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An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities
depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the
proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors.
Simulation results verify that the adaptive failure compensation scheme is effective.

1. Introduction

Actuator failure compensation has significant impact on
control systems, such as aircraft flight systems and nuclear
power systems. Due to the unknown failure patterns, times,
and values, it has been an important and challenging research
problem. Remarkable progress has been made in the area,
such as adaptive control [1–10], sliding-mode based designs
[11–14], switching based designs [15–17], fault-detection diag-
nosis based designs, fuzzy systems based designs, and neural-
network based designs. Since adaptive designs use an adap-
tive controller to accommodate the uncertainties, it has been
extensively employed. An adaptive state feedback controller
is proposed to guarantee the performance requirements in
presence of actuator failures [1–4]. Adaptive actuator failure
compensation using output feedback is studied for a class of
nonlinear systems [5–9, 14, 16, 18–21]. Unfortunately, if the
systems have nonlinearities that cannot be bounded by any
function of output, the existing methods fail to compensate
the control systems. Therefore, new techniques need to be
developed.

In this paper, an adaptive output feedback controller
for a class of nonlinear systems with actuator failures is
discussed. Motivated by the fact that the nonlinearities

satisfying the growth condition [15, 22–25] can be sup-
pressed by a dynamic high-gain output feedback controller, a
modified compensation scheme is proposed where adaptive
high-gain K-filters and an adaptive high-gain controller are
introduced.The main contribution of our paper is as follows.
(1) We relax the condition imposed by Tang et al. in [5–
7]. (2) An adaptive output feedback controller is developed
with switching laws [15, 16]. (3) The parameters of the K-
filters [26] and the controller are adaptively tuned online
depending on system nonlinearities and actuator failures. By
applying the backstepping technique, the robust controller is
recursively constructed step by step. Parameter update laws
are addressed to ensure closed-loop signal boundedness and
small tracking errors. The simulation results are presented to
demonstrate the effectiveness of the scheme proposed in this
paper.

The rest of the paper is outlined as follows. In Section 2,
the control problem is formulated. In Section 3, a robust
adaptive compensation scheme with switching laws via the
backstepping design is proposed. In Section 4, the stability
analysis is presented. Two detailed simulation examples show
the proposed scheme is effective in Section 5. Finally, this
paper is concluded by Section 6.
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2. Problem Formulation

Consider a class of nonlinear dynamic systems in the form of
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where 𝜌 is the relative degree of the system and 𝑢
𝑗

∈ 𝑅,
𝑗 = 1, 2, . . . , 𝑚, are the control inputs whose actuators
may fail during system operation; 𝑥
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1
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2
, . . . ,
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𝑖
]
𝑇
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1
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]
𝑇,
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(𝑟 = 0, 1, . . . , 𝑛∗ = 𝑛 − 𝜌, 𝑗 = 1, 2, . . . , 𝑚) are
unknown constant parameters. Only the output 𝑦 is
available for measurement. 𝜑
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nonlinear functions; 𝜙
𝑖 (𝑥) (𝑖 = 1, 2, . . . , 𝑛) are continuous

unknown functions satisfying the following assumption.

Assumption 1. For 𝑖 = 1, 2, . . . , 𝑛, there is an unknown
constant 𝑐 ≥ 0 such that
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We denote 𝑢
𝑖
as the input of the 𝑖th (𝑖 = 1, . . . , 𝑚) actuator.

Suppose the actuator failure can be modeled as

𝑢
𝑖
= 𝜌
𝑖
V
𝑖
+ 𝑢
𝑘𝑖
, ∀𝑡 ≥ 𝑡

𝑖𝐹
,

𝜌
𝑖
𝑢
𝑘𝑖
= 0, 𝑖 = 1, . . . , 𝑚,

(3)

where 𝜌
𝑖
∈ [0, 1], 𝑢𝑘𝑖 and 𝑡

𝑖𝐹
are all unknown constants,

and V
𝑖 (𝑡) (𝑖 = 1, 2, . . . , 𝑚) are applied control inputs to be

designed in Section 3. For different values of 𝜌
𝑖
, three types

of failures are included as follows:

(1) 𝜌
𝑖
= 1; the actuator works normally, namely, 𝑢

𝑖
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,

which is regarded as a failure-free actuator;
(2) 0 < 𝜌
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called partial loss of effectiveness (PLOE);
(3) 𝜌
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= 0; it indicates 𝑢
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. The 𝑖th actuator is called

total loss of effectiveness (TLOE).

Remark 2. The values of 𝜌
𝑖
can change only from 𝜌
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= 1 to

some valueswith 0 ≤ 𝜌
𝑖
< 1.Thismeans that possible changes

fromnormal to any one of the failure cases are unidirectional.
The uniqueness of 𝑡

𝑖𝐹
indicates that a failure occurs only once

on the 𝑖th actuator.
Our objective is to design an output feedback controller

for the nonlinear systems (1) with 𝑝 unknown actuator
failures when 𝑝 changes at time instants 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑞,

such that the plant output 𝑦 (𝑡) tracks a given reference signal
𝑦
𝑟 (𝑡) with up to 𝜌th-order derivatives bounded as close as

possible and that all closed-loop signals are bounded despite
the presence of unknown actuator failures and unknown
plant parameters.

3. Adaptive Compensation Control Scheme

The zero dynamics of system (1) with actuator failures are
only dependent on the failure pattern [1]. For a fixed failure
pattern, there is a resulting pattern of zero dynamics. Since
the failure pattern 𝑗 = 𝑗

1
, . . . , 𝑗

𝑝
, 0 ≤ 𝑝 ≤ 𝑚−1 is unknown, a

desirable adaptive design is expected to achieve the control
objective for any possible failure pattern. For the closed-
loop stability, all zero dynamics corresponding to the possible
failure patterns need to be stable. To derive a suitable adaptive
control scheme, the following assumptions are made.

