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This paper focuses on a multidemand multisource order quantity allocation problem with multiple transportation alternatives. To
solve this problem, a bilevel multiobjective programming model under a mixed uncertain environment is proposed. Two levels of
decisionmakers are considered in themodel. On the upper level, the purchaser aims to allocate order quantity to multiple suppliers
for each demand node with the consideration of three objectives: total purchase cost minimization, total delay risk minimization,
and total defect risk minimization. On the lower level, each supplier attempts to optimize the transportation alternatives with total
transportation and penalty costsminimization as the objective. In contrast to prior studies, considering the information asymmetry
in the bilevel decision, random and fuzzy random variables are used to model uncertain parameters of the construction company
and the suppliers. To solve the bilevel model, a solution method based on Kuhn-Tucker conditions, sectional genetic algorithm,
and fuzzy random simulation is proposed. Finally, the applicability of the proposed model and algorithm is evaluated through
a practical case from a large scale construction project. The results show that the proposed model and algorithm are efficient in
dealing with practical order quantity allocation problems.

1. Introduction

In today’s ever-changing competitive market environment,
purchasing strategy is extremely important for eachmanufac-
turing company because of the tremendous impact of mate-
rial costs on profits [1]. This situation is also appropriate for
construction companies which are manufacturers of con-
struction projects. In purchasing management, two decisions
are mainly involved: supplier selection and order allocation.
Supplier selection is a critical task to achieve the different
objectives of supply chain because it can help the company
to maintain long relationship with few reliable suppliers [2].
To deal with supplier selection, many methodologies have
been proposed, including multiattribute decision making
techniques, mathematical programming, and artificial intel-
ligence methods [3]. In material purchasing process, after
choosing suitable suppliers, order allocation is the next
important stage to determine the optimal order quantity allo-
cation scheme, especially in the case of a multiple suppliers

environment. Many models and methods have been pro-
posed to deal with order quantity allocation problems such as
linear programming model [4], mixed integer programming
model [5, 6], nonlinear programming [7, 8], and artificial
intelligence technique [9, 10].

In the above literatures, almost all consider multiple
suppliers (i.e., multisource) while only one demand node
is included. However, in some large scale companies or
construction projects, we often face multiple demand nodes
such as multiple production factories or multiple construc-
tion sites at the same time. Moreover, it is possible that a
supplier provides materials for the multiple demand nodes
at the same time. In this situation, we have to allocate order
quantity under a multidemand multisource environment.
This is a more difficult problem where each supplier has to
transport materials to multiple demand nodes. As we know,
for most suppliers, there are multiple optional transportation
alternatives defined by vehicles, routes, and modes for a type
of specific material [11, 12]. However, each alternative often
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has its own limited capacity. Hence, in themultidemandmul-
tisource order allocation problem, once the order quantity
is determined for each supplier, they have to optimize their
transportation alternatives. In the existing researches, few
consider the vital role of the transportation alternatives in the
order allocation process although it is significantly important
to the supplier evaluation and order allocation decisions.
Ghodsypour and O’Brien [5] proposed a mixed integer
nonlinear programming model to solve the multisource
problem, which took into account the total cost of logistics,
including net price, storage, transportation, and ordering
costs. Kawtummachai and Hop [13] constructed an orders
quantity allocationmethod to the selected supplier in order to
optimize the purchase cost within the acceptable percentage
of on-time delivery which is influenced by transportation
alternatives to guarantee high service levels to the retailers.
Dullaert et al. [14] considered a combinatorial optimization
model for determining the optimal mix of transportation
alternatives to minimize total logistics costs when goods
are shipped from a supplier to a customer. Jafari Songhori
et al. [11] first explicitly presented a decision framework
which considered different transportation alternatives from
suppliers to demander.

It should be noted that, in all these papers, the order
allocation and transportation alternatives are determined
by the same decision maker (i.e., the purchaser). However,
in practice, only the price and order quantity are written
into agreements in most cases. As for how to transport
material or goods, it is often directed by the suppliers.
Hence, two decision making processes should be considered.
First, the purchaser such as the construction company in a
construction project decides how to allocate order quantity
among multiple suppliers for multiple demand nodes. Then,
based on the allocated order quantity, each supplier will
decide how to transport them to demand nodes through
multiple transportation alternatives. In this situation, the
multidemand multisource order allocation problem should
be considered as a bilevel decision making problem.

Besides for the bilevel structure, the uncertainty, which
is also an important factor, will be considered in this paper.
Many papers have paid attention to uncertain supplier
selection and order allocation problem. Xu and Nozick [6]
proposed a two-stage mixed integer stochastic programming
model to optimize supplier selection. Yang et al. [15], J.-L.
Zhang and M.-Y. Zhang [16], and Esfandiari and Seifbarghy
[17] discussed the supplier selection and order allocation
problem with stochastic demand. Kumar et al. [18] stud-
ied a multiobjective integer programming vendor selection
problem with fuzzy parameters. Amid et al. [19] and Nazari-
Shirkouhi et al. [20] applied fuzzy programming theory to
deal with the multiobjective supplier selection and order
allocation problem. In the researches mentioned above,
fuzziness and randomness were often considered separate
aspects. But in reality, we may face a hybrid uncertain
environment where fuzziness and randomness coexist in a
decision making process. For example, transportation cost
from one supplier to one demand node is often modeled as
a stochastic parameter. However, in a bilevel environment,
because of the information asymmetry between the two levels

of decision makers, the upper decision maker may modify
the accuracy of the given transportation cost. As a result, he
may modify the uncertain transportation cost using a fuzzy
variable. In this situation, the cost is a hybrid of fuzzy and
random factors, and the fuzzy random variable, which was
first proposed by Kwakernaak [21] and then extended by Puri
and Ralescu [22], can be a useful tool to deal with it.

Hence, we face a bilevel multidemand multisource order
quantity allocation problem under a fuzzy random environ-
ment. In the problem, two levels of decision makers must
be considered. On the upper level, the purchaser attempts to
allocate order quantity amongmultiple suppliers for multiple
demand nodes with the objectives of total purchase cost and
total purchase risk minimization. On the lower level, each
supplier will select the transportation alternatives from the
supplier to demand nodes with the objective of total trans-
portation and penalty costs minimization. Simultaneously,
some uncertain parameters in the problem such as demand,
transportation cost, and risk coefficients must also be con-
sidered. To deal with this problem, a bilevel multiobjective
programming model with uncertain coefficients is proposed.
Specifically, some uncertain coefficients are modeled as fuzzy
random variables. In addition, to search the optimal solution
of proposed model, a solution method based on Kuhn-
Tucker conditions, sectional genetic algorithm (SGA), and
fuzzy random simulation is also proposed. Finally, results
and comparison analysis of a case study are presented to
demonstrate the practicality and efficiency of the proposed
model and algorithm.

The remainder of this paper is structured as follows: in
Section 2, an introduction to the bilevel multiobjective mul-
tidemand multisource order allocation problem is presented
along with the motivation for employing uncertain vari-
ables in the problem. A bilevel multiobjective programming
model under a mixed uncertain environment is established
in Section 3. In addition, a solution method is illustrated
in Section 4. In Section 5, a case study from a practical
example is given to show the validity and efficiency of the
proposedmodel and algorithm.Conclusions and a discussion
regarding further research are remarked in Section 6.

2. Key Problem Statement

The problem considered in this paper is a bilevel multiobjec-
tive multidemandmultisource order allocation problem with
multiple transportation alternatives under a mixed uncertain
environment. In this section, we explain why this problem
should be considered a bilevel multiobjective programming
model and why the demand, transportation cost, and time
are able to be modeled as random or fuzzy random variables.

2.1. Conflict Description for Order Quantity Allocation. In
large scale construction projects, many construction mate-
rials are consumed in a great deal every day; these mate-
rials are often purchased from multiple material suppliers.
In addition, because of the big construction ground, it is
impossible to store these materials in a storehouse. Hence,
there are often multiple demand nodes which serve for
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various construction activities.That is, the purchase problem
in construction engineering can be summarized as a mul-
tidemand multisource problem. In this problem, two levels
of stakeholders should be considered. On one hand, the
construction company is the purchaser, who allocates order
quantity amongmultiple suppliers for each demand node. On
the other hand, the material suppliers are the vendors, who
are in charge of the supply and transportation of construction
materials. They can select transportation alternatives from
suppliers to demand nodes for each pair.

As the purchaser, the construction company plays a
leading role in the decisionmaking, which can affect the sup-
pliers’ income with different order allocation planning.Three
objectives are often considered in supplier selection and order
allocation [23]: total purchase cost minimization, total delay
risk minimization, and total defect risk minimization. It
should be noted that the second and third objectives on risk
are related to transportation alternatives defined by vehicles,
routes, and modes. In other words, the decision making of
upper level is influenced by lower level’s decision making.
In the lower level, material suppliers often aim to seek for
transportation alternatives with minimal total transportation
and penalty costs when their income order quantities have
been determined. However, the transportation alternatives
with low cost may lead to high delay risk and defect risk. In
this case, the objectives between the construction company
and suppliers are in conflict.

