal degree and outflow nodal degree and (b)
binarization of the decision variables 𝑥

𝑖
, which are used to

express the belonging or not of any edge to the shortest path.
The first-mentioned constraint (a) is modeledmathemat-

ically by (7). In (7), 𝑥
𝑖
is the state of an edge. The graph

is assumed to be directed. In case of undirected graph,
meaning bidirectionality between all connected node pairs,
each direction is represented by a separate directed edge:

(

𝑁

∑

𝑖=1

𝑖 ̸=𝑗

𝑎
𝑖𝑗
𝑥
𝑖
− 𝛿
𝑗
) = 0, Node 𝑗 (𝑗 = 1, . . . ,𝑀) . (7)

For each node 𝑗, on the corresponding line/row in matrix 𝐴
we have 3 groups of values which are reflected in (7): (i) a
group of ingoing edges represented by values 𝑎

𝑖𝑗
= −1, (ii) a

group of outgoing edges represented by values 𝑎
𝑖𝑗
= +1, and

(iii) a group of nonincident edges (i.e., edges not connected
to node 𝑗) represented by values 𝑎

𝑖𝑗
= 0. The parameter

𝛿
𝑗
is used to assign one of the three attributes (i.e., source,

destination, or intermediate) to node 𝑗 as follows: 𝛿
𝑗
= 0 (if

𝑗 is an intermediate node); 𝛿
𝑗
= +1 (if 𝑗 is a source node);

𝛿
𝑗
= −1 (if 𝑗 is a destination node).
The previously mentioned constraint (b) is related to the

binarization of all state variables, which are used to express
the belonging to the shortest path (SP) of any edge. This
constraint is modeled mathematically by

𝑥
𝑖
(𝑥
𝑖
− 1) = 0. (8)

Thus, according to (4), the objective function in (6) can be
combined with the constraints formulated in (7) and (8) to
derive the Lagrange expression given in

�̃� = 𝑓 (�⃗�) +

𝑀

∑

𝑗=1

𝜆
𝑗
(

𝑁

∑

𝑖=1

𝑖 ̸=𝑗

𝑎
𝑖𝑗
𝑥
𝑖
− 𝛿
𝑗
)+

𝑁

∑

𝑖=1

𝛾
𝑖
𝑥
𝑖
(𝑥
𝑖
− 1) . (9)

6 Mathematical Problems in Engineering

In (9), �⃗�, �⃗�, and ⃗𝛾 are vectors of, respectively, 𝑁, 𝑀, and 𝑁
components as already described above.

The expression �̃� in (9) is further substituted into the
mathematical expression of the BDMM technique (see the
expression in (5a), (5b), and (5c)).

The BDMM application to (9) is done as follows: note
that each decision variable and each multiplier variable are
considered as a particular direction in a multidimensional
space. In this context, the dimension of themultidimensional
space is always equal to 𝑁 + 𝑀 + 𝑁 (i.e., 𝑁 decision
variables 𝑥

𝑖
, then 𝑀 multiplier variables of type 𝜆

𝑗
, and 𝑁

multiplier variables of type 𝛾
𝑖
). Thus, the BDMM application

according to (9) corresponds to making partial derivations
with respect to each particular direction. In each of these
partial derivations only the variable expressing that particular
direction is considered “dependent variable” in (9) and all
other variables (or directions) are taken/handled as constant
variables/values in the partial derivation process. Each partial
derivation with respect to a particular variable will result in a
related ordinary differential equation. Thus, we will obtain a
total of𝑁+𝑀+𝑁 coupled nonlinear differential equations,
which can be grouped and expressed in a matrix form as
indicated in (10a) and (10b).These equations ((10a) and (10b))
constitute the NAOP SPP solver model used for shortest path
finding. This set of (10a) and (10b) is a general mathematical
model, which is applicable (for shortest path detection) to any
graph regardless of its type (i.e., directed or undirected graph,
etc.) and also regardless of both its magnitude and its size.
Hence,

̇�⃗� = 𝛼 [−𝐴
𝑇

�⃗� + (1 − 2�⃗�) ⃗𝛾 − �⃗�] ,

̇
�⃗� = 𝛽 [𝐴�⃗� − �⃗�] ,

̇�⃗� = 𝛽 [�⃗� (�⃗� − 1)] .

(10a)

In (10a), the matrix 𝐴 (graph’s incidence matrix) is expressed
as follows:

𝐴 =

𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑖
⋅ ⋅ ⋅ 𝑥
𝑁

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 −1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ −1

−1 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

0 1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ 1

]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑁
1

𝑁
2

𝑁
𝑗

𝑁
𝑀

(10b)

Thematrix𝐴 is the incidence matrix of the graph and𝐴𝑇
denotes the transpose of 𝐴. This matrix is of dimension𝑀×

𝑁, where𝑀 and𝑁 are, respectively, the magnitude (number
of nodes) and the size (number of edges) of the graph. The
elements of 𝐴, which are illustrated in (10b), express specific
connectivity between nodes and edges. For example, the first
column of 𝐴 shows the connection between nodes 𝑁

1
and

node 𝑁
2
through the edge 𝑥

1
in the direction from 𝑁

1
to

𝑁
2
denoted as 𝑁

1

𝑥1

→ 𝑁
2
. Similarly, the other columns of

𝐴 express the following connectivity: column-2 (𝑁
1

𝑥2

← 𝑁
𝑗
),

column-𝑖 (𝑁
1

𝑥𝑖

→ 𝑁
𝑀
), and column-𝑁 (𝑁

1

𝑥𝑁

← 𝑁
𝑀
). Thus,

the derivation of the incidence matrix 𝐴 is immediate to a
given graph.

Overall, for any given graph, one should first give IDs
to all nodes by numbering them in any order with natural
numbers; the same is done for giving IDs to all edges (here
also the numbering order is not important). After all nodes
and edges have been given an ID, the matrix 𝐴 can be
determined and it does express the current graph topology.
It should be mentioned here that the use of the variables 𝑥

𝑖

is twofold: the variables 𝑥
𝑖
are used for the identification of

the edges belonging to the graph. These variables are also
solutions of (10a) and (10b).Thus, the variables𝑥

𝑖
do therefore

depict the state of all edges of the graph. Specifically, the
solutions𝑥

𝑖
= 1 reveal the edges involved in the shortest path,

while 𝑥
𝑖
= 0 stand for those edges, which are not included in

the shortest path.

Important Remark. Consider the following:

The application examples (see Section 4) demonstrate
the straightforward application of the general concept
in (10a) and (10b) to the cases of directed graphs
with positive costs of edges, directed graphs with
mix of positive and negative costs of edges, and so
forth. All the graph examples envisaged in this paper
are already considered in [41, 42]. Benchmarking of
our results against the results published in [41, 42]
is further considered. Besides robustness, the core
metric for comparison is the number of iterations
needed by each method (i.e., the methods in [41,
42] and our NAOP SPP solver concept) until the
convergence to the exact shortest path is achieved.
Several scenarios are envisaged in which the nodes
are assigned different attributes (source, destination,
or intermediate).

According to (9), the following important statements can
be made to explicitly describe the set of (10a) and (10b)
in order to allow easy use of this set of coupled equations
as a general modeling framework, applicable to all graph
architectures for shortest path detection. Hence, we have the
following statements:

(i) �⃗� is the vector of decision variables with components
𝑥
𝑖
. Thus, as already mentioned above, dim(�⃗�) = 𝑁,

where𝑁 is the size of the graph.

(ii) �⃗� is a first vector of multiplier variables with com-
ponents 𝜆

𝑚
. Thus, as already mentioned above,

dim(�⃗�) = 𝑀, where𝑀 is the magnitude of the graph.
(iii) ⃗𝛾 is a second vector of multiplier variables with

components 𝛾
𝑛
. Thus, as already mentioned above,

dim ⃗𝛾 = 𝑁, where𝑁 is the size of the graph.

(iv) �⃗� is a vector of all edges’ weights with components 𝑐
𝑖
.

Thus, dim(�⃗�) = 𝑁.

Mathematical Problems in Engineering 7

(v) �⃗� is the vector for assigning attributes to nodes, that,
is nodes’ configuration vector. The components of �⃗�
are denoted by 𝛿

𝑗
. Thus, as already mentioned above,

dim(�⃗�) = 𝑀, where𝑀 is the magnitude of the graph.

Comment on (10a) and (10b). The set of (10a) and (10b)
contains three key fundamental parameters which are the
external commands �⃗�, �⃗�, and 𝐴. The derivation (or calcula-
tion) of these key fundamental parameters is straightforward
for a given graph architecture:

(i) Thematrix𝐴 defines the topology of the graph under
investigation. This matrix provides the connections
between nodes, the identities of connectors (edges),
and the valency of each node belonging to the graph.

(ii) The vector �⃗� offers the possibility of dynamically
externally varying the costs of edges (weight values)
𝑐
𝑖
. This is performed through an external command

(see Figure 1).
(iii) The vector �⃗� offers the possibility of performing dy-

namic reconfigurability of the graph nodes using an
external command (see Figure 1). This reconfigura-
bility offers the possibility of defining each node-𝑗
of the graph to be either source node (𝛿

𝑗
= +1) or

destination node (𝛿
𝑗
= −1) or intermediate node

(𝛿
𝑗
= 0). The command 𝛿

𝑗
is thus used for assigning

a specific attribute to each node of the graph.
(iv) In essence, the strong points of the general mathe-

maticalmodel in (10a) and (10b) when comparedwith
the traditional methods, concepts, and algorithms for
solving shortest path problems are fourfold:

(a) The high flexibility of the set of (10a) and (10b),
which can easily be adaptable to any new graph
topology.

(b) The universality of the set of (10a) and (10b),
which is valid for all graphs regardless of the
type, the magnitude, the size, and the topology.

(c) The excellent dynamic reconfigurability
through an external command without any
need for retraining (contrarily to this, most
traditional SPP solver methods do generally
need new retraining or equivalent reprocessing
in case of dynamic change of parts of the graph’s
attributes). The reconfigurability potential is
used to dynamically change not only edge
weights but also “source-destination” node pairs
through external commands without any need
for retraining.

(d) The robustness and correctness of the model
in (10a) and (10b), which are very good, are
underscored by the fact that the model always
converges to the exact shortest path and, further,
there is no faulty SP detection ever observed
after very extensive stress testing of the concept.

If one uses the dynamic systems’ terminology, (10a)
and (10b) do describe indeed a nonlinear oscillator system

that is externally excited by 3 inputs vectors describing the
graph under consideration (matrix 𝐴, vector �⃗�, and vector
�⃗�) and its oscillations over time do converge to fix points
(or equilibrium points) that represent the shortest path of the
graph described by the 3 inputs. These inputs constitute the
signature of any graph.

An important remark to be underscored here is that the
set of (10a) and (10b) is expressed in terms of two specific
parameters𝛼 and𝛽, which are step sizes for updating decision
variables and multiplier variables, respectively. The aim of
the next subsection (see Section 3.3) is to demonstrate the
possibility of efficiently using these two parameters as control
parameters to ensure/guarantee that the set of (10a) and
(10b) always converges to the exact shortest path whatever
the topology, size, magnitude of the graph, and so forth
could be. The derivation of a systematic framework to
control the convergence properties of the NAOP SPP solver
in (10a) and (10b) is of necessary importance in order to
guarantee excellent scalability potential of (10a) and (10b)
when investigating SPP in complex graphs of huge size and
high magnitude. Thus, the analytical condition established
below (see Section 3.3) will be considered in order to improve
the robustness of the optimization process and facilitate fast
convergence to the exact shortest path.

The convergence properties of the NAOP SPP simu-
lator are addressed (or considered) in the next subsec-
tion and analytical criteria are derived under which the
NAOP SPP simulator always converges to the exact shortest
path.

