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We use nonlinear model predictive control to find the optimal harvesting effort of a renewable resource system with a nonlinear
state equation thatmaximizes a nonlinear profit function. A solution approach is proposed and discussed and satisfactory numerical
illustrations are provided.

1. Introduction

Consumption of the world’s natural resources is increasing
at a disturbing rate. The United Nations Environment Pro-
gramme (UNEP) warned that current voracious consump-
tion of resources cannot be sustained.

Unlike petroleum, oil, copper, and gold, fish are renew-
able resources.However,more people are eating fish than ever
before, and fish stocks are declining alarmingly. Aquaculture
is failing to fill the gaps between the supply and the demand,
for lack of a better management, as reported by a recent Food
and Agriculture Organization (FAO) review.

Better management of fisheries in the high seas, conser-
vation of the biodiversity of ecosystems and species related
to it, and reduction of illegal catch of popular and consumed
worldwide fish are required to reverse the negative trends
threatening fish and the ocean environment on which they
depend. Collective actions at all levels and extensive coop-
eration optimizing the use of depleted resources are needed
to help the world abandon the race for fish and adopt an
ecosystemic approach that is crucial to ensure the health and
future productivity of these key marine ecosystems.

Clark [1] summarizes the current worldwide crisis in
marine fisheries as “too many boats chasing too few fish.”

Since the earliest models of Gordon [2] and Schaefer [3],
the fishery resource has received a lot of attention. The basic
model of renewable resource exploitation is

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐺 (𝑥) − ℎ (𝑡) , 𝑥 (0) = 𝑥0, (1)

where the state variable 𝑥(𝑡) denotes the biomass of the fish
stock at time 𝑡, 𝑥

0
is the initial population of fish, 𝐺(𝑥)

is the net logistic growth rate of the population biomass,
and ℎ(𝑡) is the harvest of the resource stock at time 𝑡. The
traditional logistic growth rate assumed by most researchers
is the logistic model

𝐺 (𝑥) = 𝑟𝑥 (𝑡) [1 −
𝑥 (𝑡)

𝐾
] , (2)

where 𝑟 > 0 is the intrinsic growth rate and 𝐾 > 0 is the
carrying capacity of the environment. Introducing the control
variable 𝐸(𝑡), the harvesting effort at time 𝑡, the harvest of
the resource, and the harvesting effort are related through the
catch-effort relation

ℎ (𝑡) = 𝑞𝐸 (𝑡) 𝑥 (𝑡) , (3)
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and 𝑞 is called the catchability coefficient. The net economic
revenue is

𝑅 (𝑡) = [𝑝𝑞𝑥 (𝑡) − 𝑐] 𝐸 (𝑡) , (4)

where 𝑝 is the selling price per unit of biomass and 𝑐 is the
cost of harvesting per unit of effort.

Ganguly and Chaudhuri [4] use the catch-rate function

ℎ (𝑡) =
𝑞𝐸 (𝑡) 𝑥 (𝑡)

𝑎𝐸 (𝑡) + 𝑏𝑥 (𝑡)
, (5)

where 𝑎 and 𝑏 are positive constants. Assuming that an
external agency regulates the fishery by imposing a suitable
tax per unit biomass of landed fish, the fishing effort is taken
as a dynamic variable depending on the capital invested in the
fishery

𝐸 (𝑡) = 𝛼𝑄 (𝑡) , 0 ≤ 𝛼 ≤ 1,

𝑑𝑄 (𝑡)

𝑑𝑡
= 𝐼 (𝑡) − 𝛾𝑄 (𝑡) ,

(6)

and 𝐼(𝑡) is the gross investment rate at time 𝑡, 𝑄(𝑡) is the
amount of capital invested in the fishery at time 𝑡, and 𝛾 is
the rate of depreciation of capital. Optimal control theory is
used to obtain the optimal harvesting policy.

Fan and Wang [5] consider the logistic model (2) and
assume that 𝑟 and𝐾 are both periodic functions with respect
to 𝑡:

𝐺 (𝑥) = 𝑟 (𝑡) 𝑥 (𝑡) [1 −
𝑥 (𝑡)

𝐾 (𝑡)
] . (7)

They apply qualitative methods and optimal control methods
to determine the optimal harvesting policy, including the
optimal harvesting time-spectrum.