In the conflict situation, the decision makers pursue to
achieve their own goals. The construction company first
hopes to reach its own targets by making a better order quan-
tity allocation scheme while considering the possible reac-
tions of the suppliers. Then the suppliers hope to save cost
by selecting better transportation alternatives based on the
allocated order quantity. Therefore, the considered problem
can be abstracted as a bilevel decision making problem. In
the bilevel problem, the construction company, which is the
upper level decisionmaker, seeks to allocate order quantity to
multiple suppliers formultiple demand nodes with lower cost
and lower risk, while material suppliers, who are the lower
level decision makers, determine transportation alternatives
for each pair from suppliers to demand nodes. In addition,
it should also be noted that because of the complexity of
the decision system the complete decision making process
is conducted in an uncertain environment. In this paper,
some uncertain parameters are considered as random or
fuzzy random variables. Hence, the considered problem is
a bilevel multiobjective order quantity allocation problem
under a mixed uncertain environment, and the framework
of the bilevel decision making with conflicting objectives is
illustrated in Figure 1.

2.2. Uncertainty Description for Order Quantity Allocation.
In the order quantity allocation problem of construction
projects, as well as the bilevel structure of the model, it is
also important to consider the uncertainty of the parameters.
In this paper, our main consideration is the uncertainty of
demand, transportation cost, delay risk, and defect risk.

In the order allocation problem, the demand quantity for
each demand node is always uncertain and often considered
a stochastic coefficient such as in [15–17], because the deci-
sion maker often has enough data to obtain its probability
distribution although it is difficult to get the exact value. In
this paper, as the decision coefficient of upper level decision
maker, it is also reasonable to assume that the decisionmaker
can obtain the probability distribution function of demand
quantity for each demand node. Hence, the demand quantity
is also assumed to be stochastic in this paper.

Different from the demand quantity, the transportation
cost from one supplier to one demand node with one specific
transportation alternative is a decision coefficient of the lower
decision maker. Essentially, it can also be modeled as a
random variable just as the demand quantity. Here, we just as
well assume the stochastic cost with a normal distribution 𝑐 ∼
𝑁(𝜇, 𝜎). However, as described above, in the bilevel problem,
there are conflicting objectives between the two levels of
decision makers. Moreover, the information between them is
also asymmetrical. That is, it is impossible that the decision
maker on the upper level knows all information of the lower
level decision makers. As a result, the lower level decision
makers may provide inaccurate information to the upper
level decision maker in the trade. Of course, the upper level
decision maker may also not trust the obtained information.
In this case, we can only just say that “the transportation
cost is about 𝑐.” Here, the word “about” is an ambiguous
expression which can be modeled using triangular fuzzy
variable (𝑐 − 𝑎, 𝑐, 𝑐 + 𝑏), where 𝑐 − 𝑎, 𝑐 and 𝑐 + 𝑏 are the
minimum value, the most possible value, and the maximum
value of the transportation cost, respectively. It can be seen
that the fuzzy transportation cost is a modified value of the
random cost in a certain extent. Finally, the transportation
cost can be expressed as ̃𝑐 = (𝑐 − 𝑎, 𝑐, 𝑐 + 𝑏), with 𝑐 ∼ 𝑁(𝜇, 𝜎).
This is a triangular fuzzy random variable which has been
successfully applied to many areas such as inventory problem
[24], vehicle routing [25], andwater resources allocation [26].
In conclusion, the motivation for employing fuzzy random
variables in the bilevel order allocation problem can be
illustrated in Figure 2. The cases of delay risk and defect risk
are similar with the cost, which are also decision coefficients
of the lower model. Hence, they are also modeled as fuzzy
random variables in this paper.

3. Modelling

In this section, a bilevel multiobjective programming model
for the multidemand multisource purchase problem consid-
ering fuzziness and randomness is constructed. The mathe-
matical description for the problem is given as follows.

3.1. Assumptions and Notations. Before constructing the
model in this paper, the following assumptions are adopted:

(1) Only one type of commodity is considered to be
purchased in the model at each time.

(2) There are multiple suppliers, and a lowest order
quantity has been determined in contract for each
supplier.
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Figure 1: The decision framework of the bilevel order quantity allocation problem.

(3) There are multiple demand nodes, and their demand
quantities are uncertain which can be modelled as
random variables.

(4) Each supplier has multiple transportation alterna-
tives, and different transportation alternatives have
different transportation cost and risk.

(5) The transportation cost, percentage of late delivered
units, and percentage of rejected units for each
transportation alternative from one supplier to one

demand node are considered fuzzy random varia-
bles.

The following symbols are used in this paper.

Indices.The indices are as follows:

𝑖: demand node, 𝑖 ∈ Ψ = {1, 2, . . . , 𝐼}.
𝑗: supplier (source), 𝑗 ∈ Φ = {1, 2, . . . , 𝐽}.
𝑘: transportation alternative, 𝑘 ∈ Ω = {1, 2, . . . , 𝐾}.
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Figure 2: Employing fuzzy random variable to express the transportation cost for bilevel order allocation problem.

Certain Variables. Certain variables are as follows:

𝐵
𝑖
: total budget for demand node 𝑖.
𝑆
𝑗
: supply capacity of supplier 𝑗.
𝑃
𝑗
: unit price in supplier 𝑗.
𝐶
𝑖𝑗
: order cost from supplier 𝑗 for demand node 𝑖.

MO
𝑗
: minimal order quantity for supplier 𝑗.

TP
𝑗𝑘
: transportation capacity for supplier 𝑗 with

transportation alternative 𝑘.
CP
𝑗
: unit defect penalty cost for supplier 𝑗.

𝑙
max
𝑗

: highest delay rate for supplier 𝑗.

Random Variables

𝑄
𝑖
: demand quantity of demand node 𝑖.

Fuzzy Random Variables. Fuzzy random variables are as
follows:

̃
𝑙
𝑗𝑘
: percentage of late delivered units for supplier 𝑗

with transportation alternative 𝑘.
̃
𝑟
𝑗𝑘
: percentage of rejected units for supplier 𝑗 with

transportation alternative 𝑘.
̃
𝑐
𝑖𝑗𝑘
: unit transportation cost from supplier 𝑗 to

demand node 𝑖 using transportation alternative 𝑘.
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Decision Variables. Decision variables are as follows:

𝑥
𝑖𝑗
: order quantity from supplier 𝑗 to demand node 𝑖.

𝑦
𝑖𝑗𝑘
: transported quantity from supplier 𝑗 to demand

node 𝑖 using transportation alternative 𝑘.

𝑧
𝑖𝑗
: {
1, if at least one unit of material is provided

by supplier 𝑖 for demand node 𝑗,
0, otherwise.

The multidemand multisource purchase problem by the
purchaser and the transportation alternatives decision mak-
ing problems by the suppliers are expressed in detail in the
following sections, and the relationship between these two
decision makers is also discussed, which can be abstracted as
a bilevel decision making model.

3.2. Order Quantity Allocation Model. As the upper decision
maker, the purchaser will consider how to allocate order
quantity among multiple suppliers for multiple demand
nodes.The decision variables are the allocated order quantity
𝑥
𝑖𝑗
for each pair of supplier and demand node.

3.2.1. Objectives of Construction Company. As mentioned
above, in an order quantity allocation problem of a construc-
tion project, the purchaser (e.g., the construction company)
often has three objectives [20, 23]: total purchase cost mini-
mization, total delay risk minimization, and total defect risk
minimization.

(1) Total Purchase Cost Minimization. The purchaser first
aims to control the total purchase cost, which is made up
of purchase price (i.e., ∑

𝑖∈Ψ
∑
𝑗∈Φ
𝑃
𝑗
𝑥
𝑖𝑗
) and order cost (i.e.,

∑
𝑖∈Ψ
∑
𝑗∈Φ
𝐶
𝑖𝑗
𝑧
𝑖𝑗
). Therefore the first objective of the upper

level can be described as

min
𝑥𝑖𝑗

TC = ∑
𝑖∈Ψ

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑖∈Ψ

∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗
. (1)

(2) Total Delay Risk Minimization. In construction projects,
project completed time is always discussed in any phase of
the construction process. For material transportation, if the
material is late delivered, some construction activities may be
postponed; as a result, thewhole project cannot be finished on
time. Hence, the delay risk must be considered in the model.
Here, the delay risk is described using the percentage of late
delivered units, and the total delay risk can be described as
∑
𝑖∈Ψ
∑
𝑗∈Φ
∑
𝑘∈Ω

̃
𝑙
𝑗𝑘
𝑦
𝑖𝑗𝑘
.