It is worth mentioning that the relevant literature has
clearly demonstrated that the convergence of the analysis
methods/concepts for solving shortest path problems (SPP)
based on traditional neural networks (ANN) (see [45] and
the references therein) and the concepts based on recurrent
neural networks (RNN) (see [46] and the references therein)
is an important issue to which full attention should be
devoted. However, the literature does not propose an analyt-
ical framework that could help to systematically predict and
control the convergence properties of both ANN and RNN
concepts under various possible changes/configurations (e.g.,
variations in graph topology, choice of source-destination
pair-node, size, andmagnitude.).This remark is important to
justify the analytical concept developed in this paper in order
to provide a systematic analytical concept that efficiently
addresses the issue related to convergence.

3.3. Convergence of the NAOP SPP Solver Concept under
All Possible Combinations or Settings of Parameters. The key
important issue in this context is how to ensure convergence
of the NAOP SPP solver concept for all possible parameter
settings of (10a) and (10b). These parameters are 𝐴, �⃗�, �⃗�, 𝛼,
and 𝛽. However, since the first three parameters are derived
according to a given graph under investigation, we will be
deriving a general analytical framework for convergence
regardless of these parameters (𝐴, �⃗�, and �⃗�). Thus, the
analytical expression derived as a general framework for con-
vergence will be controlled by two specific and fundamental
parameters which are the step size for updating decision

8 Mathematical Problems in Engineering

Line Constraint subspace

Constraint subspace

gm(
→
x) = 0 ∧ hn(

→
x) = 0 gm(

→
x) ∧ hn(

→
x)

gm(
→
x) ∧ hn(

→
x)

[see (2) and (3)]

Initial state

Final state
Force

→
F

[see (11c)]
Force

→
F

[see (11c)]

Figure 2: The sign flip concept is illustrated as a key step towards
the convergence of the BDMM algorithm. Damped oscillations are
exhibited around the constraint subspace leading to constraints
minimization (system’s final state).

neurons 𝛼 and the step size for updating multiplier neurons
𝛽.

The convergence problem was already addressed in our
previous contributions (see [43, 44]) when dealing with
the design of a universal framework based on NAOP for
solving ordinary differential equations (ODEs) and partial
differential equations (PDEs). Our aim here is to provide
the full/complete steps of the analytical process for ensur-
ing convergence of the NAOP concept for shortest path
detection. Further, we provide (see the Appendix) an in-
depth analytical study of the convergence properties of the
NAOP SPP solver concept. Such in-depth development was
not considered in our previous papers ([43, 44]). Further,
another motivation of carrying out an in-depth analyti-
cal study to ensure convergence of the NAOP framework
for solving shortest path problems (SPP) is justified by
our wish to demonstrate the possibility of controlling the
convergence properties of the NAOP based solver for SPP
through specific and well-known parameter settings. This
will offer the possibility of using NAOP as a general and
robust framework for the investigation of shortest path
problems (SPP).

Regarding the convergence, we are providing here a
practical/physical comment of the analytical results we want
to achieve/derive. Indeed, the stability (or convergence) of
the optimization process is ensured by the “sign flip” concept
[43, 44].This concept is illustrated in Figure 2.The “sign flip”
concept can be explained as follows. As the parameters 𝛼 and
𝛽 vary, the system in (5a), (5b), and (5c) (or equivalently
in (10a) and (10b)) exhibits damped oscillations around
the constraints subspace defined by the relation 𝑔

𝑚
(�⃗�) =

0 ∧ ℎ
𝑛
(�⃗�) = 0. The damped oscillations exhibited around

the constraints subspace 𝑔
𝑚
(�⃗�) = 0 ∧ ℎ

𝑛
(�⃗�) = 0 are

characterized by the alternation (in time domain) of the sign
of the constraint functions (i.e., 𝑔

𝑚
(�⃗�) < 0 ∧ ℎ

𝑛
(�⃗�) <

0, 𝑔
𝑚
(�⃗�) > 0 ∧ ℎ

𝑛
(�⃗�) > 0, and vice versa) during the

optimization process in order to converge to a point located

on the constraint subspace defined by the equation 𝑔
𝑚
(�⃗�) =

0 ∧ ℎ
𝑛
(�⃗�) = 0 (see Figure 2). The damped mass matrix

𝐴
𝑖𝑗
is used to provide an insight of the abovementioned

convergence. Indeed, the damped mass matrix controls the
energy dissipationwithin the system.Thus, according to (15) a
positive value of the dampedmassmatrix is an insight that the
total energy 𝐸

𝑇
within the system decreases with time and,

finally, the system settles down into the state where the energy
is minimized. This characterizes attraction of the system
state to the constraint subspace (stability). At the attraction
point (or convergence state (see Figure 2)), all constraints are
fulfilled. However, when the dampedmass matrix is negative,
the total energy within the system increases with time. A
negative dampedmassmatrix is an insight that all constraints
are not fulfilled (instability). To tackle this problem, the
learning rate parameters (𝛼 and 𝛽) can be tuned/monitored
(independently of the other system’s parameters 𝐴, �⃗�, and
�⃗�) in order to bring the system model in (5a), (5b), and (5c)
(or equivalently in (10a) and (10b)) into its stable state (i.e.,
convergence).

A full/complete detail of the analytical steps involved
in the stability/convergence analysis of (10a) and (10b) is
provided in the Appendix. The results provided in the
Appendix can be summarized by the following important
steps.

Step 1. The first step is the derivation of the characteristic
ODE model for decision variables 𝑥

𝑖
. The Lagrange function

in (4) is combined with (5a), (5b), and (5c) to derive
the following nonlinear ordinary differential equation (see
analytical details in the Appendix):

�̈�
𝑖
+

𝑁

∑

𝑗=1

[𝐴
𝑖𝑗
�̇�
𝑗
] + �⃗� = 0. (11a)

The expression in (11a) is a second-order ordinary differential
equation with a single and dissipative coefficient denoted
by 𝐴
𝑖𝑗
. This coefficient represents the damped mass matrix

defined as follows:

𝐴
𝑖𝑗
= 𝛼[

𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+

𝑀

∑

𝑚=1

𝜆
𝑚

𝜕
2

𝑔
𝑚

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+

𝑁

∑

𝑛=1

𝛾
𝑛

𝜕
2

ℎ
𝑛

𝜕𝑥
𝑖
𝜕𝑥
𝑗

] . (11b)

In (11a), �⃗� is an internal force producing the potential energy
into the system. This force is expressed as follows:

�⃗� = 2𝛼𝛽[

𝑀

∑

𝑚=1

𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

+

𝑁

∑

𝑛=1

ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

] . (11c)

In (11a), (11b), and (11c), �̈�
𝑖
= 𝑑
2

𝑥
𝑖
/𝑑𝑡
2 represents the force of

inertia, 𝐴
𝑖𝑗
is the damping matrix, and �⃗� is an internal force,

which creates the potential energy (i.e., the internal energy)
of the system. This force �⃗� is needed in order to fulfill the
constraints (bymoving the attractor from a given initial point
chosen in the constraint subspace to a final point located on
the characteristic line 𝑔

𝑚
(�⃗�) = 0 ∧ ℎ

𝑛
(�⃗�) = 0).

Mathematical Problems in Engineering 9

Step 2. The second step is the derivation of the mathematical
expression of the total energy of the system. This expression
is further used in Step 3 for the global stability analysis. The
Lyapunov function is derived as the total energy of the system
𝐸
𝑇
(𝑥
𝑖
).The total energy is expressed as the sum of kinetic and

potential energies denoted by𝐸
𝐶
(𝑥
𝑖
) and𝐸

𝑃
(𝑥
𝑖
), respectively.

These energies are expressed by the following mathematical
expressions while considering the state variable 𝑥

𝑖
in (11a),

(11b), and (11c):

𝐸
𝑃
(𝑥
𝑖
) = ∫ �⃗�𝜕𝑥

𝑖
, (12a)

𝐸
𝐶
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

] . (12b)

Thus, the total energy is expressed as follows:

𝐸
𝑇
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

] + ∫ �⃗�𝜕𝑥
𝑖
. (13a)

Substituting the expression of �⃗� defined in (11c) into expres-
sion (13a) leads to the following expression of the total energy
(see analytical details in the Appendix):

𝐸
𝑇
=

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

] + 𝛼𝛽[

𝑀

∑

𝑚=1

(𝑔
2

𝑚
) +

𝑁

∑

𝑛=1

(ℎ
2

𝑛
)] . (13b)

The total energy in (13b) is positive definite for all 𝑥
𝑖
when

𝛼 and 𝛽 are of the same sign. Thus, according to the
first criterion of the Lyapunov theorem, the total energy in
(13b) (i.e., the Lyapunov function) is positive definite for all
state variables 𝑥

𝑖
. Hence, the first criterion of the Lyapunov

theorem for global stability is fulfilled (i.e., 𝐸
𝑇
(𝑥
𝑖
) > 0 for all

𝑥
𝑖
).

Step 3. The third step is the derivation of the second criterion
of the Lyapunov theorem for global stability. This criterion
states that the first derivative of the Lyapunov function must
be less than or equal to zero for all state variables 𝑥

𝑖
. Thus,

the aim of this step is to derive the analytical condition under
which the first derivative of the Lyapunov function (i.e., the
total energy) must be less than or equal to zero (i.e., �̇�

𝑇
(𝑥
𝑖
) ≤

0 for all 𝑥
𝑖
). Using the mathematical expression in (13b),

the first derivative of the total energy can be evaluated and
expressed as follows:

�̇�
𝑇
=

𝑁

∑

𝑖=1

[�̇�
𝑖
�̈�
𝑖
]

+ 2𝛼𝛽[

𝑀

∑

𝑚=1

(𝑔
𝑚

𝑑𝑔
𝑚

𝑑𝑡
) +

𝑁

∑

𝑛=1

(ℎ
𝑛

𝑑ℎ
𝑛

𝑑𝑡
)] .

(14)

Using the expression in (14), an in-depth analytical devel-
opment is conducted (see full details in the Appendix) and

finally the first derivative of the total energy is expressed into
the following simplified form:

�̇�
𝑇
(𝑥
𝑖
) = −

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(�̇�
𝑖
𝐴
𝑖𝑗
�̇�
𝑗
) . (15)

The expression in (15) is the characteristic mathematical
expression used to illustrate and underscore the significance
of the “sign flip.” Indeed as already mentioned, the Lyapunov
theorem for global stability analysis states that the system
is stable if the first derivative of the total energy (i.e., the
Lyapunov function) in (15) is less than or equal to zero. In (15),
�̇�
𝑖
and �̇�

𝑗
are, respectively, the time derivative of decisions

variables in the directions 𝑖 (row of the matrix 𝐴
𝑖𝑗
) and 𝑗

(column of the matrix 𝐴
𝑖𝑗
). Thus, �̇�

𝑖
and �̇�

𝑗
are orthogonal

and therefore �̇�
𝑗
is the transpose of �̇�

𝑖
denoted by �̇�

𝑗
= [�̇�
𝑖
]
𝑇.

According to the well-known theorem of linear algebra
(regarding the definition of the sign of a matrix), the damped
massmatrix𝐴

𝑖𝑗
is positive definite if and only if (�̇�

𝑖
𝐴
𝑖𝑗
�̇�
𝑗
) ≥ 0

for all 𝑥
𝑖
(�̇�
𝑗
is the transpose of �̇�

𝑖
). Thus, since the matrix

𝐴
𝑖𝑗
is expressed in terms of 𝛼 and 𝛽, these parameters are

dynamically monitored (as control parameters) during the
optimization process in order to achieve a positive definite
damped mass matrix 𝐴

𝑖𝑗
. A positive definite 𝐴

𝑖𝑗
leads to

𝑑𝐸
𝑇
/𝑑𝑡 = �̇�

𝑇
(𝑥
𝑖
) ≤ 0 according to (15). Thus, according to

the Lyapunov theorem (for global stability), themathematical
model in (10a) and (10b) is stable and, consequently, the
NAOP SPP solver platform for shortest path detection always
converges to the exact solution (i.e., the desired shortest path)
during the optimization process.