Peng [6] considers the same model as Ganguly and
Chaudhuri [4] with the Gompertz law of growth

𝐺 (𝑥) = 𝑟𝑥 (𝑡) ln [𝑥 (𝑡)
𝐾

] , (8)

instead of the logistic model (2). He also uses optimal control
theory to obtain the optimal harvesting policy.

Joshi et al. [7] analyze a spatial extension of the dynamic
Gordon-Schaefer bioeconomic model. They consider a stock
density 𝑢(𝑥, 𝑡) that diffuses and is advected within a smooth,
bounded habitatR𝑛 for a finite length of time𝑇.The diffusion
coefficients are 𝑎

𝑖𝑗
for 𝑖, 𝑗 = 1, . . . , 𝑛, the advection coefficients

are 𝑏
𝑖
for 𝑖 = 1, . . . , 𝑛, the stock grows at a rate 𝑓(𝑢) that

depends only on the local stock density, and the harvest rate
ℎ(𝑥, 𝑡) is proportional to both the stock density and the effort
density:

𝑢
𝑡
= 𝑓 (𝑢) − ℎ𝑢 +

𝑛

∑

𝑖,𝑗=1

(𝑎
𝑖𝑗 (𝑥, 𝑡) 𝑢𝑥𝑖

)
𝑥𝑗

+

𝑛

∑

𝑖=1

𝑏
𝑖 (𝑥, 𝑡) 𝑢𝑥𝑖

. (9)

The subscripts represent partial derivatives. Joshi et al. prove
the existence of an optimal control and derive the necessary
conditions that an optimal control must satisfy.

E. Braverman and L. Braverman [8] study the opti-
mal harvesting strategy for populations whose dynamics
is described by reaction-diffusion equations. They consider
three production functions: logistic, Gilpin-Ayala, and Gom-
pertz type. They investigate the maximum yield for both
continuous and impulsive models.

In Halkos and Papageorgiou [9], the variations of the
renewable resource stock evolve according to the differential
equation

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑓 (𝑥 (𝑡)) − 𝑞 (𝑡) , (10)

while the discounted net economic revenue is given by

𝑅 = 𝑒
−𝜌𝑡
[𝑝 (𝑡) − 𝑐 (𝑥 (𝑡))] 𝑞 (𝑡) , (11)

where 𝜌 > 0. They use optimal control theory to derive the
conditions under which the renewable resource harvesting
model achieves a unique steady-state equilibrium.

Duncan et al. [10] use a nonlinear dynamic discount rate
𝛿(𝑡) instead of the linear discount rate 𝜌𝑡, to reflect the fact
that the utility derived from a harvest may be worth more at
one point in time than another. The discount factor 𝑒−𝜌𝑡 in
(11) will be replaced with the more general one given by

𝐷 (𝑡) = exp{−∫
𝑡

0

𝛿 (𝜏) 𝑑𝜏} . (12)

Optimal control theory has been extensively used to
determine the optimal harvesting policy for renewable
resources such as fish stocks. Not only in the extensions of
the basic model that we have described above, but also in
more integrated models which involve two or more species,
structuredmodels, a population of consumers, predator-prey
models, reserve-unreserve areas, and so forth.

Our intention in this paper is to use a different approach,
model predictive control (MPC). Model predictive control
for linear constrained systems provides excellent control
solutions both theoretically and practically. Many systems,
however, such as in renewable resources, are inherently non-
linear. This motivates the use of nonlinear model predictive
control. Basically, in model predictive control an optimal
control problem is solved for the current system state. MPC
is based on an iterative process over finite horizon. At time
𝑡
0
the current state is sampled and a cost minimizing control

strategy is computed for a relatively short prediction time 𝑇.
Specifically, an online computation is used to explore state
trajectories from the current state until the end of the pre-
diction interval [𝑡

0
, 𝑡
0
+ 𝑇]. Only the first step of the optimal

control is implemented; then the state is sampled again at
time 𝑡

0
+ 𝑇. The computations are repeated starting from the

current state, yielding a new control and new predicted state
path.Wemention here that the online nonlinear optimization
step is always an issue, and thus suboptimal MPC algorithms
with online linearization and quadratic optimization have
been used in process control. For more details, see, for
example, Ellis et al. [11] and Simon [12] and the references
therein.