Since ̃𝑙
𝑗𝑘

are fuzzy random variables, the total delay risk
can be regarded as a special fuzzy randomvariable. Because of
the uncertainty, it is difficult for decision makers to obtain an
exact value for the delay risk. Therefore, the decision maker
often tends to obtain an expected total delay risk with an
expected value operation for the uncertain variables, which
can be denoted as 𝐸[∑

𝑖∈Ψ
∑
𝑗∈Φ
∑
𝑘∈Ω

̃
𝑙
𝑗𝑘
𝑦
𝑖𝑗𝑘
] according to the

definition of expected value in [27]. The equation above can

also be transformed into ∑
𝑖∈Ψ
∑
𝑗∈Φ
∑
𝑘∈Ω
𝐸[
̃
𝑙
𝑗𝑘
]𝑦
𝑖𝑗𝑘
. There-

fore, the second objective for the upper level can be expressed
as

min
𝑥𝑖𝑗

𝐸 [TL] = ∑
𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑗𝑘
] 𝑦
𝑖𝑗𝑘
. (2)

(3) Total Defect Risk Minimization. The third objective is
related to the quality of ordered items. It is described with
the number of rejected items, which is a product term of
the percentage of rejected units ̃𝑟

𝑗𝑘
and the order quantity

𝑦
𝑖𝑗𝑘
. For most of construction materials, the percentage

of rejected units is closely related to the transportation
alternative, because they often have high loss (1%–6%) during
transportation, and the loss is mainly affected by the type
of material, transportation mode, vehicle, and route. Taking
cement, for example, it can be transported by cement canned
cars, specialized cement trucks, and common trucks, where
the rates of loss during transportation are about 1%, 2%, and
3%, respectively. For the same reason as the second objective,
the decision maker also aims to obtain an expected defect
risk. Hence, the third objective for the upper level can be
described as

min
𝑥𝑖𝑗

𝐸 (TR) = ∑
𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑟
𝑗𝑘
] 𝑦
𝑖𝑗𝑘
. (3)

3.2.2. Constraints on Order Quantity Allocation. There are
five main types of constraints on the upper level for the order
quantity allocation problem; details of them are explained in
the following.

(1) Requirement Constraint. The total purchase quantity
∑
𝑗∈Φ
𝑥
𝑖𝑗

must exceed the demand quantity 𝑄
𝑖
for each

demand node 𝑖. Technically, it is not possible to strictly ensure
∑
𝑗∈Φ
𝑥
𝑖𝑗
exceed 𝑄

𝑖
because of the uncertain variables 𝑄

𝑖
.

In a practical problem, the decision makers often ensure
the restriction is satisfied to a certain extent. In these cases,
chance-constrained operation, which was first introduced by
Charnes and Cooper [28], is used to deal with this constraint.
In this problem, the upper level decision maker provides a
confidence level 𝛼 for the random event; thus we have the
following constraint:

Pr
{

{

{

∑

𝑗∈Φ

𝑥
𝑖𝑗
≥ 𝑄
𝑖

}

}

}

≥ 𝛼, ∀𝑖 ∈ Ψ. (4)

(2) Supply Constraint.For each constructionmaterial supplier
𝑗, the total order quantity ∑

𝑖∈Ψ
𝑥
𝑖𝑗
from all demand nodes

must be smaller than its supply capacity 𝑆
𝑗
, which can be

denoted as

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≤ 𝑆
𝑗
, ∀𝑗 ∈ Φ. (5)

(3) Minimal Order Quantity Constraint. In construction
projects, the demand quantity is often very big for many
types of construction materials. In order to maintain
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the contract with the suppliers more effectively, a minimal
order quantity is usually set up for each supplier. Hence, we
have the following constraint:

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≥ MO

𝑗
, ∀𝑗 ∈ Φ. (6)

(4) Budget Constraint. In order to control cost, the con-
struction company always determines a cost budget for each
construction unit. Thus, for each demand node 𝑖, the total
purchase cost ∑

𝑗∈Φ
𝑃
𝑗
𝑥
𝑖𝑗
+ ∑
𝑗∈Φ
𝐶
𝑖𝑗
𝑧
𝑖𝑗
must be smaller than

the cost budget 𝐵
𝑖
for this material purchasing; thus we can

obtain the following constraints:

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗
≤ 𝐵
𝑖
, ∀𝑖 ∈ Ψ. (7)

(5) Logicality Conditions. If the construction company pur-
chases material from supplier 𝑗 for demand node 𝑖 (i.e., 𝑥

𝑖𝑗
>

0), the auxiliary variable 𝑧
𝑖𝑗
must take value of 1. Otherwise

(i.e., 𝑥
𝑖𝑗
= 0), 𝑧

𝑖𝑗
has to take value of 0. Let 𝑀 be a great

number; then the following constraints are obtained:

𝑥
𝑖𝑗

𝑀

≤ 𝑧
𝑖𝑗
≤ 𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ. (8)

From the descriptions above, based on the three objective
functions and five types of constraints, we can obtain the
order quantity allocation model for the upper level decision
maker (i.e., the construction company) as the following:

(ULM)

min
𝑥𝑖𝑗 ,𝑧𝑖𝑗

TC = ∑
𝑖∈Ψ

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑖∈Ψ

∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗

min
𝑥𝑖𝑗 ,𝑧𝑖𝑗

𝐸 [TL] = ∑
𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑗𝑘
] 𝑦
𝑖𝑗𝑘

min
𝑥𝑖𝑗 ,𝑧𝑖𝑗

𝐸 [TR] = ∑
𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑟
𝑗𝑘
] 𝑦
𝑖𝑗𝑘

s.t. Pr
{

{

{

∑

𝑗∈Φ

𝑥
𝑖𝑗
≥ 𝑄
𝑖

}

}

}

≥ 𝛼, ∀𝑖 ∈ Ψ

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≤ 𝑆
𝑗
, ∀𝑗 ∈ Φ

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≥ MO

𝑗
, ∀𝑗 ∈ Φ

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗
≤ 𝐵
𝑗
, ∀𝑖 ∈ Ψ

𝑥
𝑖𝑗

𝑀

≤ 𝑧
𝑖𝑗
≤ 𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝑥
𝑖𝑗
≥ 0, 𝑧

𝑖𝑗
∈ {0, 1} , ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ,

where 𝑦
𝑖𝑗𝑘

is solved in the lower level model.

(9)

It should be noted that the decision making of the
construction company (i.e., the upper level decision maker)
is influenced by the decisions made by suppliers (i.e.,

the lower level decision makers). The construction company
has to consider the possible reactions of the suppliers before
choosing the optimal decision. The transportation alterna-
tives selection model (i.e., the lower level model) is discussed
in the following.

3.3. Transportation Alternatives Selection for Suppliers. As
the lower level decision maker, each supplier can choose
transportation alternatives independently, which can affect
the delay risk and defect risk on the upper level. Each
supplier has multiple transportation alternatives, and each
alternative has limited transportation volume. Hence, the
suppliers have to distribute the allocated orders to these alter-
natives. Different transportation alternatives mean different
transportation routes, transportation vehicles, transportation
risks, and transportation costs. The decision variables for
suppliers are 𝑦

𝑖𝑗𝑘
.

3.3.1. Transportation Alternatives Selection Objectives for Sup-
pliers. For suppliers (i.e., lower level decision makers), they
hope to save cost by selecting better transportation alterna-
tives. Therefore, minimizing the costs (including transporta-
tion cost and penalty cost) is often their objectives. For each
supplier, the transportation cost is associated with the unit
transportation cost ̃𝑐

𝑖𝑗𝑘
and transportation volume 𝑦

𝑖𝑗𝑘
for

each transportation alternative. Because the transportation
cost ̃𝑐

𝑖𝑗𝑘
is fuzzy random variables, the same as the upper

level, the suppliers also use expected value operation to deal
with the uncertain parameters; the expected transportation
cost can be described as ∑

𝑖∈Ψ
∑
𝑘∈Ω
𝐸[
̃
𝑐
𝑖𝑗𝑘
]𝑦
𝑖𝑗𝑘
. The penalty

cost means the loss when the transported units are rejected
in the process of examination; it is the product of the unit
defect penalty cost, the expected rate of rejected units, and
the transportation quantity, that is, CP

𝑗
𝐸[
̃
𝑟
𝑖𝑗𝑘
]𝑦
𝑖𝑗𝑘
. Hence the

objective function for supplier 𝑗 can be described as

min
𝑦𝑖𝑗𝑘

𝐸 [𝑇𝑐
𝑗
] = ∑

𝑖∈Ψ

∑

𝑘∈Ω

𝐸 [
̃
𝑐
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘

+ ∑

𝑖∈Ψ

∑

𝑘∈Ω

CP
𝑗
𝐸 [
̃
𝑟
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
, ∀𝑗 ∈ Φ.

(10)

3.3.2. Constraints on Transportation Alternatives Selection.
There are three types of constraints for the transportation
alternatives selection on the lower level that must be consid-
ered.