Step 4. The fourth step is convergence monitoring and con-
trol. During our various numerical simulations, the condition
in (15) is being coded (algorithmically) into a feedback loop
in order to dynamically monitor and control the convergence
properties of the NAOP platform for shortest path detection
as illustrated in the flowchart presented in Figure 3. The
values of the parameters 𝛼 and 𝛽 are evaluated in order to
guarantee that the condition �̇�

𝑇
(𝑥
𝑖
) ≤ 0 is fulfilled for all �̇�

𝑖

and �̇�
𝑗
. When this condition is observed/realized, the NAOP

optimization platform always converges to the exact solution
(revealing the exact/desired shortest path).

Comment on the Convergence Analysis. The advantage of
considering the convergence/stability analysis is justified
by the fact that a fundamental analytical relationship is
derived under which straightforward convergence to the
exact solution (i.e., exact shortest path) of the NAOP model
(in (10a) and (10b)) for solving shortest path problems (SPP)
is always observed regardless of the following key metrics:
(a) the graph structure (directed, undirected, and/or mix of
directed and undirected edges), (b) the graph size, (c) the
costs of edges (high or small costs values), (d) the sign of
costs (negative, positive, and/or mix of positive and negative
costs), and (e) themagnitude of the graph.This lattermetric is
related to the scalability issue.This issue can be systematically
tackled using the key analytical relationship or expression
in (15). This expression can be appropriately used to ensure

10 Mathematical Problems in Engineering

Original graph

Parameter settings of the original graph (input of NAOP)

Defining the
costs of edges

U

Defining the
incidence
matrix A

Defining source
and destination

nodes V
Input 3 Input 2 Input 1

Initial conditions
x(0), y(0), and

z(0)

NAOP
simulator model

[see (10a) and (10b)]
Updating
𝛼 and 𝛽

Convergence
check

[see (15)]
(Output of NAOP)
Decision variables Multiplier variables

x(t) = 0 1 1 0 0 0 1 0 1 y(t) z(t)

No

Yes

Figure 3: Flowchart revealing the functioning principle of the
NAOP simulator for shortest path detection in dynamically recon-
figurable graphs. This flowchart is valid for all graphs. The rule for
updating alpha and beta is defined according to the expression in
(15) (i.e., �̇�

𝑇
(𝑥
𝑖
) ≤ 0).

fast convergence even in case of graphs with huge amount of
nodes. Specifically, it is demonstrated that the parameters 𝛼
and 𝛽 can be monitored (or varied) systematically and that a
judicious choice of these parameters ensures fast convergence
to the desired/exact solution (i.e., exact shortest path).

3.4. Flowchart of the NAOP Concept for Solving Shortest Path
Problems (SPP) in Dynamically Reconfigurable Graphs. The
aim of this subsection is to provide a full understanding of
the functioning principle of the NAOP simulator for shortest
path detection. The flowchart of the functioning principle
of the NAOP simulator is proposed in Figure 3. The NAOP
simulator is modeled by (10a), (10b), and (15). The known
parameters 𝐴, 𝑉, and 𝑈 are used as coefficients of (10a)
and (10b). These parameters are obtained from the graph
under investigation.The parameters 𝛼 and 𝛽 are dynamically
monitored in order to ensure the condition of convergence
expressed by 𝑑𝐸

𝑇
/𝑑𝑡 = �̇�

𝑇
(𝑥
𝑖
) ≤ 0 for all state variables

𝑥
𝑖
. This condition is controlled through a feedback loop

defined by (15). Thus, expression (15) is essential to ensure
convergence of the NAOP simulator to the exact shortest
path.

Thus, for a given graph under investigation the art
consists of collecting the input parameters 𝐴, 𝑉, and 𝑈

which are further used by the NAOP simulator modelled
by (10a), (10b), and (15). Mathematical expressions (10a),
(10b), and (15) constitute a coupled mathematical model of
the NAOP simulator. The coupled model is applicable to all
types of graphs independently of their topology/structure,
size, magnitude, and so forth.

For any given new graph, the corresponding parameters
𝐴, 𝑉, and 𝑈 are determined. Further, according to the new
values of 𝐴, 𝑉, and 𝑈, an update of the control parameters
𝛼 and 𝛽 may be performed if necessary (according to the
flowchart in Figure 3). The update of the control parameters
𝛼 and 𝛽 allows fast convergence of the NAOP SPP solver
concept to the exact shortest path. This interesting result is
of necessary importance when considering graph scalability
analysis since the control parameters 𝛼 and 𝛽 could be used
to guarantee fast convergence to the exact shortest path,
specifically when investigating shortest path problems (SPP)
in graphs of huge magnitude and/or size.

During the optimization process (see Figures 2 and 3),
the system modelled by (10a), (10b), and (15) converges to
an equilibrium point (i.e., fixed point). At equilibrium point
(i.e., final state (see Figure 2)), the state variables denoted by
𝑥
𝑖
are solutions of (10a) and (10b). These solutions reveal the

edges belonging to the shortest path (𝑥
𝑖
= 1) and those that

do not belong to the shortest path (𝑥
𝑖
= 0) (see Output

of NAOP in Figure 3). The initial conditions 𝑥(0), 𝑦(0), and
𝑧(0) (see Figure 3) are randomly selected. Interesting to be
underscored here is that the values of initial conditions do
not affect the convergence properties (robustness) or the
exact shortest path detection (accuracy). This conclusion
underscores the robustness of the NAOP SPP solver concept
developed.

The next section will be concerned with a demonstration
of the straightforward application of theNAOPSPP simulator
model to several graph examples. Benchmarking of the
NAOP SPP solver concept developed in this paper is further
conducted, leading to a comparison of the results obtained
(using NAOP) with the results provided by two well-known
and proven efficient concepts for SP detection selected from
the literature. These last-named concepts are the dynamic
neural network concept developed in [42] (benchmarking
1) and the dependent variable Hopfield neural network
developed in [41] (benchmarking 2). Examples of graphs
published in [41, 42] are considered, specifically (a) graphs
with unidirectional edges, (b) graphs with positive edges, (c)
graphswithmixed positive and negative costs of edges, and so
forth. All these examples have been considered either in [41]
or in [42] and are selected here once again for benchmarking
purposes.

3.5. General Algorithm for Determining the Fundamental
Parameters (𝐴,𝑈, and𝑉) of the Original Graph. This subsec-
tion proposes the algorithm (in the form ofMatlab subcodes)
for solving shortest path problems. The proposed algorithm
is developed according to the analytical concept developed,
which has led to the derivation of the general mathematical
modelling framework in (10a) and (10b). The three steps
below summarize the general procedure when dealing with
a given graph:

(i) The first step consists of determining the fundamental
parameters𝐴,𝑉, and𝑈 of a given graph under inves-
tigation. These parameters are the parameter settings
of the mathematical model of the shortest path solver
(see (10a) and (10b)).

Mathematical Problems in Engineering 11

(ii) The second step consists of inserting 𝐴, 𝑉, and 𝑈 in
the solver given in (10a) and (10b).

The algorithm can be depicted in the following pseudocode
format:

BEGIN

(1) Identify the original graph under investigation:

(a) Extract/read the incidence matrix (𝐴) of the
graph.

(b) Choose the source and destination nodes (𝑉).
(c) Assign values to edges (𝑈).

(2) Use the parameters 𝐴, 𝑉, and 𝑈 as coefficients of the
NAOP model in (10a) and (10b):

(a) Define the size of 𝐴.
(b) Define the dimension of 𝑉.
(c) Define the dimension of 𝑈.

(3) Solve (10a) and (10b) under the convergence condi-
tion𝑄 ≥ 0 and read the shortest path (SP) as solution
𝑥(𝑡) of (10a) and (10b):

(a) Define (10a) and (10b) as a function.
(b) Define the order of (10a) and (10b).
(c) Read 𝐴, 𝑉, and 𝑈 as coefficients of (10a) and

(10b).
(d) Define the state variables of (10a) and (10b).
(e) Define initial conditions on the state variables of

(10a) and (10b).
(f) Define a range (or a window) in which the

control parameters 𝛼 and 𝛽 are dynamically
monitored.

(g) Evaluate the condition for convergence of
NAOP:
(i) Declare the variables �̇�

𝑖
, �̇�
𝑗
, and 𝐴

𝑖𝑗
.

(ii) Write a loop to evaluate the value of 𝑄 =

�̇�
𝑖
𝐴
𝑖𝑗
�̇�
𝑗
:

(A) If𝑄 ≥ 0, read the solutions𝑥(𝑡) of (10a)
and (10b).

(B) If 𝑄 < 0, tune/monitor 𝛼, 𝛽 dynami-
cally until𝑄 ≥ 0 and read the solutions
𝑥(𝑡).

(h) Read/depict the SP through solutions 𝑥(𝑡) of
(10a) and (10b):

(A) If 𝑥(𝑡) = 1, select the corresponding
edges as belonging to the SP.

(B) If 𝑥(𝑡) = 0, ignore the corresponding
edges.

(C) Display the SP solution involving all
edges belonging to the SP (as depicted
above).

END

4. Application of the NAOP Spp Solver
Concept to Shortest Path Detection:
Benchmarking with Cases of Selected Graph
Examples in [41, 42]

4.1. Simulation Results and Benchmarking with [42]. Ref-
erence [42] presents a concept based on dynamic neural
networks (DNN) for solving shortest path problems in graphs
with various weight values or costs of edges (e.g., positive,
negative, and mix of positive and negative costs). It is
demonstrated that the DNN concept undergoes a transient
behavior before converging to the exact shortest path. It is
also demonstrated in [42] that the concept developed (i.e.,
the DNN) does not converge under some specific parameter
settings (e.g., initial condition). Our aim in this subsection is
to demonstrate that the NAOP SPP developed in this paper
can overcome the limitations of the concept developed in
[42]. Specifically, we demonstrate the possibility of shorten-
ing or cancelling the transient phase duration using NAOP;
we also demonstrate that the NAOP concept converges when
considering the case in which the concept in [42] fails to
converge. These two achievements/results can be considered
to underscore the efficiency of the NAOP SPP solver concept
developed in this paper.

The simulation is performed under the same parameter
settings as those in [42]. These parameters are (a) graph
topology, (b) source-destination pairs, (c) costs of edges,
and (d) initial values for the respective ODE models. Our
aim here is to demonstrate the effectiveness and efficiency
of the NAOP based SPP solver concept especially in light
of a direct comparison with the concept presented in [42].
The effectiveness is demonstrated by the capability of always
robustly detecting the exact and truly best shortest path in
each of the application examples considered in [42]. Further,
the efficiency is expressed by the extreme fast convergence of
the NAOP SPP solver concept to the exact shortest path when
comparedwith the results in [42].Themetrics for comparison
(benchmarking) considered here are the robustness and the
simulation time, this last correlating with the number of
iterations required to achieve convergence.

4.1.1. Application Example 1 (Taken from [42]). In this appli-
cation example, the graph considered in “example 5.2” from
[42] presents the case of a directed graph of magnitude 4 and
size 5 (see Figure 4). Edges in Figure 4 are made up of a mix
of positive and negative weight values (costs).

According to the theory developed in Section 4, the
parameters 𝐴, 𝑈, and 𝑉 of (10a) and (10b) corresponding to
the graph topology in Figure 4 are defined as follows:

𝐴 =

[
[
[
[
[

[

1 1 0 0 0

−1 0 1 1 0

0 −1 −1 0 1

0 0 0 −1 −1

]
]
]
]
]

]

;

𝑈 = [2, −1, −4, 3, −6]
𝑇

;

𝑉 = [1, 0, 0, −1]
𝑇

.