Assumption 3. When TOLE type of actuator failures is up to
𝑚 − 1, the remaining actuators can still achieve a desired
control objective.
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Assumption 5. The sign of 𝑏
𝑛
∗
,𝑗
is known for 𝑗 = 1, 2, . . . , 𝑚.

For adaptive actuator failure compensation, the propor-
tional actuation scheme is
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where V
0
is a control signal generated by a backstepping

design procedure to be given in Section 3.3.

3.1. Parameterized Model with Actuator Failures. To obtain a
compact form of system (1) with actuator failures, we define
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Applying (6)-(7) to (1), we have
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Let
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where 𝑟 = 0, 1, . . . , 𝑛∗, 𝑗 = 1, 2, . . . , 𝑚, 𝑖 = 1, 2, . . . , 𝑛.
Substituting (9) into (8), we have
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We rewrite the system (10) as
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Remark 6. It is significant to point that the parametric model
(12) is very similar to (8.3) and (8.7) in [26] and (38) in
[9]. However, the system has nonlinearity terms 𝜙

𝑖
(𝑥) which

are functions of state vector. In other words, the design
procedures in [9, 26] are not applicable for the system. In
this paper, wewill develop adaptive high-gain K-filters to deal
with this problem.

3.2. State Observation and Switching Laws. Since the states
of system (1) are not available, an observer is needed to
provide auxiliary signals for handling the unmeasured states
in control design.The conventional K-filters cannot deal with
the nonlinearities depending on the system state. Motivated
by [15, 16, 25], we develop adaptive high-gain K-filters which
can be expressed as
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Remark 7. Since 𝐿 ≥ 1 and it varies with the system
nonlinearities and actuator failures, we call it adaptive high-
gain K-filters. But 𝐿 is so complicated that we cannot solve
an analytic value. Moreover, when actuator failures occur,
the uncertainties will be also brought into the system. In
the following, an adaptive controller is proposed which can
tune the high-gain parameters online according to system
nonlinearities and actuator failures.

Tuning mechanism and switching signal 𝜒(𝑡): motivated
by [15, 16], we consider the integral of ‖𝑒(𝑡)‖ as

𝜒 = ∫
𝑡
0
+𝑇
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0
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where

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑦
𝑟 (𝑡) . (17)

The tuning steps are shown as follows.

Initialization. Set 𝜒
0
= 0, 𝐿

0
= 1.

Step 1. Obtain 𝑆 = 𝑎, where 𝑎 is positive constant.

Step 2. If 𝜒 ≥ 𝑆, 𝐿
𝑖+1

(𝑡) = 𝐾𝐿
𝑖
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𝑖 + 1. Go to Step 1.
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(𝑡) = 𝐿

𝑖
(𝑡), 𝜒 = 0 → 𝑖 = 𝑖 + 1. Go to Step 2.

Remark 8. We briefly explain the idea of the tuning mech-
anism with the switching law. First, 𝐿(𝑡) is a monotonically
nondecreasing function on the interval [𝑡

0
, 𝑡
0
+ 𝑇] by taking

integral value of ‖𝑒(𝑡)‖. Obviously, 𝜒 stops increasing only
when ‖𝑒(𝑡)‖ = 0. Under this modified rule, once the
system is stabilized, any integral of errors smaller than the
prespecified valuewill not cause further switching. Also, from
the switching logic, it is obvious that 𝐿(𝑡) is a piecewise
constant function of time and increases stepwise with some
time interval.

3.3. Adaptive Output Feedback Controller. To prepare for the
backstepping procedure, we consider the equation for the
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1
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Define a change of coordinates
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, 𝑖 = 2, . . . , 𝜌,

(20)

where 𝜌
0
is an estimate of 𝜌

0
= 1/𝑘

1,𝑛
∗ .

Step 1. Consider

𝑧
1
= 𝑦 − 𝑦

𝑟
,

𝛼
1
= −𝑐
1
𝑧
1
− (𝑑
1
+
𝐿𝜌

4
) 𝑧
1
− 𝜔
0
− 𝜔
𝑇
𝜃 −

𝑊
0
𝑧
1

𝑧2
1
+ Δ2
0

,

𝛼
1
= 𝜌
0
𝛼
1
,

𝜏
1
= (𝜔 − 𝜌

0
( ̇𝑦
𝑟
+ 𝛼
1
)

× [10.1 cm 00.1 cm ⋅ ⋅ ⋅ 0.1 cm 0]
𝑇
) 𝑧
1
,

̇̂𝜌
0
= −𝛾 sgn (𝑘

1,𝑛
∗) ( ̇𝑦
𝑟
+ 𝛼
1
) 𝑧
1
,

𝑊
0
= 𝑓 (𝐿) (

𝜉
 +


Ω
𝑇

1


𝜃
∗
+ ⋅ ⋅ ⋅ +


Ω
𝑇

𝑛


𝜃
∗
) ,

(21)

where 𝛼
1
is the first stabilizing function and 𝜏

1
is the first

tuning function, 𝜃∗, Δ
0
are design parameters, and 𝑓(𝐿) ≥ 1

is an adaptive tuning function.

Step 2. Consider

𝑧
2
= V
𝑚,2

− 𝜌
0
̇𝑦
𝑟
− 𝛼
1
,

𝛼
2
= −�̂�
1,𝑛
∗𝑧
1
− 𝑐
2
𝑧
2
− (𝑑
2
+
𝐿𝜌

4
)(

𝜕𝛼
1

𝜕𝑦
)

2

𝑧
2

+ ( ̇𝑦
𝑟
+
𝜕𝛼
1

𝜕𝜌
0

) ̇̂𝜌
0
+
𝜕𝛼
1

𝜕𝜃
𝑇𝜏
2
+
𝜕𝛼
1

𝜕𝑦
(𝜔
0
+ 𝜔
𝑇
𝜃)

+
𝜕𝛼
1

𝜕𝜉
(𝐴
0 (𝐿) 𝜉 + 𝑙 (𝐿) 𝑦 + 𝜑 (𝑦))

+
𝜕𝛼
1

𝜕Ξ
(𝐴
0 (𝐿) Ξ + Φ (𝑦, 𝑡)) +

𝜕𝛼
1

𝜕𝑦
𝑟

̇𝑦
𝑟
+ 𝑙 (𝐿)2 V𝑛∗,1

+

𝑚+1

∑
𝑗=1

𝜕𝛼
1

𝜕𝜆
𝑗

(−𝑙 (𝐿)𝑗 𝜆1 + 𝜆
𝑗+1

) −
𝑊
0
𝑧
2

𝑧2
1
+ Δ2
0

,

𝜏
2
= 𝜏
1
−
𝜕𝛼
1

𝜕𝑦
𝜔𝑧
2
.