(1) Supply Constraints. For each supplier 𝑗, the total delivered
quantity ∑

𝑘∈Ω
𝑦
𝑖𝑗𝑘

to each demand node 𝑖 from all the
alternatives must exceed the allocated order quantity 𝑥

𝑖𝑗
for

this demand node. If the allocated order quantity 𝑥
𝑖𝑗
is 0, then

∑
𝑘∈Ω
𝑦
𝑖𝑗𝑘

should also be 0; by introducing a great number𝑀,
we can have the following constraints:

𝑥
𝑖𝑗
≤ ∑

𝑘∈Ω

𝑦
𝑖𝑗𝑘
≤ 𝑀𝑥

𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ. (11)

(2) Transportation Capacity Constraints. For each supplier
𝑗, the total delivered quantity ∑

𝑖∈Ψ
𝑦
𝑖𝑗𝑘

of transportation
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alternative 𝑘 to all demand nodes cannot exceed the trans-
portation capacity of transportation alternative 𝑘; thus we
have the following constraints:

∑

𝑖∈Ψ

𝑦
𝑖𝑗𝑘
≤ TP
𝑗𝑘
, ∀𝑗 ∈ Φ, 𝑘 ∈ Ω. (12)

(3) Delay Rate Constraints. In current competitive business
world, for sustainable business, each supplier will often set
highest delay rate to gain a good performance evaluation.
In the considered problem, the average percentage of late
delivered units from suppler 𝑗 to demand node 𝑖 cannot
exceed the highest delay rate; that is, ∑

𝑘∈Ω
𝐸[
̃
𝑙
𝑖𝑗𝑘
]𝑦
𝑖𝑗𝑘
/𝑥
𝑖𝑗
≤

𝑙
max
𝑗

. However, in this equation, 𝑥
𝑖𝑗
may take the value of 0;

after conversation, we can get the following constraints:

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
≤ 𝑙

max
𝑗
𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ. (13)

From the descriptions above, based on the objective of
transportation cost minimization, by synthesizing supply
constraints, transportation capacity constraints, and delay
rate constraints, we can obtain the lower level model (LLM)
for suppliers:

(LLM)

min
𝑦𝑖𝑗𝑘

𝐸 [𝑇𝑐
𝑗
]

= ∑

𝑖∈Ψ

∑

𝑘∈Ω

𝐸 [
̃
𝑐
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
+ ∑

𝑖∈Ψ

∑

𝑘∈Ω

CP
𝑗
𝐸 [
̃
𝑟
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
,

∀𝑗 ∈ Φ

s.t. 𝑥
𝑖𝑗
≤ ∑

𝑘∈Ω

𝑦
𝑖𝑗𝑘
≤ 𝑀𝑥

𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

∑

𝑖∈Ψ

𝑦
𝑖𝑗𝑘
≤ TP
𝑗𝑘
, ∀𝑗 ∈ Φ, 𝑘 ∈ Ω

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
≤ 𝑙

max
𝑗
𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝑦
𝑖𝑗𝑘
≥ 0, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ, 𝑘 ∈ Ω.

(14)

It should be noted that the suppliers’ decision making is
based on the decision made by the construction company.
Moreover, the suppliers’ decision making also brings influ-
ences to the upper level’s decision making because different
transportation alternatives mean different risks.

3.4. Global Model for Bilevel Order Quantity Allocation Prob-
lem. In the uncertain bilevel multiobjective order quantity
allocation problem, there are two levels of decision makers:
construction company (purchaser on the upper level) and
material suppliers (vendors on the lower level).The construc-
tion company on the upper level will allocate order quantity
among multiple suppliers for multiple demand nodes with
the objectives of total purchase cost minimization, total delay
risk minimization, and total defect risk minimization under
constraints on requirement, supply capacity, order quantity,
budget, and logicality conditions. The suppliers on the lower
level select transportation alternatives for each pair from
suppliers to demand nodes based on their own transportation
and penalty costs objectives under constraints on supply,
transportation capacity, and delay rate.

Usually, the objectives of decision makers on two levels
conflict. The decision maker on the upper level attempts
to minimize the delay risk and defect risk. However, both
the two types of risks are related to the transportation
alternatives which are determined by suppliers on the lower
level. Unfortunately, suppliers always take their ownminimal
costs (including transportation cost and penalty cost) as their
objectives instead of considering the risk, and transportation
alternatives with low cost may bring high risk. In this
situation, the decision maker on the upper level has to
consider the possible reactions of decision makers on the
lower level before choosing the optimal decision. Thus a
bilevel model is proposed. In the model, the decision maker
on the upper level first decides on a feasible order quantity
allocation scheme, and then the decisionmakers on the lower
level select their transportation alternatives for each pair from
suppliers to demand nodes in turn. By means of this method,
they hope to obtain an optimal Stackelberg solution. Based
on the above equations, (9) and (14), the following global
model for the bilevel multiobjective programming can now
be formulated for the order quantity allocation problem:

min
𝑥𝑖𝑗 ,𝑧𝑖𝑗

(TC, 𝐸 [TL] , 𝐸 [TR]) = (∑
𝑖∈Ψ

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑖∈Ψ

∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗
, ∑

𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑗𝑘
] 𝑦
𝑖𝑗𝑘
, ∑

𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑟
𝑗𝑘
] 𝑦
𝑖𝑗𝑘
)

s.t. Pr
{

{

{

∑

𝑗∈Φ

𝑥
𝑖𝑗
≥ 𝑄
𝑖

}

}

}

≥ 𝛼, ∀𝑖 ∈ Ψ

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≤ 𝑆
𝑗
, ∀𝑗 ∈ Φ

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≥ MO

𝑗
, ∀𝑗 ∈ Φ

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗
≤ 𝐵
𝑗
, ∀𝑖 ∈ Ψ
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𝑥
𝑖𝑗

𝑀

≤ 𝑧
𝑖𝑗
≤ 𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝑥
𝑖𝑗
≥ 0, 𝑧

𝑖𝑗
∈ {0, 1} , ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

min
𝑦𝑖𝑗𝑘

𝐸 [𝑇𝑐
𝑗
] = ∑

𝑖∈Ψ

∑

𝑘∈Ω

𝐸 [
̃
𝑐
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
+ ∑

𝑖∈Ψ

∑

𝑘∈Ω

CP
𝑗
𝐸 [
̃
𝑟
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
, ∀𝑗 ∈ Φ

s.t. 𝑥
𝑖𝑗
≤ ∑

𝑘∈Ω

𝑦
𝑖𝑗𝑘
≤ 𝑀𝑥

𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

∑

𝑖∈Ψ

𝑦
𝑖𝑗𝑘
≤ TP
𝑗𝑘
, ∀𝑗 ∈ Φ, 𝑘 ∈ Ω

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
≤ 𝑙

max
𝑗
𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝑦
𝑖𝑗𝑘
≥ 0, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ, 𝑘 ∈ Ω.

(15)

4. Proposed Solution Method

In order to obtain Stackelberg solutions to a bilevel pro-
gramming model, many methods have been proposed. They
can be classified roughly into three categories: the vertex
enumeration approach, the Kuhn-Tucker approach, and the
penalty function approach [29]. Among them, the Kuhn-
Tucker approach ismostwidely used if the objective functions
of the lower level model are continuous and differentia-
ble.

4.1. Kuhn-Tucker Conditions. In the considered problem, all
decision variables on the lower level are continuous and the
objective functions are differentiable. Hence, we can use
Kuhn-Tucker conditions to transform the lower level model
into constraint conditions of the upper level model. In the
Kuhn-Tucker approach, the upper level decision maker’s
problem with constraints involving the optimality conditions
of the lower level decision makers’ problems is solved. By
introducing auxiliary variables 𝑢1

𝑖𝑗
, 𝑢2
𝑖𝑗
, 𝑢3
𝑗𝑘
, 𝑢4
𝑖𝑗
, and 𝑢5

𝑖𝑗𝑘
, the

Kuhn-Tucker conditions of model (15) can be shown as
follows:

min
𝑥𝑖𝑗 ,𝑧𝑖𝑗

(TC, 𝐸 [TL] , 𝐸 [TR]) = (∑
𝑖∈Ψ

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑖∈Ψ

∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗
, ∑

𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑗𝑘
] 𝑦
𝑖𝑗𝑘
, ∑

𝑖∈Ψ

∑

𝑗∈Φ

∑

𝑘∈Ω

𝐸 [
̃
𝑟
𝑗𝑘
] 𝑦
𝑖𝑗𝑘
)

s.t. Pr
{

{

{

∑

𝑗∈Φ

𝑥
𝑖𝑗
≥ 𝑄
𝑖

}

}

}

≥ 𝛼, ∀𝑖 ∈ Ψ

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≤ 𝑆
𝑗
, ∀𝑗 ∈ Φ

∑

𝑖∈Ψ

𝑥
𝑖𝑗
≥ MO

𝑗
, ∀𝑗 ∈ Φ

∑

𝑗∈Φ

𝑃
𝑗
𝑥
𝑖𝑗
+ ∑

𝑗∈Φ

𝐶
𝑖𝑗
𝑧
𝑖𝑗
≤ 𝐵
𝑗
, ∀𝑖 ∈ Ψ

𝑥
𝑖𝑗

𝑀

≤ 𝑧
𝑖𝑗
≤ 𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝐸 [
̃
𝑐
𝑖𝑗𝑘
] + CP

𝑗
𝐸 [
̃
𝑟
𝑖𝑗𝑘
] − 𝑢
1

𝑖𝑗
+ 𝑢
2

𝑖𝑗
+ 𝑢
3

𝑗𝑘
+ 𝑢
4

𝑖𝑗
− 𝑢
5

𝑖𝑗𝑘
= 0, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ, 𝑘 ∈ Ω

𝑢
1

𝑖𝑗
(∑

𝑘∈Ω

𝑦
𝑖𝑗𝑘
− 𝑥
𝑖𝑗
) = 0, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝑢
2

𝑖𝑗
(∑

𝑘∈Ω

𝑦
𝑖𝑗𝑘
−𝑀𝑥

𝑖𝑗
) = 0, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ
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𝑢
3