MPC is an advanced method of process control that has
been successfully used in the process industries, especially
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in chemical processes; see, for instance, Goodwin et al. [13],
Qin and Badgwell [14], and the references therein. Among
some recent references, we cite Petersen and Jorgensen [15]
who useMPC tomaximize profit of the fermentation process,
which is a widely used process in production of many foods,
beverages, and pharmaceuticals. del Favero et al. [16] report
the first wearable artificial pancreas outpatient study based
on MPC and investigate specifically its ability to control
postprandial glucose, one of the major challenges in glucose
control. Sun et al. [17] study trajectory generation for a
mothership that tows a drogue using a flexible cable. The
optimal trajectory for the towed cable system with tension
constraints is generated using MPC. Karamanakos et al.
[18] present an MPC approach for dc-dc boost converters.
Berkemeier et al. [19] use nonlinear MPC for vehicle control
and explore whether straight-forward application results in
computations take too long for real-time use. Methods for
speeding up the computations are discussed. Pytel and Kozak
[20] deal with the effective predictive control algorithm for
the gas turbine on the base of a mathematical model obtained
from measured I/O data. Finally, Bréchet et al. [21] use MPC
to study the change of the atmospheric temperature within
the next 150 years.

Clark [22] argues that when the fisherman operates his
vessel so as to obtain the largest possible income from each
day’s fishing, the daily effort cost 𝑐(𝐸) is assumed to be
nonlinear with increasing marginal cost 𝑐(𝐸). In agreement
with this argument, we define an objective in which the
cost, and therefore the profit to maximize, is nonlinear.
Since the dynamics of the problem are already nonlinear,
the result is a highly nonlinear formulation. To avoid the
computational burden in the online optimization phase of
nonlinear model predictive control (NMPC), approximate
solutions are sought.The approximations employed are good
enough and largely compensate for the extra effort required
to reach optimal solutions.

The model is formulated in Section 2 and solved in
Section 3. Illustrative examples are presented in Section 4.
Section 5 presents a conclusion and future research direc-
tions.

2. Model Formulation

Let 𝐻 > 0 and consider on the planning interval [0,𝐻]
a renewable resource, such as a fishery, whose population
dynamics are governed by a state equation of the type

𝑑

𝑑𝑡
𝐵 (𝑡) = 𝐹 (𝐵 (𝑡)) − ℎ (𝑡) , 𝐵 (0) = 𝐵0, (13)

where the state variable 𝐵(𝑡) represents the population
biomass at time 𝑡, 𝐹(𝐵) is the logistic growth rate function,
and ℎ(𝑡) is the harvesting rate at time 𝑡.

We use the logistic growth rate function

𝐹 (𝐵) = 𝑟𝐵 (𝑡) [1 −
𝐵 (𝑡)

𝐾
] , (14)

where 𝑟 > 0 is the intrinsic growth rate and the nonnegative
integer 𝐾 is the carrying capacity of the fish population.

We also use the rate of harvest ℎ(𝑡) based on the con-
stant “catch-per-unit-effort” and usually considered in fishery
models

ℎ (𝑡) = 𝑞𝐸 (𝑡) 𝐵 (𝑡) , (15)
where 𝑞 > 0 is the catchability coefficient and the control
variable 𝐸(𝑡) is the effort of harvesting at time 𝑡. Thus, the
differential equation (13) becomes

𝑑

𝑑𝑡
𝐵 (𝑡) = 𝑟𝐵 (𝑡) [1 −

𝐵 (𝑡)

𝐾
] − 𝑞𝐸 (𝑡) 𝐵 (𝑡) . (16)

Finally, let 𝑡
0
∈ [0,𝐻] and consider the prediction interval

[𝑡
0
, 𝑡
0
+ 𝑇], where 𝑇 ≪ 𝐻. To write the objective function

for our nonlinear model predictive control model, we denote
by 𝑝 > 0 the constant price per unit biomass and by 𝑐 > 0

the constant cost of harvesting per unit biomass. Assuming
a nonlinear (quadratic) cost (see Clark [22]), we seek to
maximize the profit

𝐽 (𝑡
0
, 𝐸) =

𝑘

2
𝐵 (𝑡
0
+ 𝑇)

+ ∫

𝑡0+𝑇

𝑡0

[𝑝𝑞𝐵 (𝜏) 𝐸 (𝜏) − 𝑐𝐸 (𝜏)
2
] 𝑑𝜏,

(17)

where 𝑘 ∈ (0, 𝑐] represents the salvage value of the ending
state.