(16)

12 Mathematical Problems in Engineering

Table 1: Benchmarking results for application Example 1, Case 1.

Concept Exact shortest path Convergence Convergence starts at (𝑡)
Concept in [42] 𝑥

12
→ 𝑥
23
→ 𝑥
34

Yes ≈50
NAOP concept 𝑥

12
→ 𝑥
23
→ 𝑥
34

Yes ≈2

Table 2: Benchmarking results for application Example 1, Case 2.

Concept Exact shortest path Convergence Convergence starts at (𝑡)
Concept in [42] No detection No convergence No convergence
NAOP concept 𝑥

12
→ 𝑥
23
→ 𝑥
34

Yes ≈2

1

2

3

4

x12

x13

x23

x24

x34

Figure 4: Graph under investigation for the application example
denoted by Example 5.2 in [42].

Case 1 (convergence behavior with respect to both concepts).
In this case, the initial values are chosen according to [42].
These values are (�⃗�(0), �⃗�(0), ⃗𝛾(0)) = [−1, 1, −1, 1, −1, 1, −1, 1,

−1, 1, −1, 1, −1, 1]
𝑇. The results obtained by the concept in

[42] and the results obtained by the NAOP SPP solver
simulator are shown in Figures 5 and 6, respectively, for the
graph topology in Figure 4.

The results in Figure 5 (this figure is provided by [42])
show the temporal evolution of the state variables 𝑥

𝑖𝑗
(𝑡) in

the simulation window [0, 70]. These state variables 𝑥
𝑖𝑗
(𝑡)

undergo a transient behavior before converging to their
equilibrium point “0” or “1.” In Figure 5(a), the state variables
𝑥
12
(𝑡), 𝑥
23
(𝑡), and 𝑥

34
(𝑡) converge to “1.” This convergence to

“1” expresses the belonging of the edges 𝑥
12
, 𝑥
23
, and 𝑥

34
to

the shortest path, whereas in Figure 5(b) the state variables
𝑥
13
(𝑡) and 𝑥

24
(𝑡) converge to “0” which explains the notion

that the edges 𝑥
13
and 𝑥

24
do not belong to shortest path.

Figure 6 presents the results obtained by our NAOP
SPP solver concept. These results confirm those obtained in
Figure 5 (i.e., 𝑥

12
(𝑡) = 𝑥

23
(𝑡) = 𝑥

34
(𝑡) = 1 and 𝑥

13
(𝑡) =

𝑥
24
(𝑡) = 0).
Hence, both concepts detect the exact shortest path.

However, the significant difference between both concepts
is the duration of the transient phase within the simulation
window [0, 70]. This metric is considered to deduce the time
needed by each concept to achieve the convergence of all
state variables. In Figure 5 (this figure is provided by [42]),
the transient phase is observed in the simulation window
[0, 50]; hence, the convergence of state variables to binary
variables “0” and “1” starts at 𝑡 ≈ 50, whereas in Figure 6
the results provided by the NAOP SPP solver show that the
state variables undergo a very brief transient phase before
converging to binary variables at 𝑡 ≈ 2.

Thus, this first benchmarking example clearly under-
scores (see Table 1) the fast convergence of the NAOP SPP
solver concept proposed in this paper.

Case 2 (divergent behavior with respect to [42]). In
a second example case, the initial values are taken as
(�⃗�(0), �⃗�(0), ⃗𝛾(0)) = [−7, 6, −5, 4, −3, 2, −1, 0, 1, −2, 3, −4, 5,

−6]
𝑇 as mentioned in [42] for the application example given

here in Figure 4. It is clearly reported in [42] that under these
initial values the DNN concept developed in [42] does not
converge. The aim of this comparison is to show that, under
the same initial values, the NAOP concept converges to the
exact shortest path. The results from [42] and the results
from solving (10a) and (10b) (i.e., the mathematical model of
NAOP) are shown, respectively, in Figures 7 and 8.

The results in Figure 7 (this figure is provided by
[42]) show that the concept in [42] does not converge
to binary values “0” and “1” for the considered initial
values [−7, 6, −5, 4, −3, 2, −1, 0, 1, −2, 3, −4, 5, 6]𝑇. In contrast,
the results provided by the NAOP SPP solver concept (see
Figure 8) clearly show the robust convergence behavior for
the same initial values. This conclusion also underscores the
robustness of the NAOP based concept to changes in initial
values (see conclusion in Table 2).

4.1.2. Application Example 2 (Taken from [42]). Our focus on
this application example is justified by (a) the mix of positive
and negative costs of edges, (b) the mix of unidirectional and
bidirectional connections between nodes, and (c) the direct
connections between all nodes. In this application example,
the graph considered is the one given in Example 5.3 of [42];
it presents the case of a directed graph of magnitude 4 and
size 7; see Figure 9.

According to the theory developed in Section 3, the
parameters 𝐴, 𝑈, and 𝑉 of (10a) and (10b) corresponding to
the graph topology in Figure 9 are defined as follows:

𝐴 =

[
[
[
[
[

[

1 0 −1 0 0 −1 0

−1 1 0 −1 0 0 −1

0 0 1 1 1 0 0

0 −1 0 0 −1 1 1

]
]
]
]
]

]

;

𝑈 = [2, −3, 6, −7, 3, 4, 5]
𝑇

;

𝑉 = [1, 0, 0, −1]
𝑇

.

(17)

Mathematical Problems in Engineering 13

x12(t) = x23(t) = x34(t) = 1

x

0 10 20 30 40 50 60 70

t

10

8

6

4

2

0

−2

(a)

0 10 20 30 40 50 60 70

t

x

x13(t) = x24(t) = 0

6

4

2

0

−2

−4

−6

(b)

Figure 5: (a) Transient behavior of 𝑥
12
, 𝑥
23
, and 𝑥

34
(edges belonging to the SPP) and (b) 𝑥

13
and 𝑥

24
(edges which do not belong to the SP).

These plots are provided by [42] for the application example given in Figure 4with the initial values [−1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, 1]𝑇.

Table 3: Benchmarking results for application Example 2.

Concept Exact shortest path Convergence Convergence starts at (𝑡)
Concept in [42] 𝑥

12
→ 𝑥
24

Yes ≈30
NAOP concept 𝑥

12
→ 𝑥
24

Yes ≈3

x12(t) = x23(t) = x34(t) = 1

2.5

2

1.5

1

0.5

0

−0.5

−1

x

x13(t) = x24(t) = 0

0 2010 40 50 60 7030

t

Figure 6: Transient behavior of 𝑥
12
, 𝑥
23
, and 𝑥

34
(edges belonging to

the SPP) and 𝑥
13
and 𝑥

24
(edges which do not belong to the SP).This

plot is obtained as a solution of ourNAOPSPP solver concept expressed
in (10a) and (10b) for the application example given in Figure 4 with
the same initial values as in Figure 5.

Table 3 just summarizes what is expressed in Figures 10
and 11. It is evident and confirmed once again that the NAOP
based SPP solver is very robust and very much faster than the
DNN concept developed in [42].

4.2. Simulation Results and Benchmarking with [41]. The
Dependent Variables Hopfield Neural Network (DVHNN) is
considered here because it is one of the leading traditional
neural network (NN) concepts, which have been applied
for solving shortest path problems (SPP). This promising

concept for shortest path detection is extensively developed
in [41]. However, some inherent limitations of this concept
are pointed out by the authors of [41] such as (a) the lack
of reconfigurability (this is explained by the fact that when
changes occur in the graph topology (e.g., change of source
or destination nodes, suppression of an edge belonging to
the graph, and suppression of a node), new training (i.e.,
retraining) is needed in order to derive the new parameters
of the DVHNN corresponding to the changes observed); (b)
the accuracy of the DVHNN which deteriorates when the
weights values (or costs of edges) become very high [41];
(c) the DVHNN which does not converge in case several
paths (at least two paths) with identical total cost equal to
the minimum cost (i.e., several equivalent shortest paths
possibilities) exist in the graph for a given source-destination
nodes pair; (d) lack of a systematic method (e.g., an analytical
framework) that can be used to predict and control the
convergence properties of the DVHNN concept through
variation (or monitoring) of its two fundamental parameters
𝜇
1
(this parameter is used in [41] for controlling convergence

of the DVHNN) and 𝜇
2
(this parameter is used in [41] for

controlling accuracy, i.e., the solution quality provided by
the DVHNN). The authors of [41] have further pointed out
that the development of a systematic concept (e.g., analytical
concept) that could be used to efficiently predict and control
both convergence and accuracy of the DVHNN is of high
importance.The current addressing of both convergence and
accuracy of the DVHNN concept in [41] is essentially based
on a trial and error process (i.e., a guess and check process).
This justifies the importance of developing a systematic

14 Mathematical Problems in Engineering

x

x12
x23

x34

10

8

6

4

2

0

−2

−4

−6

−8

−10
5 10 15 20 25 300

t

(a)

x

x13
x24

10

8

6

4

2

0

−2

−4

−6

−8

−10
5 10 15 20 25 300

t

(b)

Figure 7: (a) Divergent behaviors of 𝑥
12
, 𝑥
23
, and 𝑥

34
and (b) 𝑥

13
and 𝑥

24
. These plots are provided by [42] with the initial values

[−7, 6, −5, 4, −3, 2, −1, 0, 1, −2, 3, −4, 5, −6]
𝑇 for the application example given in Figure 4.

6

4

2

0

−2

−4

−6

−8

x

0 5 10 15 20 25 30

t

x12(t) = x23(t) = x34(t) = 1

x13(t) = x24(t) = 0

Figure 8: Transient behaviors of 𝑥
12
, 𝑥
23
, and 𝑥

34
(edges belonging

to the SP) and𝑥
13
and𝑥

24
(edgeswhich do not belong to the SP).This

plot is obtained as a solution of (10a) and (10b) for the application
example in Figure 4 under the same initial values as in Figure 7
coming from reference to [42].

concept or framework for addressing this underscored con-
trol and monitoring need of both convergence and accuracy.
(e) Using the DVHNN, a tradeoff exists between convergence
time and solution quality [41]. It is demonstrated in [41]
that an improvement of the convergence time degrades
the accuracy of the DVHNN concept and vice versa. The
dependence between convergence and accuracy is addressed
through monitoring of the ratio (𝜇

1
/𝜇
2
). However, even this

monitoring of the ratio is also based on a trial and error
process (see [41]).

Our aim in this subsection is to demonstrate that the
NAOP concept developed can solve the above unsolved
problems by the DVHNN. Specifically, we want to demon-
strate that the NAOP SPP concept developed does not need

1

2

3

4

x41

x12

x24

x42

x31

x34 x32

Figure 9: Graph under investigation for the application example
denoted by 5.3 in [42].

retraining in case the abovementioned changes could occur
in the graph topology. We also want to demonstrate that the
accuracy of the NAOP SPP concept is not affected by the
values of the costs assigned to edges (e.g., high or small costs
of edges). Finally, we want to propose a systematic analytical
concept that can be efficiently used to predict and control
convergence of the NAOP SPP simulator to the exact (or
desired) shortest path independently of the graph topology,
size, magnitude, and so forth.Thus, the concept developed in
this work could be viewed as a concrete prototype (i.e., model
or framework) to overcome some limitations encountered by
the DVHNN concept in [41].