𝑗𝑘
(∑

𝑖∈Ψ

𝑦
𝑖𝑗𝑘
− TP
𝑗𝑘
) = 0, ∀𝑗 ∈ Φ, 𝑘 ∈ Ω

𝑢
4

𝑖𝑗
(∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
− 𝑙

max
𝑗
𝑥
𝑖𝑗
) = 0, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝑢
5

𝑖𝑗𝑘
𝑦
𝑖𝑗𝑘
= 0, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ, 𝑘 ∈ Ω

𝑥
𝑖𝑗
≤ ∑

𝑘∈Ω

𝑦
𝑖𝑗𝑘
≤ 𝑀𝑥

𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

∑

𝑖∈Ψ

𝑦
𝑖𝑗𝑘
≤ TP
𝑗𝑘
, ∀𝑗 ∈ Φ, 𝑘 ∈ Ω

∑

𝑘∈Ω

𝐸 [
̃
𝑙
𝑖𝑗𝑘
] 𝑦
𝑖𝑗𝑘
≤ 𝑙

max
𝑗
𝑥
𝑖𝑗
, ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ

𝑥
𝑖𝑗
≥ 0, 𝑦

𝑖𝑗𝑘
≥ 0, 𝑢

1

𝑖𝑗
, 𝑢
2

𝑖𝑗
, 𝑢
3

𝑗𝑘
, 𝑢
4

𝑖𝑗
, 𝑢
5

𝑖𝑗𝑘
≥ 0, 𝑧

𝑖𝑗
∈ {0, 1} , ∀𝑖 ∈ Ψ, 𝑗 ∈ Φ, 𝑘 ∈ Ω.

(16)

It can be seen that the bilevel multiobjective model has
been transformed into an equivalent single-level multiobjec-
tive mathematical programming model through the Kuhn-
Tucker approach.

4.2. Satisfaction Function. Although the bilevel model (15)
has been transformed into a singlemodel (16) through Kuhn-
Tucker conditions, it is still difficult to solve the problem
because of themultiple objectives. In order to handle themul-
tiple objective functions and integrate the attitude of decision
maker, we propose a weight-sum satisfaction method below.
As the three objectives of the upper level of model (16) are
minimum problems, for any feasible solution (x, y, z,u) ∈ Λ,
the degree of satisfaction for each objective can be calculated
using the following equation:

𝑆
𝑡
(x, y, z, u)

=

{
{
{
{
{

{
{
{
{
{

{

1, 𝐹
𝑡
(x, y, z, u) < 𝐹min

𝑡

𝐹
𝑡
(x, y, z, u) − 𝐹max

𝑡

𝐹
min
𝑡
− 𝐹

max
𝑡

, 𝐹
min
𝑡
≤ 𝐹
𝑡
(x, y, z,u) < 𝐹max

𝑡

0, 𝐹
𝑡
(x, y, z, u) ≥ 𝐹max

𝑡
,

(17)

where 𝐹
𝑡
, 𝑡 = 1, 2, 3, each separately represent the three

objective functions on the upper level and 𝐹min
𝑡

, 𝐹max
𝑡

repre-
sent the minimal value and maximal value, respectively.

Once a feasible solution is produced, the above equation
can be used to calculate degree of satisfaction for each
objective. Usually, decision makers will determine lowest
satisfaction of each objective in advance, named as 𝑆min

𝑡
.

Then the following constraintsmust be satisfiedwhenmaking
decision:

𝑆
𝑡
(𝐹
𝑡
(x, y, z, u)) ≥ 𝑆min

𝑡
, ∀𝑡 = 1, 2, 3. (18)

In this situation, decision makers always hope to seek
for a solution with maximal satisfaction degree. At the same

time, taking the weight of each objective into consideration,
the goal for the model can be transformed to maximize the
weight-sum satisfaction degree, so the above model can be
converted into the following satisfaction model:

max
(x,y,z,u)

𝐹 (x, y, z, u) =
3

∑

𝑡=1

𝑤
𝑡
𝑆
𝑡
(𝐹
𝑡
(x, y, z, u))

s.t. 𝑆
𝑡
(𝐹
𝑡
(x, y, z, u)) ≥ 𝑆min

𝑡
, ∀𝑡 = 1, 2, 3

(x, y, z, u) ∈ Λ,

(19)

where 𝑤
𝑡
is the weight of the 𝑡th objective which meets 𝑤

1
+

𝑤
2
+ 𝑤
3
= 1 and Λ is the feasible region of model (16).

It can be seen that, through the operation of satisfaction
function, themultiobjectivemodel (16) has been transformed
into a single-objective model.

4.3. Sectional Genetic Algorithm Based on Uncertain Simu-
lation. Although model (19) is only a single-objective and
single-level model, it is still difficult to solve the problem
using a commercial solver because of too many decision
variables and constraints. For example, in a decision making
process, there are 10 demand nodes, 20 suppliers, and 3 trans-
portation alternatives for each supplier; then 1860 decision
variables and 4443 constraintsmust be considered.Moreover,
some nonlinear constraints and uncertain objectives also
increase the difficulty to solve the model. In this situation, a
sectional genetic algorithm based on fuzzy random simula-
tion is introduced here to solve the model (19).

4.3.1. Uncertain Simulation. In the proposed model, the
uncertain operation mainly means the expected value opera-
tion of the fuzzy randomobjective, which actually is a weight-
sum function and can be described as the following equation:

𝐹 (x, y, z,u) =
3

∑

𝑡=1

𝑤
𝑡
(𝐹
𝑡
(x, y, z, u) − 𝐹max

𝑡
)

𝐹
min
𝑡
− 𝐹

max
𝑡

, (20)
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Decision
variables for
upper level

Decision
variables for
lower level Auxiliary variables

xij ≥ 0 yijk ≥ 0

x11 · · · · · · · · · · · · · · · · · · · · · · · ·xIJ y111 yIJK u1
11 u1

IJ u2
11 u2

11 u2
IJ u3

11 u3
JK u4

11 u4
IJ u5

111 u5
IJK

u1
ij, u2

ij, u3
jk, u4

ij, u5
ijk ≥ 0

Figure 3: Real number string structure of floating-point sectional representation.

where 𝐹
1
= ∑

𝑖∈Ψ
∑
𝑗∈Φ
𝑃
𝑗
𝑥
𝑖𝑗
+ ∑
𝑖∈Ψ
∑
𝑗∈Φ
𝐶
𝑖𝑗
𝑧
𝑖𝑗
, 𝐹
2
=

∑
𝑖∈Ψ
∑
𝑗∈Φ
∑
𝑘∈Ω
𝐸[
̃
𝑙
𝑗𝑘
]𝑦
𝑖𝑗𝑘

and 𝐹
3

=

∑
𝑖∈Ψ
∑
𝑗∈Φ
∑
𝑘∈Ω
𝐸[
̃
𝑟
𝑗𝑘
]𝑦
𝑖𝑗𝑘
. In the second and third functions,

the expected values of fuzzy random variables (𝐸[TL] and
𝐸[TR]), which are very difficult to be accurately calculated,
are included. Hence the following fuzzy random simulation
is proposed.

Step 1. Let 𝑛 = 1, 𝐹min = −∞, 𝑓(
̃
𝑙
𝑗𝑘
,
̃
𝑟
𝑗𝑘
) =

∑
3

𝑡=1
(𝑤
𝑡
(𝐹
𝑡
(x, y, z, u) − 𝐹max

𝑡
)/(𝐹

min
𝑡
− 𝐹

max
𝑡
)).

Step 2. Generate 𝜔 from Ω according to the probability
measure Pr of the fuzzy random variables̃𝑙

𝑗𝑘
,
̃
𝑟
𝑗𝑘
.

Step 3. Generate a determined vector 𝑓(̃𝑙
𝑗𝑘
(𝜔),
̃
𝑟
𝑗𝑘
(𝜔)) uni-

formly from the 𝛼-cut of fuzzy vector 𝑓(̃𝑙
𝑗𝑘
(𝜔),
̃
𝑟
𝑗𝑘
(𝜔)).

Step 4. If 𝑓(̃𝑙
𝑗𝑘
(𝜔),
̃
𝑟
𝑗𝑘
(𝜔)) ≥ 𝐹min

𝑛
, then let 𝐹min =

𝑓(
̃
𝑙
𝑗𝑘
(𝜔),
̃
𝑟
𝑗𝑘
(𝜔)). Return to Step 3, and repeat𝑀 times.

Step 5. If 𝑛 = 𝑁, set 𝑁󸀠 = 𝛽𝑁 and return the 𝑁󸀠th greatest
element in {𝐹min

1
, 𝐹min

2
, . . . , 𝐹min

𝑁
} as the fitness value;

else go to Step 2, and 𝑛 = 𝑛 + 1.