An NMPC approach is used in the next section to
determine the control variable at time 𝑡 that maximizes the
profit function (17) subject to the state equation (16).

3. Model Solution

Different techniques have been proposed in the literature to
speed up the calculation of the optimal control variable of the
problem stated above. We use an approximate calculation of
the integral in the objective function (17) as follows. Put

𝐹 (𝜏) = 𝑝𝑞𝐵 (𝜏) 𝐸 (𝜏) − 𝑐𝐸 (𝜏)
2
. (18)

Now divide the time interval [𝑡
0
, 𝑡
0
+ 𝑇] into 𝑚 subintervals

of equal length ℎ = 𝑇/𝑚; then use the trapezoid formula for
𝑚 intervals. The objective function (17) becomes

𝐽 (𝑡
0
, 𝐸)

≃
𝑘

2
𝐵 (𝑡
0
+ 𝑚ℎ)

+
ℎ

2
[𝐹 (𝑡
0
) + 2

𝑚−1

∑

𝑖=1

𝐹 (𝑡
0
+ 𝑖ℎ) + 𝐹 (𝑡

0
+ 𝑚ℎ)] ,

(19)

where, as in (18), we have
𝐹 (𝑡
0
+ 𝑖ℎ) = 𝑝𝑞𝐵 (𝑡

0
+ 𝑖ℎ) 𝐸 (𝑡

0
+ 𝑖ℎ)

− 𝑐𝐸 (𝑡
0
+ 𝑖ℎ)
2
.

(20)

In order to calculate the sum that appears in (19), we write
the linear approximation of the state variable 𝐵(𝑡), which in
conjunction with the state equation (16) yields

𝐵 (𝑡
0
+ 𝑖ℎ) ≃ 𝐵 (𝑡

0
) + 𝑖ℎ

𝑑𝐵 (𝑡)

𝑑𝑡

≃ 𝐶
1
(𝑡
0
, 𝑖) − 𝐶

2
(𝑡
0
, 𝑖) 𝐸 (𝑡

0
) ,

(21)
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where

𝐶
1
(𝑡
0
, 𝑖) = 𝐵 (𝑡

0
) {1 + 𝑖ℎ𝑟 [1 −

𝐵 (𝑡
0
)

𝐾
]} ,

𝐶
2
(𝑡
0
, 𝑖) = 𝑖ℎ𝑞𝐵 (𝑡

0
) .

(22)

Now, substitute (21) in (20) to get

𝐹 (𝑡
0
+ 𝑖ℎ)

≃ 𝑝𝑞 [𝐶
1
(𝑡
0
, 𝑖) − 𝐶

2
(𝑡
0
, 𝑖) 𝐸 (𝑡

0
)] 𝐸 (𝑡

0
+ 𝑖ℎ)

− 𝑐𝐸 (𝑡
0
+ 𝑖ℎ)
2
.

(23)

We thus obtain the second term in the right-hand side of
objective function (19) as

ℎ

2
[𝐹 (𝑡
0
) + 2

𝑚−1

∑

𝑖=1

𝐹 (𝑡
0
+ 𝑖ℎ) + 𝐹 (𝑡

0
+ 𝑚ℎ)]

≃ [
ℎ𝑝𝑞

2
𝐵 (𝑡
0
) 𝐸 (𝑡
0
) −

𝑐ℎ

2
𝐸 (𝑡
0
)
2
]

+ [ℎ𝑝𝑞

𝑚−1

∑

𝑖=1

𝐶
1
(𝑡
0
, 𝑖) 𝐸 (𝑡

0
+ 𝑖ℎ)

− ℎ𝑝𝑞𝐸 (𝑡
0
)

𝑚−1

∑

𝑖=1

𝐶
2
(𝑡
0
, 𝑖) 𝐸 (𝑡

0
+ 𝑖ℎ)