(22)
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Step 𝑖, 𝑖 = 3, . . . , 𝜌 − 1. Consider

𝑧
𝑖
= V
𝑚,𝑖

− 𝜌
0
𝑦
(𝑖−1)

𝑟
− 𝛼
𝑖−1

,

𝛼
𝑖
= −𝑧
𝑖−1

− 𝑐
𝑖
𝑧
𝑖
− (𝑑
𝑖
+
𝐿𝜌

4
)(

𝜕𝛼
𝑖−1

𝜕𝑦
)

2

𝑧
𝑖

+ (𝑦
(𝑖−1)

𝑟
+
𝜕𝛼
𝑖−1

𝜕𝜌
0

) ̇̂𝜌
0
+
𝜕𝛼
𝑖−1

𝜕𝜃
𝑇𝜏
𝑖

−

𝑖−1

∑
𝑗=2

𝜕𝛼
𝑗−1

𝜕𝜃
𝑇
𝜕𝛼
𝑗−1

𝜕𝑦
𝑧
𝑗
+
𝜕𝛼
𝑖−1

𝜕𝑦
(𝜔
0
+ 𝜔
𝑇
𝜃)

+
𝜕𝛼
𝑖−1

𝜕𝜉
(𝐴
0 (𝐿) 𝜉 + 𝑙 (𝐿) 𝑦 + 𝜑 (𝑦))

+
𝜕𝛼
𝑖−1

𝜕Ξ
(𝐴
0 (𝐿) Ξ + Φ (𝑦, 𝑡))

+

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑦
(𝑗−1)

𝑟

𝑦
(𝑗)

𝑟
+ 𝑙 (𝐿)𝑖 V𝑛∗,1

+

𝑚−1+𝑖

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜆
𝑗

(−𝑙 (𝐿)𝑗 𝜆1 + 𝜆
𝑗+1

) −
𝑊
0
𝑧
𝑖

𝑧2
1
+ Δ2
0

,

𝜏
𝑖
= 𝜏
𝑖−1

−
𝜕𝛼
𝑖−1

𝜕𝑦
𝜔𝑧
𝑖−1

.

(23)

Step 𝜌. Consider

𝑧
𝜌
= V
𝑚,𝜌

− 𝜌
0
𝑦
(𝜌−1)

𝑟
− 𝛼
𝜌−1

,

𝛼
𝜌
= −𝑧
𝜌−1

− 𝑐
𝜌
𝑧
𝜌
− (𝑑
𝜌
+
𝐿𝜌

4
)(

𝜕𝛼
𝜌−1

𝜕𝑦
)

2

𝑧
𝜌

+ (𝑦
(𝜌−1)

𝑟
+
𝜕𝛼
𝜌−1

𝜕𝜌
0

) ̇̂𝜌
0
+
𝜕𝛼
𝜌−1

𝜕𝜃
𝑇𝜏
𝜌

+
𝜕𝛼
𝜌−1

𝜕𝑦
(𝜔
0
+ 𝜔
𝑇
𝜃)

+
𝜕𝛼
𝜌−1

𝜕𝜉
(𝐴
0 (𝐿) 𝜉 + 𝑙 (𝐿) 𝑦 + 𝜑 (𝑦))

+
𝜕𝛼
𝜌−1

𝜕Ξ
(𝐴
0 (𝐿) Ξ + Φ (𝑦, 𝑡))

+

𝜌−1

∑
𝑗=1

𝜕𝛼
𝜌−1

𝜕𝑦
(𝑗−1)

𝑟

𝑦
(𝑗)

𝑟
+ 𝑙 (𝐿)𝑖 V𝑛∗,1

+

𝑚−1+𝜌

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜆
𝑗

(−𝑙 (𝐿)𝑗 𝜆1 + 𝜆
𝑗+1

)

−

𝜌−1

∑
𝑗=2

𝜕𝛼
𝑗−1

𝜕𝜃
𝑇
𝜕𝛼
𝑗−1

𝜕𝑦
𝑧
𝜌
−

𝑊
0
𝑧
𝜌

𝑧2
1
+ Δ2
0

,

𝜏
𝜌
= 𝜏
𝜌−1

−
𝜕𝛼
𝜌−1

𝜕𝑦
𝜔𝑧
𝜌−1

,

(24)

where 𝛼
𝜌
is the 𝜌th stabilizing function and 𝜏

𝜌
is the 𝜌th

tuning function.
Finally, the actual control signal and parameter adaptive

laws are, respectively, designed as

V
0
= 𝛼
𝜌
− V
𝑛
∗
,𝜌+1

+ 𝜌
0
𝑦
(𝜌)

𝑟
, (25)

̇̂
𝜃 = 𝑇𝜏

𝜌
, (26)

where 𝑇 = 𝑇𝑇 > 0 is the adaptive gain.