4.4. Sectional Genetic Algorithm. As mentioned above, the
proposed model is a nonlinear programming model. It is
always with high time complexity and easy to fall into local
optimum using traditional algorithms. Hence, the genetic
algorithm, which has good performance in global search,
is suggested to solve this model. Moreover, according to
the characteristics of the model, a sectional chromosome
representation and a sectional evolution operation are also
proposed.

4.4.1. Sectional Chromosome Representation. The solution of
model (19) consists of four parts (x, y, z, u), where z can be
determined in accordance with x. Therefore, the solution
can be expressed as (x, y,u). As is known, the x, y, and u
have different meanings and value ranges. So we suggest
representing the solution using a chromosome with three
sections as Figure 3.Thus each gene is expressed as a floating-
point number since these variables are nonnegative real
numbers.

4.4.2. Sectional Crossover and Mutation Operation. For each
chromosome consists of three parts, the genetic crossover
operations are also divided as three sections. Each section
has an independent crossover probability. Let the crossover
probabilities for three sections be 𝑝

𝑐1
, 𝑝
𝑐2
, and 𝑝

𝑐3
. It is

assumed that 𝑃(𝑠)1 = (x1, y1, u1), 𝑃(𝑠)2 = (x2, y2, u2) are two
parent chromosomes and 𝐶(𝑠)1, 𝐶(𝑠)2 are the corresponding
offspring chromosomes. Then the crossover operation is as
follows:

𝐶 (𝑠)
1
= 𝑎

{
{
{

{
{
{

{

x1

0

0

}
}
}

}
}
}

}

+ (1 − 𝑎)

{
{
{

{
{
{

{

x2

0

0

}
}
}

}
}
}

}

+ 𝑏

{
{
{

{
{
{

{

0

y1

0

}
}
}

}
}
}

}

+ (1 − 𝑏)

{
{
{

{
{
{

{

0

y2

0

}
}
}

}
}
}

}

+ 𝑐

{
{
{

{
{
{

{

0

0

u1

}
}
}

}
}
}

}

+ (1 − 𝑐)

{
{
{

{
{
{

{

0

0

u2

}
}
}

}
}
}

}

𝐶 (𝑠)
2
= (1 − 𝑎)

{
{
{

{
{
{

{

x1

0

0

}
}
}

}
}
}

}

+ 𝑎

{
{
{

{
{
{

{

x2

0

0

}
}
}

}
}
}

}

+ (1 − 𝑏)

{
{
{

{
{
{

{

0

y1

0

}
}
}

}
}
}

}

+ 𝑏

{
{
{

{
{
{

{

0

y2

0

}
}
}

}
}
}

}

+ (1 − 𝑐)

{
{
{

{
{
{

{

0

0

u1

}
}
}

}
}
}

}

+ 𝑐

{
{
{

{
{
{

{

0

0

u2

}
}
}

}
}
}

}

,

(21)

where 𝑎, 𝑏, and 𝑐 are random numbers between 0 and 1,
which meet the inequalities 𝑎 < 𝑃

𝑐1
, 𝑏 < 𝑃

𝑐2
, and 𝑐 < 𝑃

𝑐3
.

Similarly, the chromosome mutation is also carried out
with a three-stage operation. Set the three mutation proba-
bilities as 𝑝

𝑚1
, 𝑝
𝑚2
, and 𝑝

𝑚3
, respectively. From left to right,

successively produce random numbers 𝑟
1
, 𝑟
2
, and 𝑟

3
(∈ [0, 1])

in each gene position. If 𝑟
1
≤ 𝑝
𝑚1
, 𝑟
2
≤ 𝑝
𝑚2
, and 𝑟

3
≤ 𝑝
𝑚3
,

then replace the gene using a new randomly generated gene.

4.4.3. Framework of the Sectional Genetic Algorithm. In sum-
mary, the main steps of proposed sectional genetic algorithm
are as follows.
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Table 1: Parameters of demand nodes.

Nodes Demand quantity Total budget Suppliers Order cost
(103 ton) (105 CNY) (105 CNY)

Number 1 𝑁(2.24, 0.12) 22.6 Numbers 1, 2, 3 1.8, 2.6, 2.2
Number 2 𝑁(1.56, 0.14) 16.8 Numbers 1, 2, 3 2.2, 2.1, 2.6
Number 3 𝑁(1.42, 0.22) 14.7 Numbers 4, 5, 6, 7 2.2, 2.6, 1.6, 1.5
Number 4 𝑁(5.58, 0.24) 58.8 Numbers 1, 3, 4, 5, 6, 7 1.8, 1.6, 2.2, 2.6, 2.2, 1.9
Number 5 𝑁(3.24, 0.18) 28.6 Numbers 8, 9, 10, 11, 12 1.8, 2.2, 2.2, 1.9, 2.1
Number 6 𝑁(1.36, 0.10) 18.6 Numbers 8, 9, 10 1.4, 2.6, 2.2
Number 7 𝑁(1.24, 0.08) 14.2 Numbers 10, 11, 12 1.8, 2.6, 2.2

Step 1. Initialize the genetic algorithm operation parameters,
including population size pop size, crossover probability
𝑝
𝑐
= (𝑝
𝑐1
, 𝑝
𝑐2
, 𝑝
𝑐3
), mutation probability 𝑝

𝑚
= (𝑝
𝑚1
, 𝑝
𝑚2

and
𝑝
𝑚3
), and maximal iterations 𝑆.

Step 2. Set 𝑠 = 0, and initialize genetic population 𝑃(𝑠).

Step 2.1. Generate x randomly in [0, 𝑥
𝑖𝑗
].

Step 2.2. Generate y randomly in [0,min{𝑥
𝑖𝑗
,TP
𝑗𝑘
}].

Step 2.3. Generate u randomly in [0, 𝐸[𝑐
𝑖𝑗𝑘
]].

Step 2.4. Check whether or not 𝑃(𝑠) meets all constraints; if
not, repeat the above operation until all constraints are met.

Step 3. Calculate the fitness value of each chromosome using
fuzzy random simulation procedures. In this paper, the
objective function of model (19) is considered as the fitness
function of genetic algorithm.That is,

Fitness =
3

∑

𝑡=1

𝑤
𝑡
(𝐹
𝑡
(x, y, z, u) − 𝐹max

𝑡
)

𝐹
min
𝑡
− 𝐹

max
𝑡

. (22)

Step 4. Calculate the selection probability po of ℎth chromo-
some 𝑝

ℎ
(ℎ = 1, 2, . . . , pop size) and choose the chromosome

using wheel selection method to build a new population
𝑃(𝑠)
󸀠, while 𝑝

ℎ
is calculated by the following equation:

𝑝
ℎ
=

Fitness (𝑃
ℎ (
𝑠))

∑
pop size
ℎ=1

fitness (𝑃
ℎ (
𝑠))

. (23)

Step 5. Produce offspring chromosomes from parent chro-
mosomes using the sectional crossover and mutation oper-
ation. Check whether or not all constraints are met. If not,
regenerate offspring chromosomes.

Step 6. If 𝑠 > 𝑆, end the process; or set 𝑃(𝑠) = 𝐶(𝑠), 𝑠 = 𝑠 + 1,
and return to Step 3.

5. Case Study

In the following, a practical example inChina is introduced to
demonstrate the complete modelling and algorithm process.

5.1. Presentation of Case Problem. The Shuibuya hydropower
project is located in Badong County in the middle reaches
of the Qingjiang River. It is the first cascaded project on
the Qingjiang mainstream. At 233m height and containing
15,640,000m3 of material, it is the tallest concrete face rock-
fill dam in the world. For constructing the project, huge
amounts of construction material are consumed every day.
Taking cement as example, more than 2 thousand tons is
used per day on average. Due to the very big demand
quantity, it is impossible to purchase the cement from one
supplier. Hence, in practice, multiple suppliers have been
selected to supply the cement. Meanwhile, for convenience of
storage and usage, the construction company has built seven
storehouses to store the cement. Hence, there are multiple
demand nodes and multiple suppliers for cement purchasing
in the construction project. Now, according to the demand
information, the construction company needs to purchase
about 14 thousand tons’ cement in the next week. Then the
problem the construction company currently faces is how to
allocate the purchased quantity among multiple suppliers for
multiple demand nodes.

In this section, we will discuss the order quantity alloca-
tion problem of cement in Shuibuya hydropower project. It
is assumed that there are 7 demand nodes and 12 suppliers.
Each supplier has three types of trucks: light truck, medium
truck, and heavy truck. Different types of trucks will lead
to different transportation alternatives, transportation costs,
and transportation risks. The positions of the demand nodes
and the related links between the demand nodes and sup-
pliers are illustrated in Figure 4. The data on demand nodes
are shown in Table 1 and the data on suppliers are stated
in Table 2. Because of the uncertain environment of order
quantity allocation and the information asymmetry between
the construction company and cement suppliers, the data
on transportation cost, percentage of late delivered units,
and percentage of rejected units are modeled as triangular
fuzzy random variables. In the considered case, the different
transportation alternatives means different transportation
vehicles. For each pair from one supplier to one demand
node, the unit transportation cost and risk are linearly depen-
dent on the transportation distance. Hence, the coefficients
̃
𝑐
𝑖𝑗𝑘

can be split into two parts: ̃𝑐
𝑗𝑘
: unit transportation

cost of supplier 𝑗 using transportation alternative 𝑘 and 𝑑
𝑖𝑗
:
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Table 2: Parameters of suppliers (part 1).