Benchmarking is further considered between the concept
developed in this work (i.e., NAOP SPP) and the concept
developed in [41] (i.e., DVHNN). The performance metrics
used for benchmarking are the computing performance (i.e.,
simulation time) and the robustness (i.e., convergence and
correctness). The benchmarking is conducted by consider-
ing the graph example in Figure 12, which is considered
in [41]. According to the theory developed in Section 3,

Mathematical Problems in Engineering 15

x

0 10 20 30 40 50 60

t

8

6

4

2

0

−2

−4

−6

x12(t) = x24(t) = 1

(a)

0 10 20 30 40 50 60

t

x

8

6

4

2

0

−2

−4

x41(t) = x31(t) = x32(t) = 0

x34(t) = x42(t) = 0

(b)

Figure 10: (a) Transient behaviors of 𝑥
12
and 𝑥

24
(edges belonging to the SPP) and (b) 𝑥

31
, 𝑥
32
, 𝑥
34
, 𝑥
41
, and 𝑥

42
(edges which do not belong

to the SP).These plots are provided by [42] with the initial values �⃗�(0) = [1, −1, 2, −2, 3, −3, 4]𝑇 for the application example given in Figure 9.

x41(t) = x31(t) = x32(t) = x34(t) = x42(t) = 0

x12(t) = x24(t) = 1

x

0 10 20 30 40 50 60

t

3

2.5

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

Figure 11: Transient behaviors of 𝑥
12

and 𝑥
24

(edges belonging to
the SP) and 𝑥

31
, 𝑥
32
, 𝑥
34
, 𝑥
41
, and 𝑥

42
(edges which do not belong

to the SP). This plot is obtained as a solution of (10a) and (10b) for
the application example given in Figure 9 under the same parameter
settings as in Figure 10 with reference to [42].

the parameters 𝐴, 𝑈, and 𝑉 of (10a) and (10b) corresponding
to the graph topology in Figure 12 are defined as follows:

𝐴 =

[
[
[
[
[
[
[
[

[

1 0 0 0 1 0 0 0

−1 0 1 0 0 1 1 0

0 1 −1 1 −1 0 0 0

0 0 0 −1 0 0 −1 1

0 −1 0 0 0 −1 0 −1

]
]
]
]
]
]
]
]

]

,

𝑈 = [𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
, 𝑐
6
, 𝑐
7
, 𝑐
8
]
𝑇

,

𝑉 = [𝛿
1
, 𝛿
2
, 𝛿
3
, 𝛿
4
, 𝛿
5
]
𝑇

.

(18)

The fundamental parameters 𝐴, 𝑈, and 𝑉 of the graph
in Figure 12 are expressed in a general form, which allows

1

2

3 4

5

c1

c2

c3

c4

c5

c6

c7

c8

x1

x2

x3

x4

x5

x6

x7

x8

Figure 12: Topology of a directed graph of magnitude 5 and size 8.
Both costs and states of edges are denoted, respectively, by 𝑐

𝑖
and 𝑥

𝑖

(this figure is considered in [41]).

the possibility of dynamically changing the source-destina-
tion pair and also the costs of edges. This shows the good
reconfigurability potential of the NAOP SPP solver since the
parameters 𝐴, 𝑈, and 𝑉 are used as external commands (i.e.,
inputs) to the NAOP SPP concept.

The core concept of the DVHNN for finding SP is
based on the derivation of Kirchhoff ’s constraints. These
constraints express the dependent variables/neurons in terms
of independent variables/neurons. Reference [41] proposes
an algorithm for the selection of dependent variables. How-
ever, simple selection of the dependent variables can be
performed by choosing spanning walk/path from source (𝑠)
to destination (𝑡). This is walk involving all nodes of the
graph.The state variables involved in the spanning walk/path
are dependent variables/neurons while the other variables are
independent neurons. Full details of theDVHNNconcept are
provided in [41].

It is important to mention that, according to the
DVHNN concept, the dependent and independent variables
are defined for a specific choice of source-destination pair
(lack of reconfigurability). Due to the nonreconfigurability

16 Mathematical Problems in Engineering

Table 4: Results of the shortest path detection (in Figure 12) using the NAOP-simulator and Benchmarking between the NAOP paradigm
and the DVHNN concept. A scenario corresponds to a specific choice of source-destination pair.

Shortest path results using NAOP-simulator NAOP versus DVHNN
From source
to destination
𝑠 → 𝑡

Sim. time (𝑇sim) Convergence

Edges in the shortest path Total cost of the path NAOP (ms) VDHNN (ms)1 NAOP DVHNN
Small weights values: the cost of an edge with index “𝑖” is “𝐶

𝑖
= 0.01 ∗ 𝑖”

1 → 2 𝑥
1

0.1 0.45 48.4 Yes Yes
1 → 3 𝑥

1
, 𝑥
3

0.4 1.73 114 Yes Yes
1 → 4 𝑥

1
, 𝑥
3
, and 𝑥

4
0.8 42.2 — Yes No

2 → 3 𝑥
3

0.3 1 77.3 Yes Yes
2 → 4 𝑥

7
0.7 37.9 — Yes No

2 → 5 𝑥
2
, 𝑥
3

0.5 7.6 89.2 Yes Yes
3 → 5 𝑥

2
0.2 0.94 68.9 Yes Yes

High weights values: the cost of an edge with index “𝑖” is “𝐶
𝑖
= 1000 ∗ 𝑖”

1 → 2 𝑥
1

1000 0.54 — Yes No
1 → 3 𝑥

1
, 𝑥
3

4000 0.77 — Yes No
1 → 4 𝑥

1
, 𝑥
3
, and 𝑥

4
8000 70.3 — Yes No

2 → 3 𝑥
3

3000 0.22 — Yes No
2 → 4 𝑥

7
7000 85.4 — Yes No

2 → 5 𝑥
2
, 𝑥
3

5000 0.19 — Yes No
3 → 5 𝑥

2
2000 0.16 — Yes No

1In this paper, the concepts have been all implemented in Matlab on a standard PC.

of the DVHNN concept, we have performed for each of
the scenarios (remark: each scenario is defined by a spe-
cific source-destination pair) envisaged in Table 4 additional
specific training of the DVHNN in order to determine the
suitable system’s parameters. It is important to notice that the
simulation times in Table 4 (for the DVHNN) correspond
only to the duration of the usage phases (training not
considered). The duration of the training phase of DVHNN
(for each of the scenarios listed in Table 4) was not constant;
however, it was always greater than 5 seconds.

The results (in Table 4) show that the NAOP concept
developed in this work leads to a better computing per-
formance than the DVHNN concept (for both small and
large values of the costs of edges). Further, the computing
performance of the DVHNN degrades (i.e., becomes the
worst) with increasing costs of edges. When the costs of
edges are very high (e.g., greater than thousand (1000)), the
DVHNN cannot converge. On the other hand, the accuracy
of the NAOP SPP concept is preserved even for very high
costs of edges.

Regarding the test for robustness, we have considered
various critical and challenging cases where several paths
(from source to destination) are depicted with the same
minimum cost (i.e., paths with equivalent/identical costs
equal to the minimum cost). As it appears in Table 4, the
DVHNN cannot efficiently analyze some of the various
scenarios envisaged. Further, the robustness of the DVHNN
degrades with increasing values of the costs of edges. This
is observed (in Table 4) by cases of nonconvergence (lack

of convergence) of the VDHNN for shortest path finding.
However, the results in Table 4 reveal the good robustness
of the NAOP SPP simulator for shortest path finding. This
robustness is characterized by successful and straightforward
convergence to a routing path (i.e., a correct path, which
corresponds to the path having the minimum cost) for the
sample scenarios envisaged.

In Table 5, we do summarize the essential comparison
between DVHNN and NAOP SPP concept while using the
most relevant criteria. It is clear from the table that the NAOP
SPP concept can overcome some limitations of the DVHNN.

5. Conclusion

Thework presented in this paper has developed and validated
a general theoretical concept based on nonlinear adaptive
optimization (NAOP) for the efficient and robust solving of
SPP problem cases in reconfigurable network graphs. The
developed concept has been demonstrated as being capable of
efficiently handling shortest path problems in both directed
and undirected graphs, even in the case of large values
of the edge costs. Further, it has been demonstrated that
the developed concept can efficiently detect SP even in the
particular cases where there exist several paths (SP) with
identical minimum total cost. This result does significantly
contribute to the enrichment of the relevant state of the
art regarding shortest path problems since the traditional
SP concepts and algorithms (e.g., the traditional neural
network architectures, PSO,GA, etc.) cannot efficiently tackle

Mathematical Problems in Engineering 17

Table 5: Critical comparison of DVHNN and NAOP based concepts for SP determination.

Comparison criteria DVHNN based SP determination NAOP based SP determination
External reconfigurability regarding
dynamic change of edges’ weights Yes Yes

External reconfigurability regarding
dynamic change of 𝑠 → 𝑡 pairs No Yes

External reconfigurability regarding
dynamic change of network topology No

In principle yes, although this particular
aspect has not been considered in this
paper. It will be addressed in a future
paper

Ability to cope with negative edges’
weights No Yes

Ability to cope with nonlinear path’s
weights No

In principle yes, although this particular
aspect has not been considered in this
paper. It will be addressed in a future
paper

Reliability of the convergence: this stands
for valid and successful convergence;
otherwise, it is a failure

No
Many failure cases have been
observed; this is especially the case
when high values of weights are
present

Yes

Computational speed2
Basically good if compared to the
other NN based SP determination
concepts

Very good
(a difference of 1 to 2 order of magnitude
better than DVHNN has been observed
here)

Memory consumption need
High
Because of the retraining need for
each 𝑠 → 𝑡 pair

Very low

2In this paper, the concepts have been all implemented in Matlab on a standard PC.

such complexity or always ensure convergence [47]. The
efficiency in this context is related to core performance cri-
teria such as computing speed, robustness, and convergence.
One of the most important conclusions to be underscored
in this paper is that the NAOP based SPP solver concept
developed can also be used, after appropriate adaptations,
to efficiently model and handle further graph theoretical
problems (e.g., traveler salesman problem, minimum span-
ning tree problem, and vehicle routing problem). The latter
cited problems are being addressed in some subsequent
works.

As proof of concept, extensive benchmarking has been
carried out. The performance of the NAOP SPP concept
developed has been sufficiently compared with the perfor-
mances of two concepts taken from the literature, namely,
the DVHNN in [41] and the DNN in [42]. The outcome
of the benchmarking has confirmed the effectiveness of the
novel NAOP based concept developed to efficiently handle
(or tackle) SP problems.

A series of ongoing works under consideration do relate
amongst others to (a) the extension of the concept developed
(in this work) to the case where the cost of a path is
a nonlinear function of the arc weights (e.g., for cases
where the driving energy on a path must be minimized)
and (b) the extension of the concept developed (in this
work) to the case of stochastic graphs. These graphs are

characterized by arc weights that are stochastic processes.
Thus, extending the concept developed in this work to both
nonlinear and stochastic graphs models is possible. Regard-
ing the latter ones, this can be achieved by considering the
key parameters, that is, the 𝑘th moments of the distributions
characterizing the stochastic dynamics of each edge of the
network/graph. The extension of the concept developed in
this work to stochastic graphs will lead to the mathematical
modeling of various stochastics-prone systems, for example,
of sensor data with straightforward interesting applications
in areas like intelligent transportation systems and many
others.

Furthermore, a series of extremely interesting problem
cases (for practical applications) for which the core concept
of this paper will be extended in future works are (a) network
reliability problems in case of both dependent and indepen-
dent edges; (b) optimal flow problems undermultiple source-
destination scenarios; (c) optimal flow problems under mul-
tiple source-destination scenarios and under stochastic arc’s
weights conditions; (d) traveler salesman problem (TSP); (e)
TSP with stochastic edge’s weights; (f) resource allocation
problems under stochastic conditions; (g) vehicle routing
problems (VRP) under stochastic conditions; (h) scheduling
problems under stochastic conditions, and so forth. All these
problems are extremely challenging and do face a huge
computational complexity that can be significantly alleviated

18 Mathematical Problems in Engineering

by the involvement of the novel concept developed in this
work.