4. Stability Analysis

To prepare for the stability analysis, we rewrite the error
system as

�̇� = (𝐴
𝑧 (𝑧, 𝑡) + 𝐴

𝑐 (𝑧, 𝑡)) 𝑧 + 𝑊
𝜀 (𝑧, 𝑡) (𝜀2 + 𝜙

1
)

+ 𝑊
𝜃 (𝑧, 𝑡)

𝑇
𝜃 − 𝑘
1,𝑛
∗ ( ̇𝑦
𝑟
+ 𝛼
1
) 𝑒
1
𝜌
0
− Γ
𝑧
𝑊
0
,

(27)

where the system matrices 𝐴
𝑧
(𝑧, 𝑡), 𝑊

𝜀
(𝑧, 𝑡), 𝑊

𝜃
(𝑧, 𝑡),

𝑊
𝜃
(𝑧, 𝑡), 𝐴

𝑐
(𝑧, 𝑡), Γ

𝑧
are given by
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𝐴
𝑧 (𝑧, 𝑡) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑐
1
− 𝑑
1

�̂�
1,𝑛
∗ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

�̂�
1,𝑛
∗ −𝑐

2
− 𝑑
2
(
𝜕𝛼
1

𝜕𝑦
)

2

1 + 𝜎
23

𝜎
24

⋅ ⋅ ⋅ 𝜎
2𝜌

... −1 − 𝜎
23

d d d
...

... −𝜎
24

d d d 𝜎
𝜌−2𝜌

...
... d d d 1 + 𝜎

𝜌−1,𝜌

0 −𝜎
2𝜌

⋅ ⋅ ⋅ −𝜎
𝜌−2,𝜌

−1 − 𝜎
𝜌−1,𝜌

−𝑐
𝜌
− 𝑑
𝜌
(
𝜕𝛼
𝜌−1

𝜕𝑦
)

2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑊
𝜀 (𝑧, 𝑡) = [1 −

𝜕𝛼
1

𝜕𝑦
−
𝜕𝛼
2

𝜕𝑦
− ⋅ ⋅ ⋅ −

𝜕𝛼
𝜌−1

𝜕𝑦
]

𝑇

∈ 𝑅
𝜌
,

𝑊
𝜃 (𝑧, 𝑡) = 𝑊

𝜀 (𝑧, 𝑡) 𝜔
𝑇
− 𝜌
0
( ̇𝑦
𝑟
+ 𝛼
1
) 𝑒
1
𝑒
𝑇

1
∈ 𝑅
𝜌×𝜌

,

𝐴
𝑐 (𝑧, 𝑡) =

[
[
[
[
[
[
[
[
[
[
[

[

−
𝐿𝜌

4
0 0 ⋅ ⋅ ⋅ 0

0 −
𝐿𝜌

4
(
𝜕𝛼
1

𝜕𝑦
)

2

0 ⋅ ⋅ ⋅ 0

0
... d ...

...

0 0 ⋅ ⋅ ⋅ −
𝐿𝜌

4
(
𝜕𝛼
𝜌−1

𝜕𝑦
)

2

]
]
]
]
]
]
]
]
]
]
]

]

,

Γ
𝑧
= [

𝑧
1

𝑧2
1
+ Δ2
0

,
𝑧
2

𝑧2
1
+ Δ2
0

, . . . ,
𝑧
𝜌

𝑧2
1
+ Δ2
0

]

𝑇

.

(28)

Let

𝐸
𝐿
= diag {1, 1

𝐿
⋅ ⋅ ⋅

1

𝐿𝑛−1
} . (29)

The candidate Lyapunov function for the closed-loop
system is chosen as

𝑉 =
1

2
𝑧
𝑇
𝑧 +

1

2
𝜃𝑇
−1
𝜃
𝑇
+

𝑘1,𝑛∗


2𝛾
𝜌
2
+ 𝜀
𝑇
𝑃
𝐿
𝜀, (30)

where

𝐴
𝑇

0
𝑃 + 𝑃𝐴

0
= −𝐼, 𝑃

𝐿
= 𝐸
𝐿
𝑃𝐸
𝐿
. (31)

The proposed adaptive scheme has the following proper-
ties.

Theorem 9. The adaptive output feedback control scheme
consisting of the controller (25) and the filters (14) along with
the parameter update laws (26) applied to the system (1) based
on Assumptions 1–5 ensures global boundedness of all closed-
loop signals and desired output tracking performance:

∫
𝑡
2

𝑡
1

(𝑦 (𝑡) − 𝑦
𝑟 (𝑡))
2
𝑑𝑡 ≤

𝜆

𝑐
0

(𝑡
2
− 𝑡
1
) + 𝛾
0
, (32)

for any 𝑡
2
> 𝑡
1
≥ 0, where 𝜆 > 0, 𝛾

0
> 0, 𝑐

0
> 0 are design

parameters. The tracking error can be made as small as desired
by choosing sufficiently large 𝑐

0
and 𝐿.

Proof. For each time interval (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . . , 𝑞, we
have a Lyapunov function 𝑉 defined in (30). Recalling (27),
the derivative of 𝑉 is

�̇� =
1

2
𝑧
𝑇
(𝐴
𝑧
+ 𝐴
𝑇

𝑧
) 𝑧 + 𝑧

𝑇
𝐴
𝑐 (𝑧, 𝑡) 𝑧 + 𝑧

𝑇
𝑊
𝜀
𝜀
2

+ 𝑧
𝑇
𝑊𝜙
1
+ 𝑧
𝑇
𝑊
𝑇

𝜃
𝜃 + 2𝜀

𝑇
𝐸
𝐿
𝑃𝐸
𝐿
𝜙

− 𝜃
𝑇
𝑊
𝜃
𝑧 − 𝑧
𝑇
𝑘
1,𝑛
∗ ( ̇𝑦
𝑟
+ 𝛼
1
) 𝑒
1
𝜌
0

+ 𝜌
0
𝑘
1,𝑛
∗ ( ̇𝑦
𝑟
+ 𝛼
1
) 𝑒
𝑇

1
𝑧 + 𝜀
𝑇
(𝐴
𝑇

0
(𝐿) 𝑃𝐿 + 𝑃

𝐿
𝐴
0 (𝐿)) 𝜀

−
‖𝑧‖
2

𝑧2
1
+ Δ2
0

𝑓 (𝐿)𝑊0.