Suppliers Capacity Price Penalty cost Minimal order Maximal late rate
(103 ton) (103 CNY/ton) (103 CNY/ton) (103 tons) (%)

Number 1 1.84 0.64 0.51 0.80 8.4
Number 2 2.36 0.60 0.48 1.20 8.6
Number 3 2.65 0.61 0.49 1.80 8.2
Number 4 1.28 0.61 0.49 0.70 8.6
Number 5 1.46 0.62 0.50 0.75 8.2
Number 6 2.24 0.62 0.51 1.20 8.8
Number 7 1.96 0.60 0.48 0.85 7.6
Number 8 1.62 0.62 0.51 0.80 7.8
Number 9 1.48 0.62 0.52 0.60 8.4
Number 10 1.88 0.59 0.47 1.40 7.8
Number 11 1.24 0.62 0.50 0.70 8.2
Number 12 1.53 0.62 0.50 0.40 8.0

1

2

3

4

5

6

7

Supplier 1

Supplier 8

Supplier 3
Supplier 7

Supplier 6Supplier 4Supplier 2

Supplier 5

Supplier 12

Supplier 10

Supplier 9

Supplier 11

Demanded node Transportation
Supplier

Figure 4: Order quantity allocation of cement in Shuibuya hydro-
power project.

transportation distance from supplier 𝑗 to demand node 𝑖.
The detailed data on ̃𝑐

𝑗𝑘
are stated in Table 3.

5.2. Computation Results. In order to run the program for the
proposed SGA algorithm, the algorithm parameters for the
case problem were set as follows: population size pop size =
40; iteration number 𝑆 = 500; three segmental probabilities
of crossover 𝑝

𝑐1
= 0.7, 𝑝

𝑐2
= 0.5, and 𝑝

𝑐3
= 0.3; and three

mutation probabilities 𝑝
𝑚1
= 0.2, 𝑝

𝑚2
= 0.1, and 𝑝

𝑚3
= 0.05.

After 4.574 minutes on average, the optimal solutions
of model (16) were determined with fitness value of 0.734.
Figure 5 shows the optimal order quantity allocation scheme
and selected transportation alternatives. Based on this results,
it is easy to calculate the values of the three objectives.
The total purchase cost is 12.61 million yuan while the total
delay risk and total defect risk are 265 and 325, respectively.
From the results, it can be seen that most of demand nodes

needmultiple suppliers to providematerial.Meanwhile, some
suppliers are also supplying material for multiple demand
nodes, which reflects that it is meaningful to consider the
transportation alternatives on the lower level.

5.3. Model Analysis. In this paper, we study a multide-
mand multisource order quantity allocation problem using a
bilevel multiobjective programming. Traditionally, the order
quantity allocation problem is considered as a single-level
model. To test the significance of the proposed model, a
comparison between the bilevelmodel and single-levelmodel
is conducted. At the same time, the interactivity between the
models and objectives are also considered. The results are
shown in Table 4.

From the results in Table 4, it can be seen that the
solutions of the bilevel and single-level models are very near
only if the objective of total cost minimization is considered.
However, oncewe consider the risk objectives, the single-level
model can always obtain better objective values for the upper
level, which seems like the single-level model is better than
the bilevel. Nevertheless it is not true. Let us consider the case
of 𝑤
1
= 0.5, 𝑤

2
= 0.3, and 𝑤

3
= 0.2. Compared to the

bilevel model, the total cost of the upper level is decreased
to 12.47 from 12.61 with a decrement of 0.15. However, at the
same time, the total transportation and penalty costs of the
lower level are increased to 2.31 from 2.01 with an increment
of 0.3. Obviously, relative to the bilevel model, the suppliers
have to expend higher costs which even exceeds the increased
income of purchaser if the single-level model is used. As a
result, the suppliers have to raise the price, which may reduce
the stability of the supply chain.Moreover, the administrative
cost will also be increased if the purchaser takes charge
of the selection of transportation alternatives. Hence, it is
meaningful to consider the order quantity allocation problem
using a bilevel model.

In addition, the relationship among the objectives should
also be discussed. Figure 6 describes the trend lines of the
three objectives of upper level model and the sum of lower
level’s objectives. It can be seen that the delay risk has a
positive correlationwith defect risk and a negative correlation
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Table 3: Parameters of suppliers (part 2).

Supplier Alternative ̃
𝑐
𝑗𝑘
(CNY/TN⋅KM) ̃

𝑙
𝑗𝑘
(%) ̃

𝑟
𝑗𝑘
(%)

1

1 (3.75, 𝑐, 4.22) (7.79, 𝑙, 8.47) (2.05, 𝑟, 2.34)
𝑐 ∼ N(3.85, 0.05) 𝑙 ∼ N(8.04, 0.12) 𝑟 ∼ N(2.26, 0.02)

2 (4.82, 𝑐, 5.16) (7.33, 𝑙, 8.19) (2.84, 𝑟, 3.08)
𝑐 ∼ N(4.96, 0.04) 𝑙 ∼ N(7.75, 0.10) 𝑟 ∼ N(2.96, 0.02)

3 (2.75, 𝑐, 3.46) (8.07, 𝑙, 9.29) (2.45, 𝑟, 2.72)
𝑐 ∼ N(3.22, 0.02) 𝑙 ∼ N(8.54, 0.10) 𝑟 ∼ N(2.61, 0.02)

2

1 (3.76, 𝑐, 4.59) (8.41, 𝑙, 9.57) (2.00, 𝑟, 2.32)
𝑐 ∼ N(4.12, 0.04) 𝑙 ∼ N(9.04, 0.10) 𝑟 ∼ N(2.18, 0.01)

2 (3.98, 𝑐, 4.64) (8.43, 𝑙, 8.58) (2.58, 𝑟, 2.65)
𝑐 ∼ N(4.26, 0.02) 𝑙 ∼ N(8.58, 0.01) 𝑟 ∼ N(2.60, 0.01)

3 (4.50, 𝑐, 4.99) (7.20, 𝑙, 7.79) (3.45, 𝑟, 3.66)
𝑐 ∼ N(4.82, 0.02) 𝑙 ∼ N(7.48, 0.05) 𝑟 ∼ N(3.57, 0.02)

3

1 (4.28, 𝑐, 4.75) (6.16, 𝑙, 6.73) (2.84, 𝑟, 3.08)
𝑐 ∼ N(4.42, 0.02) 𝑙 ∼ N(6.53, 0.04) 𝑟 ∼ N(2.92, 0.02)

2 (4.35, 𝑐, 5.16) (8.25, 𝑙, 8.54) (3.14, 𝑟, 3.36)
𝑐 ∼ N(4.71, 0.04) 𝑙 ∼ N(8.39, 0.02) 𝑟 ∼ N(3.27, 0.02)

3 (3.62, 𝑐, 4.11) (7.50, 𝑙, 8.08) (2.81, 𝑟, 3.10)
𝑐 ∼ N(3.80, 0.03) 𝑙 ∼ N(7.88, 0.06) 𝑟 ∼ N(2.94, 0.03)

4

1 (4.65, 𝑐, 5.34) (7.63, 𝑙, 8.47) (2.65, 𝑟, 3.02)
𝑐 ∼ N(4.97, 0.05) 𝑙 ∼ N(8.06, 0.1) 𝑟 ∼ N(2.88, 0.04)

2 (3.81, 𝑐, 4.31) (9.23, 𝑙, 10.02) (3.04, 𝑟, 3.18)
𝑐 ∼ N(3.96, 0.03) 𝑙 ∼ N(9.58, 0.08) 𝑟 ∼ N(3.10, 0.02)

3 (3.02, 𝑐, 3.76) (8.39, 𝑙, 9.16) (2.65, 𝑟, 2.77)
𝑐 ∼ N(3.38, 0.04) 𝑙 ∼ N(8.68, 0.06) 𝑟 ∼ N(2.71, 0.01)

5

1 (3.05, 𝑐, 3.90) (6.92, 𝑙, 7.62) (2.11, 𝑟, 2.56)
𝑐 ∼ N(3.42, 0.08) 𝑙 ∼ N(7.30, 0.05) 𝑟 ∼ N(2.33, 0.03)

2 (3.65, 𝑐, 4.04) (6.66, 𝑙, 7.83) (1.99, 𝑟, 2.40)
𝑐 ∼ N(3.68, 0.03) 𝑙 ∼ N(7.24, 0.1) 𝑟 ∼ N(2.13, 0.02)

3 (3.47, 𝑐, 4.06) (8.25, 𝑙, 9.17) (2.36, 𝑟, 2.50)
𝑐 ∼ N(3.66, 0.04) 𝑙 ∼ N(8.74, 0.08) 𝑟 ∼ N(2.43, 0.01)