Appendix

This appendix provides full detail of the stability analysis
carried out in order to guarantee fast convergence (to the
exact solution) of the NAOP platform developed in (10a) and
(10b) for solving shortest path problems (SPP).The analysis is
systematically conducted and this led to the derivation of ana-
lytical conditions (expressed by a formula; see (A.38)) under
which the NAOP system model in (10a) and (10b) always
provides converging solutions. As already mentioned, these
solutions, for example, the decision variables (or solutions𝑥

𝑖
),

express the exact/desired shortest path.
The attention devoted to the convergence/stability analy-

sis is justified by the fact that a fundamental analytical rela-
tionship is derived under which straightforward convergence
to the exact solution (i.e., exact shortest path) of the NAOP
model (in (10a) and (10b)) for solving shortest path problems
(SPP) is always observed regardless of the following key
metrics: (a) the graph structure (directed, undirected, and/or
mix of directed and undirected edges), (b) the graph size, (c)
the costs of edges (high or small costs values), (d) the sign of
costs (negative, positive, and/or mix of positive and negative
costs), and (e) the magnitude of the graph. This latter metric
is related to the scalability issue. This issue is systematically
addressed here and a key analytical relationship is established
analytically to ensure fast convergence even in case of graphs
with huge amount of nodes. Specifically it is demonstrated
that the parameters 𝛼 and 𝛽 can be monitored (or varied)
systematically and that a judicious choice of these parameters
ensures fast convergence to the desired/exact solution (i.e.,
shortest path).

The functions 𝑓(�⃗�), 𝑔
𝑚
(�⃗�), and ℎ

𝑛
(�⃗�) are expressed in

terms of �⃗� = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
]
𝑇

∈ R. Therefore, the total
differentiation of these functions is expressed as follows:

𝑑𝑓 = (
𝜕𝑓

𝜕𝑥
1

)𝑑𝑥
1
+ ⋅ ⋅ ⋅ + (

𝜕𝑓

𝜕𝑥
𝑁

)𝑑𝑥
𝑁
,

𝑑𝑔
𝑚
= (

𝜕𝑔
𝑚

𝜕𝑥
1

)𝑑𝑥
1
+ ⋅ ⋅ ⋅ + (

𝜕𝑔
𝑚

𝜕𝑥
𝑁

)𝑑𝑥
𝑁
,

𝑑ℎ
𝑛
= (

𝜕ℎ
𝑛

𝜕𝑥
1

)𝑑𝑥
1
+ ⋅ ⋅ ⋅ + (

𝜕ℎ
𝑛

𝜕𝑥
𝑁

)𝑑𝑥
𝑁
.

(A.1)

Equations (A.1) can be written in the following forms:

𝑑𝑓

𝑑𝑡
= (

𝜕𝑓

𝜕𝑥
1

) �̇�
1
+ ⋅ ⋅ ⋅ + (

𝜕𝑓

𝜕𝑥
𝑁

) �̇�
𝑁
,

𝑑𝑔
𝑚

𝑑𝑡
= (

𝜕𝑔
𝑚

𝜕𝑥
1

) �̇�
1
+ ⋅ ⋅ ⋅ + (

𝜕𝑔
𝑚

𝜕𝑥
𝑁

) �̇�
𝑁
,

𝑑ℎ
𝑛

𝑑𝑡
= (

𝜕ℎ
𝑛

𝜕𝑥
1

) �̇�
1
+ ⋅ ⋅ ⋅ + (

𝜕ℎ
𝑛

𝜕𝑥
𝑁

) �̇�
𝑁
,

(A.2)

where the single overdot
∙

()= 𝑑()/𝑑𝑡 denotes the first
derivative. Thus, (A.2) can be expressed in the following
compact form:

𝑑𝑓

𝑑𝑡
=

𝑁

∑

𝑗=1

[(
𝜕𝑓

𝜕𝑥
𝑗

) �̇�
𝑗
] , (A.3)

𝑑𝑔
𝑚

𝑑𝑡
=

𝑁

∑

𝑗=1

[(
𝜕𝑔
𝑚

𝜕𝑥
𝑗

) �̇�
𝑗
] , (A.4)

𝑑ℎ
𝑛

𝑑𝑡
=

𝑁

∑

𝑗=1

[(
𝜕ℎ
𝑛

𝜕𝑥
𝑗

) �̇�
𝑗
] . (A.5)

TheLagrange function �̃�(�⃗�, �⃗�, ⃗𝛾) in (4) can be substituted into
(5a) to obtain the following expression:

�̇�
𝑖
= −𝛼[

𝜕𝑓 (�⃗�)

𝜕𝑥
𝑖

+
𝜕

𝜕𝑥
𝑖

(

𝑀

∑

𝑚=1

[𝜆
𝑚
𝑔
𝑚
(�⃗�)])

+
𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑛=1

[𝛾
𝑛
ℎ
𝑛
(�⃗�)])] .

(A.6)

Applying the first derivative to (A.6) leads to

�̈�
𝑖
= −𝛼[

𝜕

𝜕𝑥
𝑖

(
𝑑𝑓

𝑑𝑡
)

+
𝜕

𝜕𝑥
𝑖

𝑀

∑

𝑚=1

(𝜆
𝑚
⋅
𝑑𝑔
𝑚

𝑑𝑡
+ 𝑔
𝑚
⋅
𝑑𝜆
𝑚

𝑑𝑡
)

+
𝜕

𝜕𝑥
𝑖

𝑁

∑

𝑛=1

(𝛾
𝑛
⋅
𝑑ℎ
𝑛

𝑑𝑡
+ ℎ
𝑛

𝑑𝛾
𝑛

𝑑𝑡
)] .

(A.7)

Similarly, the Lagrange function �̃�(�⃗�, �⃗�, ⃗𝛾) in (4) can be
substituted into (5b) to obtain the following expression of the
first derivative of 𝜆

𝑚
:

𝑑𝜆
𝑚

𝑑𝑡
= +𝛽

𝜕�̃�

𝜕𝜆
𝑚

= +𝛽[
𝜕𝑓 (�⃗�)

𝜕𝜆
𝑚

+
𝜕

𝜕𝜆
𝑚

(

𝑀

∑

𝑚=1

[𝜆
𝑚
𝑔
𝑚
(�⃗�)])

+
𝜕

𝜕𝜆
𝑚

(

𝑁

∑

𝑛=1

[𝛾
𝑛
ℎ
𝑛
(�⃗�)])] .

(A.8)

An important remark is that ∑𝑀
𝑚=1

[𝜆
𝑚
𝑔
𝑚
(�⃗�)] can be written

in the following expanded form:

𝑀

∑

𝑚=1

[𝜆
𝑚
𝑔
𝑚
(�⃗�)]

= 𝜆
1
𝑔
1
+ 𝜆
2
𝑔
2
+ 𝜆
3
𝑔
3
+ ⋅ ⋅ ⋅ + 𝜆

𝑀
𝑔
𝑀
,

Mathematical Problems in Engineering 19

𝜕

𝜕𝜆
1

{

𝑀

∑

𝑚=1

[𝜆
𝑚
𝑔
𝑚
(�⃗�)]}

=
𝜕

𝜕𝜆
1

{𝜆
1
𝑔
1
+ ⋅ ⋅ ⋅ + 𝜆

𝑀
𝑔
𝑀
} = 𝑔
1
,

𝜕

𝜕𝜆
2

{

𝑀

∑

𝑚=1

[𝜆
𝑚
𝑔
𝑚
(�⃗�)]}

=
𝜕

𝜕𝜆
2

{𝜆
1
𝑔
1
+ ⋅ ⋅ ⋅ + 𝜆

𝑀
𝑔
𝑀
} = 𝑔
2
,

(A.9)

and, finally,

𝜕

𝜕𝜆
𝑀

{

𝑀

∑

𝑚=1

[𝜆
𝑚
𝑔
𝑚
(�⃗�)]}

=
𝜕

𝜕𝜆
𝑀

{𝜆
1
𝑔
1
+ ⋅ ⋅ ⋅ + 𝜆

𝑀
𝑔
𝑀
} = 𝑔
𝑀
.

(A.10)

Further,

𝜕𝑓 (�⃗�)

𝜕𝜆
𝑚

= 0

𝜕

𝜕𝜆
𝑚

(

𝑁

∑

𝑛=1

[𝛾
𝑛
ℎ
𝑛
(�⃗�)]) = 0

(A.11)

since 𝑓(�⃗�), 𝛾
𝑛
, and ℎ

𝑛
(�⃗�) do not depend on 𝜆

𝑚
.

Substituting (A.10) and (A.11) into (A.8) leads to the
following expression:

𝑑𝜆
𝑚

𝑑𝑡
= +𝛽𝑔

𝑚
. (A.12)

Similar to the process leading to (A.12), it can be shown that

𝑑𝛾
𝑛

𝑑𝑡
= +𝛽ℎ

𝑛
. (A.13)

Substituting (A.3), (A.4), (A.5), (A.12), and (A.13) into (A.7)
leads to the following mathematical expression:

�̈�
𝑖
= −𝛼[

[

𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑗=1

[(
𝜕𝑓

𝜕𝑥
𝑗

) �̇�
𝑗
]) + ⋅ ⋅ ⋅

+
𝜕

𝜕𝑥
𝑖

(

𝑀

∑

𝑚=1

[

[

𝜆
𝑚
⋅

𝑁

∑

𝑗=1

{(
𝜕𝑔
𝑚

𝜕𝑥
𝑗

) �̇�
𝑗
} + 𝛽𝑔

2

𝑚

]

]

)

+ ⋅ ⋅ ⋅

+
𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑛=1

[

[

𝛾
𝑛
⋅

𝑁

∑

𝑗=1

{(
𝜕ℎ
𝑛

𝜕𝑥
𝑗

) �̇�
𝑗
} + 𝛽ℎ

2

𝑛

]

]

)]

]

.

(A.14)

Expanding the summation on the indexes 𝑚 and 𝑛 in (A.14)
leads to

�̈�
𝑖
= −𝛼[

[

𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑗=1

[(
𝜕𝑓

𝜕𝑥
𝑗

) �̇�
𝑗
]) + ⋅ ⋅ ⋅

+
𝜕

𝜕𝑥
𝑖

(

𝑀

∑

𝑚=1

[

[

𝜆
𝑚
⋅

𝑁

∑

𝑗=1

{(
𝜕𝑔
𝑚

𝜕𝑥
𝑗

) �̇�
𝑗
}]

]

+

𝑀

∑

𝑚=1

[𝛽𝑔
2

𝑚
]) + ⋅ ⋅ ⋅

+
𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑛=1

[

[

𝛾
𝑛
⋅

𝑁

∑

𝑗=1

{(
𝜕ℎ
𝑛

𝜕𝑥
𝑗

) �̇�
𝑗
}]

]

+

𝑁

∑

𝑛=1

[𝛽ℎ
2

𝑛
])]

]

.

(A.15)

Equation (A.15) can be rewritten as follows by permuting the
summations on the indexes𝑚 and 𝑗 and also 𝑛 and 𝑗:

�̈�
𝑖
= −𝛼[

[

𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑗=1

[(
𝜕𝑓

𝜕𝑥
𝑗

) �̇�
𝑗
]) + ⋅ ⋅ ⋅

+
𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑗=1

[

𝑀

∑

𝑚=1

{𝜆
𝑚
(
𝜕𝑔
𝑚

𝜕𝑥
𝑗

) �̇�
𝑗
}]

+

𝑀

∑

𝑚=1

[𝛽𝑔
2

𝑚
]) + ⋅ ⋅ ⋅

+
𝜕

𝜕𝑥
𝑖

(

𝑁

∑

𝑗=1

[

𝑁

∑

𝑛=1

{𝛾
𝑛
(
𝜕ℎ
𝑛

𝜕𝑥
𝑗

) �̇�
𝑗
}]

+

𝑁

∑

𝑛=1

[𝛽ℎ
2

𝑛
])]

]

.