(33)

Then, observing that

2𝜀
𝑇
𝐸
𝐿
𝑃𝐸
𝐿
𝜙 = 2𝐿𝜀

𝑇
𝐸
𝐿
𝑃

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜙
1

𝐿
𝜙
2

𝐿2

...

𝜙
𝑛

𝐿𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]

]

≤ 2𝐿 ‖𝜀‖
𝐸𝐿𝑃


𝜑
 , (34)
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where 𝜑 = [𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛
]
𝑇
= [𝜙
1
/𝐿, 𝜙
2
/𝐿2, . . . , 𝜙

𝑛
/𝐿𝑛]
𝑇

and
from Assumption 1, we estimate the elements of 𝜑



𝜙
𝑖

𝐿𝑖


≤

𝑐

𝐿𝑖
(
𝑥1

 + ⋅ ⋅ ⋅ +
𝑥𝑖

 +
𝜀1

 + ⋅ ⋅ ⋅ +
𝜀𝑖
)

≤ 𝑐
𝑖 (‖𝑥‖ + ‖𝜀‖) ,

(35)

where 𝑐
𝑖
= 𝑐√𝑛/𝐿𝑖.

Hence,

2𝐿 ‖𝜀‖
𝐸𝐿𝑃


𝜑
 = 2𝐿

𝐸𝐿𝑃
 ‖𝜀‖

𝜑
 ≤ 2𝐶 ‖𝜀‖ (‖𝑥‖ + ‖𝜀‖) ,

(36)

where𝐶 is a positive constant depending on 𝑥,𝑃,𝐸
𝐿
, 𝑐, 𝑛, and

𝐿.
Note that

𝑧
𝑇
𝐴
𝑐 (𝑧, 𝑡) 𝑧 + 𝑧

𝑇
𝑊𝜙
1

=
𝜙2
1

𝐿
− (

√𝐿𝜌

2
𝑧
1
−

1

√𝐿𝜌
𝜙
1
)

2

−

𝜌

∑
𝑖=2

(
√𝐿𝜌

2

𝜕𝛼
𝑖−1

𝜕𝑦
𝑧
𝑖
+

1

√𝐿𝜌
𝜙
1
)

2

≤
𝑐2

𝐿
𝑦
2
≤
2𝑐2

𝐿
(𝑦
2

𝑟
+ 𝑧
2

1
) .

(37)

Substituting (34) and (36) into (33), we have

�̇� ≤ −

𝜌

∑
𝑖=1

𝑐
𝑖
𝑧
2

𝑖
+
2𝑐2

𝐿
𝑧
2

1
−

𝜌

∑
𝑖=1

𝑑
𝑖
(
𝜕𝛼
𝑖−1

𝜕𝑦
) 𝑧
2

𝑖

−

𝜌

∑
𝑖=1

𝑧
𝑖

𝜕𝛼
𝑖−1

𝜕𝑦
𝜀
2
− 𝐿 ‖𝜀‖

2
+ 2𝐶 ‖𝜀‖ (‖𝑥‖ + ‖𝜀‖)

+
2𝑐
2

𝐿
𝑦
2

𝑟
−

‖𝑧‖
2

𝑧2
1
+ Δ2
0

𝑓 (𝐿)

≤ −

𝜌

∑
𝑖=1

𝑐
𝑖
𝑧
2

𝑖
+
2𝑐2

𝐿
𝑧
2

1
−

‖𝑧‖
2

𝑧2
1
+ Δ2
0

𝑓 (𝐿)𝑊0

+ ‖𝑥‖
2
+
2𝑐
2

𝐿
𝑦
2

𝑟
− (𝐿 − 2𝐶 − 4𝐶

2
−

𝜌

∑
𝑖=1

1

4𝑑
𝑖

)‖𝜀‖
2
.

(38)

With the choice of 𝐿−2𝐶−4𝐶2−∑𝜌
𝑖=1

(1/4𝑑
𝑖
) > 0, 𝑐

1
−2𝑐2 > 0,

and 𝑓(𝐿) ≥ ((𝑧2
1
+ Δ2
0
)/ ‖𝑧‖

2
) × (‖𝜃‖1 /𝜃

∗),

�̇� ≤ −

𝜌

∑
𝑖=1

𝑐
𝑖
𝑧
2

𝑖
+
2𝑐2

𝐿
𝑧
2

1
+
2𝑐2

𝐿
𝑦
2

𝑟
. (39)

Let

𝜆 =
2𝑐2

𝐿
𝑦
2

𝑟
. (40)

It should be noted that 𝜆 can be made as small as desired
by choosing sufficiently larger𝐿. Recalling (39), we can obtain

�̇� ≤ −𝑐
0
𝑧
2

1
−

𝜌

∑
𝑖=2

𝑐
𝑖
𝑧
2

𝑖
+ 𝜆, (41)

where 𝑐
1
= 𝑐
1
− 2𝑐2.

Starting from the first interval, we conclude that (𝑡) ∈

𝐿∞∀𝑡 ∈ [𝑡
0
, 𝑡
1
), so that 𝑧, 𝜃, and 𝜀 are all bounded∀𝑡 ∈ [𝑡

0
, 𝑡
1
).

From (14) and (25), it follows that ‖𝑥‖ is bounded. At time
𝑡 = 𝑡
1
, there occur 𝑝

1
actuator failures, which results in the

abrupt change of the parameters. Since the change of values
is finite, we have

𝑉 (𝑡
+

1
) = 𝑉 (𝑡

−

1
) + 𝑉
1
, (42)

where 𝑉
1
is bounded.

Therefore, it can be concluded from (41) that (𝑡) ∈ 𝐿∞∀𝑡 ∈

[𝑡
1
, 𝑡
2
). By repeating the argument above, the boundedness

of all the signals is proved for the time interval (𝑡
1
, 𝑡
2
).