− 𝑐ℎ

𝑚−1

∑

𝑖=1

𝐸 (𝑡
0
+ 𝑖ℎ)
2
]

+ [
ℎ𝑝𝑞

2
𝐶
1
(𝑡
0
, 𝑚) 𝐸 (𝑡

0
+ 𝑚ℎ)

−
ℎ𝑝𝑞

2
𝐶
2
(𝑡
0
, 𝑚) 𝐸 (𝑡

0
) 𝐸 (𝑡
0
+ 𝑚ℎ)

−
𝑐ℎ

2
𝐸 (𝑡
0
+ 𝑚ℎ)

2
] .

(24)

Also, the first term in the right-hand side of objective function
(19) is given by

𝑘

2
𝐵 (𝑡
0
+ 𝑚ℎ) =

𝑘

2
[𝐶
1
(𝑡
0
, 𝑚) − 𝐶

2
(𝑡
0
, 𝑚) 𝐸 (𝑡

0
)] . (25)

Combining (24) and (25), and after some simple computa-
tions, the objective function (19) becomes

𝐽 (𝑡
0
, 𝐸) ≃ 𝑀(𝑡

0
) − G (𝑡

0
)
⊤
E (𝑡
0
)

+ E (𝑡
0
)
⊤Q (𝑡

0
)E (𝑡
0
) ,

(26)

where𝑀(𝑡
0
) := (𝑘/2)𝐶

1
(𝑡
0
, 𝑚) is independent of the control,

E(𝑡
0
) and G(𝑡

0
) are the (𝑚 + 1)-tuple vectors defined by

E (𝑡
0
) := [𝐸 (𝑡

0
) , 𝐸 (𝑡

0
+ ℎ) ,

𝐸 (𝑡
0
+ 2ℎ) , . . . , 𝐸 (𝑡

0
+ 𝑚ℎ)]

⊤
;

G (𝑡
0
)

:= −ℎ𝑝𝑞 [
1

2
𝐵 (𝑡
0
) −

𝑘

2ℎ𝑝𝑞
𝐶
2
(𝑡
0
, 𝑚) , 𝐶

1
(𝑡
0
, 1) ,

𝐶
1
(𝑡
0
, 2) , . . . , 𝐶

1
(𝑡
0
, 𝑚 − 1) ,

1

2
𝐶
1
(𝑡
0
, 𝑚)]

⊤

,

(27)

andQ(𝑡
0
) is a square matrix of order (𝑚 + 1):

Q (𝑡
0
) := −𝑐ℎ

[
[
[
[
[
[
[
[
[
[
[
[

[

1

2

𝑝𝑞

𝑐
𝐶
2
(𝑡
0
, 1)

𝑝𝑞

𝑐
𝐶
2
(𝑡
0
, 2) ⋅ ⋅ ⋅

𝑝𝑞

𝑐
𝐶
2
(𝑡
0
, 𝑚 − 1)

𝑝𝑞

2𝑐
𝐶
2
(𝑡
0
, 𝑚)

0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 ⋅ ⋅ ⋅ 1 0

0 0 0 ⋅ ⋅ ⋅ 0
1

2

]
]
]
]
]
]
]
]
]
]
]
]

]

. (28)

Clearly, its inverseQ(𝑡
0
)
−1 exists (since 𝑐 > 0 and ℎ > 0) and

Q (𝑡
0
)
−1
:= −

1

𝑐ℎ

[
[
[
[
[
[
[
[
[
[

[

2 −
2𝑝𝑞

𝑐
𝐶
2
(𝑡
0
, 1) −

2𝑝𝑞

𝑐
𝐶
2
(𝑡
0
, 2) ⋅ ⋅ ⋅ −

2𝑝𝑞

𝑐
𝐶
2
(𝑡
0
, 𝑚 − 1) −

2𝑝𝑞

𝑐
𝐶
2
(𝑡
0
, 𝑚)

0 1 0 ⋅ ⋅ ⋅ 0 0

0 0 1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 ⋅ ⋅ ⋅ 1 0

0 0 0 ⋅ ⋅ ⋅ 0 2

]
]
]
]
]
]
]
]
]
]