(A.16)

Expression (A.16) can be transformed as follows:

�̈�
𝑖
= −𝛼[

[

(

𝑁

∑

𝑗=1

{
𝜕

𝜕𝑥
𝑖

(
𝜕𝑓

𝜕𝑥
𝑗

) �̇�
𝑗
}) + ⋅ ⋅ ⋅

+ (

𝑁

∑

𝑗=1

{

𝑀

∑

𝑚=1

{𝜆
𝑚

𝜕

𝜕𝑥
𝑖

(
𝜕𝑔
𝑚

𝜕𝑥
𝑗

) �̇�
𝑗
}}

20 Mathematical Problems in Engineering

+

𝑀

∑

𝑚=1

𝜕

𝜕𝑥
𝑖

(𝛽𝑔
2

𝑚
)) + ⋅ ⋅ ⋅

+ (

𝑁

∑

𝑗=1

{

𝑁

∑

𝑛=1

{𝛾
𝑛

𝜕

𝜕𝑥
𝑖

(
𝜕ℎ
𝑛

𝜕𝑥
𝑗

) �̇�
𝑗
}}

+

𝑁

∑

𝑛=1

𝜕

𝜕𝑥
𝑖

(𝛽ℎ
2

𝑛
))]

]

.

(A.17)

By grouping in (A.17) the expressions involving summations
on the index 𝑗, the following new expression is obtained:

�̈�
𝑖
= −𝛼[

[

𝑁

∑

𝑗=1

{(
𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗

) �̇�
𝑗

+

𝑀

∑

𝑚=1

(𝜆
𝑚

𝜕

𝜕𝑥
𝑖

(�̇�
𝑗

𝜕𝑔
𝑚

𝜕𝑥
𝑗

))

+

𝑁

∑

𝑛=1

(𝛾
𝑛

𝜕

𝜕𝑥
𝑖

(�̇�
𝑗

𝜕ℎ
𝑛

𝜕𝑥
𝑗

))}]

]

+

𝑀

∑

𝑚=1

𝜕

𝜕𝑥
𝑖

(𝛽𝑔
2

𝑚
)

+

𝑁

∑

𝑛=1

𝜕

𝜕𝑥
𝑖

(𝛽ℎ
2

𝑛
) .

(A.18)

Applying the partial derivative (in the direction 𝑥
𝑖
) to the

products terms in (A.18) leads to the following expression:

�̈�
𝑖
= −𝛼[

[

𝑁

∑

𝑗=1

{(
𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗

) �̇�
𝑗

+

𝑀

∑

𝑚=1

(𝜆
𝑚
(�̇�
𝑗

𝜕
2

𝑔
𝑚

𝜕𝑥
𝑖
𝜕𝑥
𝑗

) + 𝜆
𝑚
(

𝜕�̇�
𝑗

𝜕𝑥
𝑖

)(
𝜕𝑔
𝑚

𝜕𝑥
𝑗

))

+

𝑁

∑

𝑛=1

(𝛾
𝑛
(�̇�
𝑗

𝜕
2

ℎ
𝑛

𝜕𝑥
𝑖
𝜕𝑥
𝑗

) + 𝛾
𝑛
(

𝜕�̇�
𝑗

𝜕𝑥
𝑖

)(
𝜕ℎ
𝑛

𝜕𝑥
𝑗

))}

+ 2𝛽

𝑀

∑

𝑚=1

(𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

) + 2𝛽

𝑁

∑

𝑛=1

(ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

)]

]

.

(A.19)

Further, since the variables 𝑥
𝑖
and 𝑥

𝑗
are pairwise indepen-

dent, the following expression can be derived:

(

𝜕�̇�
𝑗

𝜕𝑥
𝑖

) = (
𝜕

𝜕𝑥
𝑖

[

𝑑𝑥
𝑗

𝑑𝑡
]) = (

𝑑

𝑑𝑡
[

𝜕𝑥
𝑗

𝜕𝑥
𝑖

]) = 0. (A.20)

Substituting (A.20) into (A.19) leads to the following simpli-
fied expression:

�̈�
𝑖
= −𝛼

{

{

{

𝑁

∑

𝑗=1

([
𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗

] �̇�
𝑗
+ �̇�
𝑗

𝑀

∑

𝑚=1

[𝜆
𝑚

𝜕
2

𝑔
𝑚

𝜕𝑥
𝑖
𝜕𝑥
𝑗

]

+ �̇�
𝑗

𝑁

∑

𝑛=1

[𝛾
𝑛

𝜕
2

ℎ
𝑛

𝜕𝑥
𝑖
𝜕𝑥
𝑗

]) + 2𝛽(

𝑀

∑

𝑚=1

[𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

]

+

𝑁

∑

𝑛=1

[ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

])
}

}

}

.

(A.21)

Expression (A.21) can be written in the following simplified
form:

�̈�
𝑖
+
{

{

{

𝑁

∑

𝑗=1

𝛼([
𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗

] +

𝑀

∑

𝑚=1

[𝜆
𝑚

𝜕
2

𝑔
𝑚

𝜕𝑥
𝑖
𝜕𝑥
𝑗

]

+

𝑁

∑

𝑛=1

[𝛾
𝑛

𝜕
2

ℎ
𝑛

𝜕𝑥
𝑖
𝜕𝑥
𝑗

]) �̇�
𝑗
+ 2𝛼𝛽(

𝑀

∑

𝑚=1

[𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

]

+

𝑁

∑

𝑛=1

[ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

])
}

}

}

= 0.

(A.22)

Therefore, grouping the terms of (A.22) leads to the following
fundamental expression describing the temporal evolution of
the decision variables 𝑥

𝑖
(solutions of (10a) and (10b)) and

outputs of the NAOP simulator in Figures 1 and 3:

�̈�
𝑖
+

𝑁

∑

𝑗=1

[𝐴
𝑖𝑗
�̇�
𝑗
] + �⃗� = 0. (A.23a)

Equation (A.23a) is a second-order ordinary differential
equation with a single and dissipative coefficient denoted
by 𝐴
𝑖𝑗
. This coefficient represents the damped mass matrix

defined according to (A.22) as follows:

𝐴
𝑖𝑗

= 𝛼[
𝜕
2

𝑓

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+

𝑀

∑

𝑚=1

𝜆
𝑚

𝜕
2

𝑔
𝑚

𝜕𝑥
𝑖
𝜕𝑥
𝑗

+

𝑁

∑

𝑛=1

𝛾
𝑛

𝜕
2

ℎ
𝑛

𝜕𝑥
𝑖
𝜕𝑥
𝑗

] .

(A.23b)

In (A.23a) �⃗� is an internal force producing the potential
energy into the system. This force is expressed according to
(A.22) as follows:

�⃗� = 2𝛼𝛽[

𝑀

∑

𝑚=1

𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

+

𝑁

∑

𝑛=1

ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

] . (A.23c)

The total energy (𝐸
𝑇
) of the system is expressed as the sum

of kinetic energy (𝐸
𝐶
) and potential energy (𝐸

𝑃
) by the

following expression:

𝐸
𝑇
= 𝐸
𝐶
+ 𝐸
𝑃
. (A.24)

Mathematical Problems in Engineering 21

According to (A.23a), (A.23b), and (A.23c),𝑥
𝑖
is the state vari-

able.Therefore, the energies (i.e., 𝐸
𝐶
and 𝐸

𝑃
) are expressed in

terms of the state variable𝑥
𝑖
(solution of (A.23a), (A.23b), and

(A.23c)) as follows:

𝐸
𝑃
(𝑥
𝑖
) = ∫𝐹 ⋅ 𝜕𝑥

𝑖
,

𝐸
𝐶
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

] .

(A.25)

Substituting (A.25) into (A.24) leads to the following expres-
sion of the total energy:

𝐸
𝑇
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

] + ∫𝐹 ⋅ 𝜕𝑥
𝑖
. (A.26)

Thus, substituting (A.23c) into (A.26) leads to the following
expression of the total energy:

𝐸
𝑇
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

]

+ 2𝛼𝛽∫[

𝑀

∑

𝑚=1

𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

+

𝑁

∑

𝑛=1

ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

] 𝜕𝑥
𝑖
.

(A.27)

Equation (A.27) can be written in the following simplified
form:

𝐸
𝑇
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

]

+ 𝛼𝛽∫[

𝑀

∑

𝑚=1

𝜕 (𝑔
2

𝑚
)

𝜕𝑥
𝑖

+

𝑁

∑

𝑛=1

𝜕 (ℎ
2

𝑛
)

𝜕𝑥
𝑖

] 𝜕𝑥
𝑖
.

(A.28)

In (A.28), the integral operator can be permuted with the
summation operator to obtain the following expression:

𝐸
𝑇
(𝑥
𝑖
)

=

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

]

+ 𝛼𝛽([

𝑀

∑

𝑚=1

∫𝜕 (𝑔
2

𝑚
) +

𝑁

∑

𝑛=1

∫𝜕 (ℎ
2

𝑛
)]) .

(A.29)

Finally, an evaluation of the integral term in (A.29) leads to
the following expression:

𝐸
𝑇
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[
1

2
(�̇�
𝑖
)
2

]

+ 𝛼𝛽([

𝑀

∑

𝑚=1

(𝑔
2

𝑚
) +

𝑁

∑

𝑛=1

(ℎ
2

𝑛
)]) .

(A.30)

Using (A.30), the first derivative �̇�
𝑇
(𝑥
𝑖
) = 𝑑(𝐸

𝑇
(𝑥
𝑖
))/𝑑𝑡 of the

total energy is expressed as follows:

�̇�
𝑇
(𝑥
𝑖
)

=

𝑁

∑

𝑖=1

[�̇�
𝑖
�̈�
𝑖
]

+ 2𝛼𝛽([

𝑀

∑

𝑚=1

(𝑔
𝑚

𝑑𝑔
𝑚

𝑑𝑡
) +

𝑁

∑

𝑛=1

(ℎ
𝑛

𝑑ℎ
𝑛

𝑑𝑡
)]) .

(A.31)

Using (A.4) and (A.5), the terms 𝑑𝑔
𝑚
/𝑑𝑡 and 𝑑ℎ

𝑛
/𝑑𝑡 are

expressed in the direction 𝑖 as follows:

𝑑𝑔
𝑚

𝑑𝑡
=

𝑁

∑

𝑖=1

[(
𝜕𝑔
𝑚

𝜕𝑥
𝑖

) �̇�
𝑖
] ,

𝑑ℎ
𝑛

𝑑𝑡
=

𝑁

∑

𝑖=1

[(
𝜕ℎ
𝑛

𝜕𝑥
𝑖

) �̇�
𝑖
] .

(A.32)

Substituting (A.32) into (A.31) leads to the following expres-
sion of the first derivative of the total energy:

�̇�
𝑇
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[�̇�
𝑖
�̈�
𝑖
] + 2𝛼𝛽

𝑀

∑

𝑚=1

𝑔
𝑚
(

𝑁

∑

𝑖=1

(
𝜕𝑔
𝑚

𝜕𝑥
𝑖

) �̇�
𝑖
)

+ 2𝛼𝛽

𝑁

∑

𝑛=1

ℎ
𝑛
(

𝑁

∑

𝑖=1

(
𝜕ℎ
𝑛

𝜕𝑥
𝑖

) �̇�
𝑖
) .