Continuing in the same manner, finally we have that ∀𝑡 ∈

(𝑡
𝑞
,∞), 𝑉(𝑡) ∈ 𝐿∞ and so are the closed-loop signals.
To prove tracking performance, consider the last time

interval (𝑡
𝑞
,∞). From (41), we see that �̇� ≤ −𝑐

0
𝑧2
1
−∑
𝜌

𝑖=2
𝑐
𝑖
𝑧2
𝑖
+

𝜆. In particular, �̇� ≤ −𝑐
0
𝑧2
1
+𝜆. Integrating both sides from 𝑡 =

𝑡
1
to 𝑡 = 𝑡

2
, where 𝑡

2
> 𝑡
1
≥ 0, we have ∫𝑡2

𝑡
1

(𝑦(𝑡) − 𝑦
𝑟
(𝑡))
2
𝑑𝑡 ≤

(𝜆/𝑐
0
)(𝑡
2
− 𝑡
1
) + 𝑉(𝑡

2
) − 𝑉(𝑡

1
). Since 𝑉(𝑡) ∈ 𝐿

∞
, there exists

𝛾
0
> 0 such that the desired output tracking given by (32) is

achieved. This completes the proof.

5. Examples and Simulations

In this section, we present two examples to illustrate the
applications of Theorem 9.

Example 1. The nonlinear longitudinal dynamics of the twin
otter aircraft [1, 7, 27] is used for our actuator failure
compensation study. Choosing the velocity, angle of attack,
pitch angle, and pitch rate as the states 𝑥

1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
and

the elevator angles of an augmented two-piece elevator as the
inputs 𝑢

1
, 𝑢
2
, the system can be modeled as

�̇�
1
= (𝑐
𝑇

1
𝜑
0
(𝑥
2
) 𝑥
2

1
+ 𝜑
1 (𝑥)) cos (𝑥2)

+ (𝑐
𝑇

2
𝜑
0
(𝑥
2
) 𝑥
2

2
+ 𝜑
2 (𝑥)) sin (𝑥2)

+ 𝑑
1
𝑔
1 (𝑥) 𝑢1 + 𝑑

2
𝑔
1 (𝑥) 𝑢2,

�̇�
2
= 𝑥
4
− (𝑐
𝑇

1
𝜑
0
(𝑥
2
) 𝑥
2

1
+ 𝜑
1 (𝑥)

1

𝑥
1

) sin (𝑥
2
)

+ (𝑐
𝑇

2
𝜑
0
(𝑥
2
) 𝑥
2

2
+ 𝜑
2 (𝑥)

1

𝑥
1

) cos (𝑥
2
)

+ 𝑑
1
𝑔
2 (𝑥) 𝑢1 + 𝑑

2
𝑔
2 (𝑥) 𝑢2,

�̇�
3
= 𝑥
4
,

�̇�
4
= 𝜃
𝑇
𝜙 (𝑥) + 𝑏

1
𝑥
2

1
𝑢
1
+ 𝑏
2
𝑥
2

1
𝑢
2
,

(43)
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where

𝜑
0
(𝑥
2
) = [𝑥

2
, 𝑥
2

2
, 1]
𝑇

,

𝜑
1 (𝑥) = 𝑝

11
+ 𝑝
12
𝑥
4
𝑥
2

1
− 𝑝
0
sin (𝑥

3
) ,

𝜑
2 (𝑥) = 𝑝

21
+ 𝑝
22
𝑥
4
𝑥
2

1
+ 𝑝
0
cos (𝑥

3
) ,

𝑔
1 (𝑥) = 𝑎

1
𝑥
2

1
cos (𝑥

2
) + 𝑎
2
𝑥
2

1
sin (𝑥

2
) ,

𝑔
2 (𝑥) = −𝑎

1
𝑥
1
sin (𝑥

2
) + 𝑎
2
𝑥
1
cos (𝑥

2
) ,

𝜙 (𝑥) = [𝑥
2

1
𝑥
2
, 𝑥
2

1
𝑥
2

2
, 𝑥
2

1
, 𝑥
2

1
𝑥
4
] .

(44)

For this application, 𝑥
3
is considered as the output; that

is, 𝑦 = 𝑥
3
, 𝑥
1
, and the velocity is measured while 𝑥

2
,

𝑥
4
are unmeasured. Apparently, [𝑥

3
, 𝑥
4
]
𝑇 subsystem can be

described as

�̇�
3
= 𝑥
4
,

�̇�
4
= 𝜃
𝑇
𝜙 (𝑥) + 𝑏

𝑇
𝑥
2

1
𝑢,

(45)

with some unknown parameters 𝑏 ∈ 𝑅2 and 𝑢 = [𝑢
1
, 𝑢
2
]
𝑇.

The [𝑥
1
, 𝑥
2
]
𝑇 subsystem constructs the zero dynamics, which

is input-to-state stability [1, 7]. The unmeasured state 𝑥
4

exhibits the appearance of a linear form 𝜙(𝑥), which satisfies
Assumption 1. Taking advantage of this property, we design
adaptive high-gain K-filters to estimate 𝑥

4
.

The control objective is to design an adaptive scheme to
control the elevator angles such that the pitch angle 𝑦 = 𝑥

3

tracks a reference signal𝑦
𝑟
as close as desired even if one piece

of the elevator is stuck at an unknown angle at an unknown
time instant. For simulation, we consider two actuator failure
cases.

Case 1. Weconsider the casewhere𝑢
1
fails at the 50th second.

Thus, 𝑢
1
undergoes a TLOE type of failure:

𝑢
1 (𝑡) = V

1 (𝑡) ,

𝑢
2 (𝑡) = 𝜌

2
V
2
+ 𝑢
𝑘
2

,
(46)

where 𝜌
2
= 1, 𝑢

𝑘
2

= 0, and 𝑡 ∈ [0, 100); 𝜌2 = 0, 𝑢
𝑘
2

= −0.08,
and 𝑡 ∈ [100,∞).