]

. (29)
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Note that the matrix Q(𝑡
0
) is negative definite. The global

mmaximum of 𝐽(𝑡
0
, ⋅) is reached at E(𝑡

0
) such that

E (𝑡
0
) =

1

2
Q (𝑡
0
)
−1
G (𝑡
0
) . (30)

In receding horizon, we obtain 𝐸(𝑡
0
) using the formula

𝐸 (𝑡
0
) = [1, 0, 0, . . . , 0] ⋅ E (𝑡0) (31)

and hence

𝐸 (𝑡
0
) =

𝑝𝑞

𝑐
{2 [

1

2
𝐵 (𝑡
0
) −

𝑘

2ℎ𝑝𝑞
𝐶
2
(𝑡
0
, 𝑚)]

−
2𝑝𝑞

𝑐

𝑚−1

∑

𝑖=1

𝐶
1
(𝑡
0
, 𝑖) 𝐶
2
(𝑡
0
, 𝑖)

−
𝑝𝑞

𝑐
𝐶
1
(𝑡
0
, 𝑚) 𝐶

2
(𝑡
0
, 𝑚)} .

(32)

First Term in (32). Consider

2 [
1

2
𝐵 (𝑡
0
) −

𝑘

2ℎ𝑝𝑞
𝐶
2
(𝑡
0
, 𝑚)]

= 𝐵 (𝑡
0
) −

𝑘

ℎ𝑝𝑞
𝐶
2
(𝑡
0
, 𝑚) = 𝐵 (𝑡

0
) −

𝑘

ℎ𝑝𝑞
𝑚𝑞ℎ𝐵 (𝑡

0
)

= (1 −
𝑘𝑚

𝑝
)𝐵 (𝑡

0
) .

(33)

Second Term in (32). Let 𝛼 = ∑𝑚−1
𝑖=1

𝑖 = 𝑚(𝑚 − 1)/2 and 𝛽 =
∑
𝑚−1

𝑖=1
𝑖
2
= 𝑚(𝑚 − 1)(2𝑚 − 1)/6:

2𝑝𝑞

𝑐

𝑚−1

∑

𝑖=1

𝐶
1
(𝑡
0
, 𝑖) 𝐶
2
(𝑡
0
, 𝑖)

=
2𝑝𝑞

𝑐

𝑚−1

∑

𝑖=1

𝐵 (𝑡
0
) {1 + 𝑖ℎ𝑟 [1 −

𝐵 (𝑡
0
)

𝐾
]} 𝑖ℎ𝑞𝐵 (𝑡

0
)

=
2𝑝𝑞

𝑐
𝐵 (𝑡
0
)
2
ℎ𝑞{𝛼 + 𝛽ℎ𝑟 [1 −

𝐵 (𝑡
0
)

𝐾
]}

=
2ℎ𝑝𝑞
2

𝑐
𝐵 (𝑡
0
)
2
[𝛼 + 𝛽ℎ𝑟 −

𝛽ℎ𝑟

𝐾
𝐵 (𝑡
0
)]

=
2ℎ𝑝𝑞
2

𝑐
[(𝛼 + 𝛽ℎ𝑟) 𝐵 (𝑡

0
)
2
−
𝛽ℎ𝑟

𝐾
𝐵 (𝑡
0
)
3
] .

(34)

Third Term in (32). Consider
𝑝𝑞

𝑐
𝐶
1
(𝑡
0
, 𝑚)𝐶

2
(𝑡
0
, 𝑚)

=
𝑝𝑞

𝑐
𝑚𝐵 (𝑡

0
) ℎ𝑞𝐵 (𝑡

0
) {1 + 𝑚ℎ𝑟 [1 −

𝐵 (𝑡
0
)

𝐾
]}

=
ℎ𝑚𝑝𝑞

2

𝑐
𝐵 (𝑡
0
)
2
[1 + ℎ𝑚𝑟 −

ℎ𝑚𝑟

𝐾
𝐵 (𝑡
0
)]

=
ℎ𝑚𝑝𝑞

2

𝑐
[(1 + ℎ𝑚𝑟) 𝐵 (𝑡

0
)
2
−
ℎ𝑚𝑟

𝐾
𝐵 (𝑡
0
)
3
] .