(A.33)

The summation on the index 𝑖 can be permuted with the
summations on the indexes 𝑚 and 𝑛, respectively. This
algebraic manipulation leads to the following expression:

�̇�
𝑇
(𝑥
𝑖
)

=

𝑁

∑

𝑖=1

[�̇�
𝑖
�̈�
𝑖
]

+ 2𝛼𝛽

𝑁

∑

𝑖=1

(�̇�
𝑖
) [

𝑀

∑

𝑚=1

𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

+

𝑁

∑

𝑛=1

ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

] .

(A.34)

Therefore, the expression in (A.34) can be expressed in the
following simplified form (by grouping the summations on
the index 𝑖):

�̇�
𝑇
(𝑥
𝑖
)

=

𝑁

∑

𝑖=1

�̇�
𝑖
(�̈�
𝑖
+ 2𝛼𝛽[

𝑀

∑

𝑚=1

𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

+

𝑁

∑

𝑛=1

ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

]) .

(A.35)

Using (A.23a), the following relationship is obtained:

−

𝑁

∑

𝑗=1

[𝐴
𝑖𝑗
�̇�
𝑗
] = �̈�
𝑖
+ �⃗�. (A.36a)

22 Mathematical Problems in Engineering

Substituting (A.23c) into (A.36a) leads to the following
expression:

−

𝑁

∑

𝑗=1

[𝐴
𝑖𝑗
�̇�
𝑗
]

= (�̈�
𝑖
+ 2𝛼𝛽[

𝑀

∑

𝑚=1

𝑔
𝑚

𝜕𝑔
𝑚

𝜕𝑥
𝑖

+

𝑁

∑

𝑛=1

ℎ
𝑛

𝜕ℎ
𝑛

𝜕𝑥
𝑖

]) .

(A.36b)

Further, substituting (A.36b) into (A.35) leads to the follow-
ing expression of the first derivative of the total energy with
respect to the independent variable (𝑡):

�̇�
𝑇
(𝑥
𝑖
) =

𝑁

∑

𝑖=1

[

[

�̇�
𝑖
(−

𝑁

∑

𝑗=1

[𝐴
𝑖𝑗
�̇�
𝑗
])]

]

. (A.37)

Finally, (A.37) can be expressed in the following simplified
form:

�̇�
𝑇
(𝑥
𝑖
) = −

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(�̇�
𝑖
𝐴
𝑖𝑗
�̇�
𝑗
) . (A.38)

Equation (A.38) is the characteristic (or fundamental) equa-
tion expression used for the stability (or convergence) anal-
ysis. As already mentioned, the damped mass matrix 𝐴

𝑖𝑗

depends on the parameters 𝛼 and 𝛽. These parameters are
dynamically chosen during the optimization process in order
to guarantee a positive definite damped mass matrix 𝐴

𝑖𝑗
for

all state variables 𝑥
𝑖
. Thus, a positive definite damped mass

matrix 𝐴
𝑖𝑗
leads to 𝑑𝐸

𝑇
(𝑥
𝑖
)/𝑑𝑡 = �̇�

𝑇
(𝑥
𝑖
) ≤ 0 (according to

the expression in (A.38)). This condition is therefore coded
(algorithmically) in order to insure convergence of theNAOP
SPP simulator to the exact shortest path (according to the
Lyapunov theorem for global stability analysis). When the
condition �̇�

𝑇
(𝑥
𝑖
) ≤ 0 is fulfilled, the convergence of the

NAOP SPP simulator to the exact shortest path is observed.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J.-H. Kim and H. Myung, “Evolutionary programming tech-
niques for constrained optimization problems,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 2, pp. 129–140,
1997.

[2] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[3] S. Verblunsky, “On the shortest path through a number of
points,” Proceedings of the American Mathematical Society, vol.
2, no. 6, pp. 904–913, 1951.

[4] S. Kim, M. E. Lewis, and C. C. White III, “Optimal vehicle
routing with real-time traffic information,” IEEE Transactions
on Intelligent Transportation Systems, vol. 6, no. 2, pp. 178–188,
2005.

[5] S.-T. Liu and C. Kao, “Network flow problems with fuzzy arc
lengths,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 34, no. 1, pp. 765–769, 2004.

[6] A. R. Willms and S. X. Yang, “Real-time robot path planning
via a distance-propagating dynamic system with obstacle clear-
ance,” IEEE Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics, vol. 38, no. 3, pp. 884–893, 2008.

[7] C. Chenghui and S. Ferrari, “Information-driven sensor path
planning by approximate cell decomposition,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol.
39, no. 3, pp. 672–689, 2009.

[8] X. Zhu and W. E. Wilhelm, “Three-stage approaches for opti-
mizing some variations of the resource constrained shortest-
path sub-problem in a column generation context,” European
Journal of Operational Research, vol. 183, no. 2, pp. 564–577,
2007.

[9] S. Changming, “De-interlacing of video images using a shortest
path technique,” IEEE Transactions on Consumer Electronics,
vol. 47, no. 2, pp. 225–230, 2001.

[10] J. Cong, A. B. Kahng, and K.-S. Leung, “Efficient algorithms
for the minimum shortest path steiner arborescence problem
with applications to VLSI physical design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 1, pp. 24–39, 1998.

[11] T. Deschamps and L. D. Cohen, “Fast extraction of minimal
paths in 3D images and applications to virtual endoscopy,”
Medical Image Analysis, vol. 5, no. 4, pp. 281–299, 2001.

[12] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004.

[13] L. Fu, “An adaptive routing algorithm for in-vehicle route
guidance systems with real-time information,” Transportation
Research Part B:Methodological, vol. 35, no. 8, pp. 749–765, 2001.

[14] M.-Y. Kao, Encyclopedia of Algorithms, Springer, New York, NY,
USA, 2008.

[15] E.Nardelli, G. Proietti, andP.Widmayer, “Finding themost vital
node of a shortest path,”Theoretical Computer Science, vol. 296,
no. 1, pp. 167–177, 2003.

[16] A. Broder, R. Kumar, F. Maghoul et al., “Graph structure in the
Web,” Computer Networks, vol. 33, no. 1, pp. 309–320, 2000.

[17] R. E. Bellman, Dynamic Programming, Princeton University
Press, 1957.

[18] E. W. Dijkstra, “A note on two problems in connexion with
graphs,”NumerischeMathematik, vol. 1, no. 1, pp. 269–271, 1959.

[19] R. Bellman, “On a routing problem,” Quarterly of Applied
Mathematics, vol. 16, pp. 87–90, 1958.

[20] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton
University Press, Princeton, NJ, USA, 1962.

[21] L. Fu, D. Sun, and L. R. Rilett, “Heuristic shortest path algo-
rithms for transportation applications: state of the art,”Comput-
ers & Operations Research, vol. 33, no. 11, pp. 3324–3343, 2006.

[22] G. Tsaggouris and C. Zaroliagis, “Non-additive shortest paths,”
inAlgorithms—ESA2004, vol. 3221 ofLectureNotes inComputer
Science, pp. 822–834, Springer, Berlin, Germany, 2004.

[23] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng, “New dynamic algo-
rithms for shortest path tree computation,” IEEE/ACM Trans-
actions on Networking, vol. 8, no. 6, pp. 734–746, 2000.

[24] A. V. Goldberg, “Scaling algorithms for the shortest paths
problem,” SIAM Journal on Computing, vol. 24, no. 3, pp. 494–
504, 1995.

Mathematical Problems in Engineering 23

[25] U. Zwick, “All pairs shortest paths using bridging sets and
rectangular matrix multiplication,” Journal of the ACM, vol. 49,
no. 3, pp. 289–317, 2002.

[26] S. Pettie, “A new approach to all-pairs shortest paths on real-
weighted graphs,” Theoretical Computer Science, vol. 312, no. 1,
pp. 47–74, 2004.

[27] M. Thorup, “Undirected single-source shortest paths with
positive integer weights in linear time,” Journal of the ACM, vol.
46, no. 3, pp. 362–394, 1999.

[28] J. C. Nash, “The (Dantzig) simplex method for linear program-
ming,” Computing in Science & Engineering, vol. 2, no. 1, pp. 29–
31, 2000.

[29] C.-W. Ahn and R. S. Ramakrishna, “A genetic algorithm for
shortest path routing problem and the sizing of populations,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 6,
pp. 566–579, 2002.

[30] J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[31] H. Beigy and M. R. Meybodi, “Utilizing distributed learning
automata to solve stochastic shortest path problems,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 14, no. 5, pp. 591–615, 2006.

[32] B. Moradabadi and H. Beigy, “A new real-coded Bayesian opti-
mization algorithm based on a team of learning automata for
continuous optimization,” Genetic Programming and Evolvable
Machines, vol. 15, no. 2, pp. 169–193, 2014.

[33] X. J. Wu and H. F. Xue, “Shortest path algorithm based on
cellular automata extend model,” Computer Applications, vol.
24, pp. 92–103, 2004.

[34] M. Wang, Y. Qian, and X. Guang, “Improved calculation
method of shortest path with cellular automata model,” Kyber-
netes, vol. 41, no. 3-4, pp. 508–517, 2012.

[35] C. W. Ahn, R. S. Ramakrishna, C. G. Kang, and I. C. Choi,
“Shortest path routing algorithm using Hopfield neural net-
work,” Electronics Letters, vol. 37, no. 19, pp. 1176–1178, 2001.

[36] M. K. Mehmet Ali and F. Kamoun, “Neural networks for short-
est path computation and routing in computer networks,” IEEE
Transactions onNeural Networks, vol. 4, no. 6, pp. 941–954, 1993.

[37] D.-C. Park and S.-E. Choi, “A neural network based multi-
destination routing algorithm for communication network,” in
Proceedings of the IEEE International Joint Conference on Neural
Networks Proceedings, vol. 2, pp. 1673–1678, IEEE, Anchorage,
Alaska, USA, May 1998.

[38] J. J. Hopfield and D.W. Tank, “‘Neural’ computation of decisons
in optimization problems,” Biological Cybernetics, vol. 52, no. 3,
pp. 141–152, 1985.

[39] U.-P. Wen, K.-M. Lan, and H.-S. Shih, “A review of Hopfield
neural networks for solving mathematical programming prob-
lems,” European Journal of Operational Research, vol. 198, no. 3,
pp. 675–687, 2009.

[40] G. G. Lendaris, K. Mathia, and R. Saeks, “Linear Hopfield
networks and constrained optimization,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29, no.
1, pp. 114–118, 1999.

[41] F. Araújo, B. Ribeiro, and L. Rodrigues, “A neural network
for shortest path computation,” IEEE Transactions on Neural
Networks, vol. 12, no. 5, pp. 1067–1073, 2001.

[42] A. Nazemi and F. Omidi, “An efficient dynamic model for
solving the shortest path problem,”TransportationResearch Part
C: Emerging Technologies, vol. 26, pp. 1–19, 2013.

[43] J. C. Chedjou and K. Kyamakya, “A universal concept based
on cellular neural networks for ultrafast and flexible solving of
differential equations,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 4, pp. 749–762, 2015.

[44] J. C. Chedjou and K. Kyamakya, “A Novel general and robust
method based on NAOP for solving nonlinear ordinary differ-
ential equations and partial differential equations by cellular
neural networks,” Journal of Dynamic Systems, Measurement,
and Control, vol. 135, no. 3, Article ID 031014, 11 pages, 2013.

[45] S. X. Yang and C. Luo, “A neural network approach to complete
coverage path planning,” IEEE Transactions on Systems, Man,
and Cybernetics Part B: Cybernetics, vol. 34, no. 1, pp. 718–725,
2004.

[46] Z. Yi, J. C. Lv, and L. Zhang, “Output convergence analysis for a
class of delayed recurrent neural networks with time-varying
inputs,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 36, no. 1, pp. 87–95, 2006.

[47] K. E. Parsopoulos and M. N. Vrahatis, “On the computation
of all global minimizers through particle swarm optimization,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 3,
pp. 211–224, 2004.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