By Theorem 9, we can obtain the actual control law,
the high-gain K-filters, and the update laws. The initial
conditions are set as

𝑐
1
= 0.01, 𝑐

2
= 0.01, 𝑑

1
= 1,

𝑑
2
= 1, 𝑙 = [6, 8]

𝑇
, 𝜃

0
= [18, 0, 0]

𝑇
,

𝑥
0
= [72, 0.00, 0.001, 0.05]

𝑇
, 𝑇 = diag ([5, 1, 1]) ∗ 50.

(47)

The switching law parameters are chosen as

𝑇 = 1, 𝑎 = 0.000003, 𝐾 = 1.2. (48)

The simulation results including output 𝑦(𝑡), reference
output 𝑦

𝑟
(𝑡), and tracking error 𝑒(𝑡) are shown in Figure 1,
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Figure 1: Plant output 𝑦, reference 𝑦
𝑟
, and error 𝑒(𝑡).

the control inputs 𝑢
1
, 𝑢
2
are shown in Figure 2, the adaptive

parameter 𝐿 and unmeasured state 𝑥
4
are shown in Figure 3,

and the zero dynamics 𝑥
1
and 𝑥

2
are shown in Figure 4.

The system responses are as expected. When one of the
actuators fails, there is a transient response in tracking
errors. But as time goes on, the tracking errors become
smaller and ultimately vanish. The adaptive controller can
tune its parameters according to the actuator failures, while
the adaptive high-gain K-filters also change their value if
necessary. Furthermore, it is easily seen that the unmeasured
state 𝑥

4
and the zero dynamics 𝑥

1
, 𝑥
2
are stable even though

there is an actuator failing during operation.

Case 2. We consider the case where 𝑢
2
(TLOE) fails at the

100th second and 𝑢
1
(PLOE) loses 50% of its effectiveness

from 𝑡 = 160 s. That is,

𝑢
1 (𝑡) = 𝜌

1
V
1
,

𝑢
2 (𝑡) = 𝜌

2
V
2
+ 𝑢
𝑘
2

,
(49)

where

𝜌
1
= 1, 𝑡 ∈ [0, 160) ; 𝜌

1
= 0.5, 𝑡 ∈ [160,∞) ,

𝜌
2
= 1, 𝑡 ∈ [0, 100) ;

𝜌
2
= 0, 𝑢

𝑘
2

= −0.08, 𝑡 ∈ [100,∞) .

(50)

The other parameters are the same as those in Case 1.
The simulation results including output 𝑦(𝑡), reference

output 𝑦
𝑟
(𝑡), and tracking error 𝑒(𝑡) are shown in Figure 5,

the control inputs 𝑢
1
, 𝑢
2
are shown in Figure 6, the adaptive
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Figure 2: Plant inputs 𝑢
1
, 𝑢
2
.

0

0.5

1

1.5

Ad
ap

tiv
e p

ar
am

et
er

L

L

0 50 100 150 200 250 300

Time (s)

(a)

−0.1

−0.05

0

0.05

0.1

0 50 100 150 200 250 300

Time (s)

Th
e u

nm
ea

su
re

d 
st

at
ex

4

x4

(b)

Figure 3: The adaptive parameter 𝐿 and the unmeasured state 𝑥
4
.

parameter 𝐿 and unmeasured state 𝑥
4
are shown in Figure 7,

and the zero dynamics 𝑥
1
and 𝑥

2
are shown in Figure 8.

The system responses are as expected. When one of the
actuators fails, there is a transient response in tracking
errors. But as time goes on, the tracking errors become
smaller and ultimately vanish. The adaptive controller can
tune its parameters according to the actuator failures, while
the adaptive high-gain K-filters also change their value if
necessary. Furthermore, it is easily seen that the unmeasured
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Figure 4: The zero dynamics 𝑥
1
and 𝑥

2
.

state 𝑥
4
and the zero dynamics 𝑥

1
, 𝑥
2
are stable even though

there is an actuator failing during operation.

Example 2. A rigid-body longitudinal model of a hypersonic
aircraft cruising at a velocity of 15 Mach and at an altitude of
110,000 ft [1, 11] is considered:

�̇�
1
= 𝑥
2
+ 𝑓
1
(𝑥
3
, 𝑦) ,

�̇�
2
= 𝑏
1
𝑢
1
+ 𝑏
2
𝑢
2
+ 𝑓
2
(𝑥
3
, 𝑦) ,

�̇�
3
= 𝑓
3
(𝑥
3
, 𝑦) ,

(51)

where

𝑓
1
(𝑥
3
, 𝑦) = 𝜃

1
𝑦 + 𝜃
2
sin (𝑦) + 𝜃

3
𝑦
2 sin (𝑦) + 𝜃

4
cos (𝑥

3
) ,

𝑓
2
(𝑥
2
, 𝑦) = 𝜃

5
𝑦
2
+ 𝜃
6
𝑦 + 𝜃
7
𝑦
2
𝑥
2
+ 𝜃
8
𝑦𝑥
2
+ 𝜃
9
𝑥
2
+ 𝜃
11
,

𝑓
3
(𝑥
3
, 𝑦) = 𝜃

10
cos (𝑥

3
) − (𝜃

1
𝑦 + 𝜃
2
sin (𝑦) + 𝜃

3
𝑦
2 sin (𝑦)) .