(35)

Therefore (32) becomes

𝐸 (𝑡
0
)

=
𝑝𝑞

𝑐
{(1 −

𝑘𝑚

𝑝
)𝐵 (𝑡

0
)

−
2ℎ𝑝𝑞
2

𝑐
[(𝛼 + 𝛽ℎ𝑟) 𝐵 (𝑡

0
)
2
−
𝛽ℎ𝑟

𝐾
𝐵 (𝑡
0
)
3
]

−
ℎ𝑚𝑝𝑞

2

𝑐
[(1 + ℎ𝑚𝑟) 𝐵 (𝑡0)

2
−
ℎ𝑚𝑟

𝐾
𝐵 (𝑡
0
)
3
]} .

(36)

Since the choice of 𝑡
0
was arbitrary in [0,𝐻] we deduce the

general relationship between the optimal control 𝐸 and the
state 𝐵 over the whole horizon interval [0,𝐻] as follows:

𝐸 (⋅) = 𝐵 (⋅) [𝑏
1
+ 𝑏
2
𝐵 (⋅) + 𝑏

3
𝐵 (⋅)
2
] , (37)

where

𝑏
1
:=
𝑝𝑞

𝑐
(1 −

𝑘𝑚

𝑝
) ,

𝑏
2
:= −

𝑝𝑞

𝑐
{
2ℎ𝑝𝑞
2
(𝛼 + 𝛽ℎ𝑟)

𝑐
+
ℎ𝑚𝑝𝑞

2
(1 + ℎ𝑚𝑟)

𝑐
}

= −
ℎ𝑝
2
𝑞
3

𝑐2
{2 (𝛼 + 𝛽ℎ𝑟) + 𝑚 (1 + ℎ𝑚𝑟)} ,

𝑏
3
:=
𝑝𝑞

𝑐
{
2ℎ𝑝𝑞
2

𝑐

𝛽ℎ𝑟

𝐾
+
ℎ𝑚𝑝𝑞

2

𝑐

ℎ𝑚𝑟

𝐾
}

=
ℎ
2
𝑝
2
𝑞
3
𝑟

𝑐2𝐾
(2𝛽 + 𝑚

2
) .

(38)

Substituting (37) in the state equation (16) we obtain the
following differential equation:

𝑑

𝑑𝑡
𝐵 (𝑡) = 𝑟𝐵 (𝑡) [1 −

𝐵 (𝑡)

𝐾
]

− 𝑞𝐵 (𝑡)
2
[𝑏
1
+ 𝑏
2
𝐵 (𝑡) + 𝑏

3
𝐵 (𝑡)
2
] ,

(39)

which will be solved numerically over the interval [𝑡
0
, 𝑡
0
+𝑇]

with the initial condition𝐵(𝑡
0
) = 𝐵
𝑡0
to get the solution𝐵 over

[𝑡
0
, 𝑡
0
+ 𝑇] for any 𝑡

0
∈ [0,𝐻]. Once 𝐵 is found we replace its

value in 𝐸 to find the optimal value of the harvesting effort.
Since the harvesting effort 𝐸must be nonnegative due to

the real life assumptions on the model, we use the following
maximum formula, usually used in optimal control theory
(see, for instance, Sethi andThompson [23]), for the optimal
control 𝐸∗ :

𝐸
∗
(⋅) = max (0, 𝐸 (⋅)) . (40)

4. Illustrative Examples

We provide in this section simulation examples to show
different types of solutions that can be obtained using
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Figure 1: Variations of 𝐵∗ and 𝐸∗ as functions of 𝑡 on [𝑡
0
, 𝑡
0
+ 𝑇] in Case 1.
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Figure 2: Variations of 𝐵∗ and 𝐸∗ as functions of 𝑡 on [𝑡
0
, 𝑡
0
+ 𝑇] in Case 2.

the results obtained in the previous section. For a given time
horizon𝐻 = 10, we take for all the following simulations an
instant time 𝑡

0
= 2 and a prediction horizon 𝑇 = 1.25.