6

1 (4.50, 𝑐, 4.86) (6.88, 𝑙, 7.82) (3.07, 𝑟, 3.48)
𝑐 ∼ N(4.73, 0.02) 𝑙 ∼ N(7.42, 0.10) 𝑟 ∼ N(3.25, 0.03)

2 (4.29, 𝑐, 4.70) (6.16, 𝑙, 6.31) (3.03, 𝑟, 3.47)
𝑐 ∼ N(4.53, 0.03) 𝑙 ∼ N(6.21, 0.01) 𝑟 ∼ N(3.18, 0.03)

3 (4.15, 𝑐, 4.46) (8.89, 𝑙, 9.68) (2.03, 𝑟, 2.39)
𝑐 ∼ N(4.30, 0.03) 𝑙 ∼ N(9.12, 0.03) 𝑟 ∼ N(2.24, 0.03)

7

1 (3.97, 𝑐, 4.64) (7.07, 𝑙, 7.83) (2.26, 𝑟, 2.65)
𝑐 ∼ N(4.15, 0.05) 𝑙 ∼ N(7.38, 0.03) 𝑟 ∼ N(2.39, 0.02)

2 (4.25, 𝑐, 4.91) (7.38, 𝑙, 8.09) (2.71, 𝑟, 2.94)
𝑐 ∼ N(4.64, 0.06) 𝑙 ∼ N(7.69, 0.05) 𝑟 ∼ N(2.82, 0.02)

3 (3.38, 𝑐, 3.71) (6.92, 𝑙, 7.68) (3.09, 𝑟, 3.36)
𝑐 ∼ N(3.44, 0.03) 𝑙 ∼ N(7.26, 0.06) 𝑟 ∼ N(3.17, 0.02)

8

1 (3.52, 𝑐, 4.21) (8.09, 𝑙, 9.38) (2.26, 𝑟, 2.43)
𝑐 ∼ N(3.84, 0.06) 𝑙 ∼ N(8.78, 0.10) 𝑟 ∼ N(2.28, 0.02)

2 (3.77, 𝑐, 4.41) (5.94, 𝑙, 6.87) (2.34, 𝑟, 2.68)
𝑐 ∼ N(4.14, 0.02) 𝑙 ∼ N(6.39, 0.06) 𝑟 ∼ N(2.48, 0.02)

3 (3.61, 𝑐, 3.99) (5.82, 𝑙, 6.71) (2.50, 𝑟, 2.80)
𝑐 ∼ N(3.80, 0.02) 𝑙 ∼ N(6.26, 0.08) 𝑟 ∼ N(2.65, 0.03)
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Table 4: Comparison analysis to single-level and bilevel model with different objectives.

Weight Models Upper level objectives Lower level objective
(𝑤
1
, 𝑤
2
, 𝑤
3
) TC 𝐸[TL] 𝐸[TR] ∑𝐸[Tc

𝑗
]

(1, 0, 0) Bilevel 10.53 290 343 1.87
Single-level 10.48 288 345 1.92

(0, 1, 0) Bilevel 14.56 240 293 2.31
Single-level 14.43 214 274 2.52

(0, 0, 1) Bilevel 13.99 251 279 2.28
Single-level 13.93 236 256 2.47

(0.5, 0.3, 0.2) Bilevel 12.61 265 325 2.01
Single-level 12.47 251 304 2.31

(0.33, 0.33, 0.33) Bilevel 13.16 263 296 1.95
Single-level 13.01 248 278 2.26
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Figure 5: Results on order quantity allocation and transportation alternatives selection.

with the total transportation and penalty costs. The total cost
does not specifically relate to any other single objective. The
result also shows the necessity to considermultiple objectives,
since the other objectives will take very bad values if only a
single objective is considered in the model.

5.4. Algorithm Evaluation. To demonstrate the effectiveness
and efficiency of the proposed sectional genetic algorithm
based on fuzzy random simulation (FRS-SGA), an analysis of

parameter selection and a performance comparison to other
algorithms are carried out successively.

5.4.1. Parameter Selection for the FRS-SGA. For genetic algo-
rithm, three types of parameters will observably influence
the performance of the algorithm, that is, population size,
crossover probability, and mutation probability. Many schol-
ars such as Zouein et al. [30], Dimou and Koumousis [31],
and Xu and Yao [32] have given suggestions on the proper
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Figure 6: Relation among the multiple objectives.

Table 5: The parameters selection of the proposed FRS-SGA.

pop size 𝑝
𝑐1

𝑝
𝑐2

𝑝
𝑐3

Computing time Fitness value

30

0.7 0.7 0.7 4.973 0.663
0.5 0.5 0.5 3.592 0.679
0.3 0.3 0.3 5.473 0.632
0.7 0.5 0.3 3.106 0.690

40

0.7 0.7 0.7 5.933 0.671
0.5 0.5 0.5 4.605 0.716
0.3 0.3 0.3 4.998 0.661
0.7 0.5 0.3 4.574 0.734

50

0.7 0.7 0.7 6.432 0.648
0.5 0.5 0.5 5.627 0.713
0.3 0.3 0.3 8.283 0.659
0.7 0.5 0.3 4.956 0.734

parameters. In this paper, the parameters are set from the
results of 20 preliminary experiments that were conducted
to observe the behavior of the algorithm at different param-
eter settings. Table 5 shows the experiment result on the
parameter of population size and crossover probability. It
can be seen that the computing time is extended with the
increase of population size. At the same time, compared to the
same crossover probability, the proposed sectional one has
better performance both in the computing time and in fitness
value. We also carried out experiments on the mutation
probability and get a similar result to the crossover probabil-
ity.

5.4.2. Algorithm Comparison. The performances of the pro-
posed FRS-SGA are also compared with the traditional

genetic algorithm based on fuzzy random simulation (FRS-
GA) and particle swarm optimization based on fuzzy random
simulation (FRS-PSO) over 50 experiments using eight differ-
ent problem sizes. In the experiments, the three algorithms
use the same fitness value function which are calculated by
fuzzy random simulation in the evolution.The performances
of the three algorithms in the experiment are shown in
Table 6. In the table, “accuracy” means the frequency to find
optimal solution, while “ACT” means the average computing
time.

From Table 6, it can be seen that (1) all three algorithms
are able to obtain the best solution within 50 runs for all the
eight problems; (2) SGAalgorithmhas a higher accuracy than
PSO and faster computing speed thanGA; (3) SGA algorithm
can deal with these problems whose sizes are within 2000
variables while the GA is more efficient to deal with the
large scale problem. From this, it can be concluded that the
proposed SGA algorithm is efficient to solve the proposed
bilevel multidemand multisource order quantity allocation
problem in most cases.

6. Conclusions

In this paper, we consider a multidemand multisource order
quantity allocation problem with multiple transportation
alternatives under uncertain environment. In this problem,
two levels of decision makers should be considered: the
purchaser on the upper level and the suppliers on the lower
level. As the decisionmaker on the upper level, the purchaser
hopes to allocate order quantity among multiple suppliers
for multiple demand nodes. To minimize the total purchase
cost, the total delay risk and the total defect risk are the
decision objectives. As the decision makers on the lower
level, to reduce the transportation and penalty costs, the
suppliers hope to optimize the transportation alternatives.
In the decision making process, some uncertain parameters
also have to be considered. In order to solve this problem,
a bilevel multiobjective programming model with mixed
uncertain parameters is established. Then, the bilevel model
is transformed into a single model by writing the lower
level model with Kuhn-Tucker conditions. Next, a sectional
genetic algorithm based on fuzzy random simulation is
proposed to deal with the transformed model. Finally, a
case study is presented to demonstrate the practicality and
efficiency of the model and algorithm. The results show that
the bilevelmultiobjective order quantity allocationmodel has
a greater ability in maintaining stability of the supply chain
than a single-level model. In addition, the proposed sectional
genetic algorithm based on fuzzy random simulation is also
efficient to deal with the order quantity allocation problems
in most cases.

In this study, only one type of production or material is
considered into the model. In the future, we will focus on the
multidemand multisource order quantity allocation problem
with multiple productions. In addition, the order quantity
allocation problems under other uncertain environments also
need to be considered.
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Table 6: Comparison among SGA, GA, and PSO with different problem sizes.

Number Size of tested problem FRS-SGA FRS-GA FRS-PSO
𝐼 𝐽 𝐾 Variables Accuracy ACT Accuracy ACT Accuracy ACT

1 5 10 2 370 0.98 1.74 0.98 1.89 0.94 0.98
2 5 10 3 480 0.96 2.71 0.96 3.38 0.90 1.74
3 5 20 2 740 0.92 4.03 0.90 5.74 0.76 2.65
4 5 20 3 960 0.80 4.57 0.82 7.64 0.56 3.87
5 10 20 2 1440 0.76 7.96 0.76 15.12 0.40 6.38
6 10 20 3 1860 0.64 13.26 0.68 28.24 0.28 10.18
7 20 50 2 7100 0.22 49.94 0.44 105.34 0.12 23.34
8 20 50 3 9150 0.18 52.68 0.34 141.02 0.08 28.25
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