(52)

We rewrite the plant (51) as

�̇�
1
= 𝑥
2
+ 𝜙
1
(𝑥
3
) + 𝜑
1
(𝑦) ,

�̇�
2
= 𝜙
2
(𝑦) 𝑥
2
+ 𝜑
2
(𝑦) + 𝑏

1
𝑢
1
+ 𝑏
2
𝑢
2
,

�̇�
3
= 𝜃
10
cos (𝑥

3
) − 𝜑
1
(𝑦) ,

𝑦 = 𝑥
1
,

(53)

where 𝑥
1
is the angle of attack, 𝑥

2
is the pitch rate and

unmeasured, 𝑥
3
is the flight-path angle and unmeasured, and

𝑢
1
(𝑡) and 𝑢

2
(𝑡) are the elevator segment deflection angles. 𝑏

1
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Figure 5: Plant output 𝑦, reference 𝑦
𝑟
, and error 𝑒(𝑡).
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Figure 6: Plant inputs 𝑢
1
, 𝑢
2
.

and 𝑏
2
are unknown constants with known signs, and 𝜙

1
, 𝜙
2
,

𝜑
1
, and 𝜑

2
are known functions given by

𝜙
1
(𝑥
3
) = 𝜃
4
cos (𝑥

3
) ,

𝜙
2
(𝑦) = 𝜃

7
𝑦
2
+ 𝜃
8
𝑦 + 𝜃
9
,

𝜑
1
(𝑦) = 𝜃

1
𝑦 + 𝜃
2
sin (𝑦) + 𝜃

3
𝑦
2 sin (𝑦) ,

𝜑
2
(𝑦) = 𝜃

5
𝑦
2
+ 𝜃
6
𝑦 + 𝜃
11
.

(54)
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Figure 7: The adaptive parameter 𝐿 and the unmeasured state 𝑥
4
.

The control objective for actuator failure compensation of
aircraft model is the angle of attack 𝑥

1
that tracks a reference

signal 𝑦
𝑟
with a sufficiently small error, while the closed-loop

system is stabilized in the presence of an actuator failure in
either one of the elevator segments. Since 𝑦 = 𝑥

1
is the

output, equation �̇�
3

= 𝜃
10
cos(𝑥
3
) − 𝜑

1
(𝑦) constructs the

zero dynamics. For simulation, we also consider two actuator
failure cases.

Case 1. We consider the case where 𝑢
2
(TLOE) fails at the

50th second. That is,

𝑢
1 (𝑡) = V

1 (𝑡) ,

𝑢
2 (𝑡) = 𝜌

2
V
2
+ 𝑢
𝑘
2

,
(55)

where 𝜌
2
= 1, 𝑢

𝑘
2

= 0, and 𝑡 ∈ [0, 50); 𝜌2 = 0, 𝑢
𝑘
2

= 0.1,
and 𝑡 ∈ [50,∞). From Theorem 9, we can obtain the actual
control law, the high-gain K-filters, and the update laws. The
simulation parameters are as follows:

𝑐
1
= 0.001, 𝑐

2
= 0.001, 𝑑

1
= 1,

𝑑
2
= 15, 𝑙 = [6, 8]

𝑇
,

𝜃
0
= [0, 0, 0]

𝑇
, 𝑥

0
= [0, 0, 1.57]

𝑇
,

𝑇 = diag ([100, 10, 10]) , 𝑇 = 10,

𝑎 = 0.004, 𝐾 = 1.2.

(56)

The simulation results including output 𝑦(𝑡), reference
output 𝑦

𝑟
(𝑡), and tracking error 𝑒(𝑡) are shown in Figure 9,

the control inputs 𝑢
1
, 𝑢
2
are shown in Figure 10, the adaptive
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Figure 8: The zero dynamics 𝑥
1
and 𝑥

2
.

parameter 𝐿 is shown in Figure 11, and the adaptive parameter
𝐿 is shown in Figure 12. The system responses are as
expected. When one of the actuators fails, there is a transient
response in tracking errors. But as time goes on, the tracking
errors become smaller and ultimately vanish. The adaptive
controller can tune its parameters according to the actuator
failures, while the adaptive high-gain K-filters do not change
their value. Furthermore, it is easily seen that the unmeasured
state 𝑥

2
is stable even though there is an actuator failing

during operation.

Case 2. We consider the case where 𝑢
1
(TLOE) fails at the

100th second and 𝑢
2
(PLOE) loses 40% of its effectiveness

from 𝑡 = 150 s:

𝑢
1 (𝑡) = 𝜌

1
V
1 (𝑡) + 𝑢

𝑘
1

,

𝑢
2 (𝑡) = 𝜌

2
V
2 (𝑡) ,

(57)

where

𝜌
1
= 1, 𝑢

𝑘
1

= 0, 𝑡 ∈ [0, 100) ;

𝜌
1
= 0, 𝑢

𝑘
1

= −0.1, 𝑡 ∈ [100,∞) ,

𝜌
2
= 1, 𝑡 ∈ [0, 150) ; 𝜌

2
= 0.6, 𝑡 ∈ [150,∞) .

(58)

The other parameters are the same as those in Case 1.
The simulation results including output 𝑦(𝑡), reference

output 𝑦
𝑟
(𝑡), and tracking error 𝑒(𝑡) are shown in Figure 13,

the control inputs 𝑢
1
, 𝑢
2
are shown in Figure 14, the adaptive

parameter𝐿 is shown in Figure 15, and the adaptive parameter
𝐿 is shown in Figure 16. The system responses are as
expected. When one of the actuators fails, there is a transient
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Figure 9: Plant output 𝑦, reference 𝑦
𝑟
, and error 𝑒(𝑡).
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Figure 10: Plant inputs 𝑢
1
, 𝑢
2
.

response in tracking errors. But as time goes on, the tracking
errors become smaller and ultimately vanish. The adaptive
controller can tune its parameters according to the actuator
failures, while the adaptive high-gain K-filters do not change
their value. Furthermore, it is easily seen that the unmeasured
state 𝑥

2
is stable even though there is an actuator failing

during operation.
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Figure 11: The adaptive parameter 𝐿 and the unmeasured state 𝑥
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6. Conclusions

In this paper, adaptive high-gain K-filters and adaptive high-
gain controller are applied to handle a class of nonlinear
systems uncertainties in the presence of uncertain actuator
failures. The adaptive high-gain K-filters can suppress the
nonlinearities while the adaptive controller guarantees the
closed-loop signals stability and small tracking errors. Simu-
lation results verify the effectiveness of the adaptive actuator
failure compensation for desired performance.
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