Case 1. Consider the following values of parameters: 𝑐 = 0.1,
𝑟 = 0.6, 𝐾 = 100, 𝑞 = 0.01, 𝑘 = 0.1, 𝑝 = 5, ℎ = 0.05,
𝑚 = 25, and 𝐵

0
= 0.2. Figure 1 shows the variations of the

optimal state and control variables. To obtain these graphs,
first, the differential equation (39) is solved numerically using
themathematical packageMATLAB.The result is given in the
formof the left graph in Figure 1.The biomass of the fish stock
increases monotonically, starting from the initial state 𝐵

𝑡0
=

0.2.Then, using (37), the optimal harvesting effort is obtained
as the right graph in Figure 1. It is also a monotonically
increasing function of time. Finally, the optimal objective

profit at any time 𝑡
0
is evaluated by substituting the expression

of the optimal control (30) in (26) and we obtain

𝐽
∗
(𝑡
0
) = 𝑀(𝑡

0
) −

1

4
G (𝑡
0
)
⊤Q (𝑡

0
)
−1
G (𝑡
0
) . (41)

Case 2. We keep all the parameters constant as in Case 1,
except for the growth coefficient which is taken to be 𝑟 =

1.9 instead of 0.6. The results are depicted in Figure 2. We
note that the optimal biomass of the fish stock is again
increasing as in Case 1; however it reaches amuch higher level
since the growth rate is much higher. The optimal harvesting
effort increases at first to reach a maximum effort and then
decreases to reach the value 0 at time 𝑡 = 2.983 and remains 0
on the interval [2.983, 3.25]. The reason the harvesting effort
is 0 is that (37) is negative on this interval.



Mathematical Problems in Engineering 7

2 2.5 3 3.5
2

2.5

3

3.5

4

4.5

Time

B
(t
)

2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

E
(t
)

Plot of B as a function of time over [t, t + T] Plot of E as a function of time over [t, t + T]

Figure 3: Variations of 𝐵∗ and 𝐸∗ as functions of 𝑡 on [𝑡
0
, 𝑡
0
+ 𝑇] in Case 3.

2 2.5 3 3.5
0.1993

0.1994

0.1995

0.1996

0.1997

0.1998

0.1999

0.2

0.2001

Time

B
(t
)

2 2.5 3 3.5
0.2991

0.2992

0.2993

0.2994

0.2995

0.2996

0.2997

0.2998

0.2999

0.3

0.3001

Time

E
(t
)

Plot of B as a function of time over [t, t + T] Plot of E as a function of time over [t, t + T]
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+ 𝑇] in Case 4.

Case 3. Again, we keep all the parameters constants as in
Case 1, except for the initial biomass which is taken to be
𝐵
𝑡0
= 2 instead of 0.2. The results are plotted in Figure 3.

The biomass increases monotonically starting from the initial
value 2. It is much higher than the biomass of Case 1.
The resulting harvesting effort is monotonically decreasing
during the prediction interval [𝑡

0
, 𝑡
0
+ 𝑇] = [2, 3.25].

Case 4. Once again, we keep all the parameters constants as
in Case 1, except for the growth coefficient which is taken to
be 𝑟 = 0.0004 instead of 0.6 and for the constant price per
unit biomass 𝑝 = 20 instead of 5. The results are plotted
in Figure 4. Contrarily to the previous cases, the biomass in
this case is decreasing monotonically during the prediction
interval.

5. Conclusion

Optimal control theory has been plentifully used to deter-
mine at time 𝑡 = 0 the optimal harvesting effort on a

planning interval [0,𝐻]. In contrast, starting at time 𝑡
0
= 0

with the current state 𝐵(0) = 𝐵
0
, NMPC determines the

optimal harvesting effort on the prediction interval [𝑡
0
, 𝑡
0
+

𝑇] = [0, 𝑇]. Then at time 𝑡
0
= 𝑇 with the current state

𝐵(𝑡
0
) = 𝐵(𝑇), the optimal harvesting effort is determined on

the prediction interval [𝑡
0
, 𝑡
0
+ 𝑇] = [𝑇, 2𝑇]. This process is

repeated over and over until time𝐻.The determination of the
optimal control on the time intervals [𝑡

0
, 𝑡
0
+ 𝑇] is the step

that requires the most calculations. We overcome difficulty
by using a judicious approximation of the objective function
calculation. The results obtained are easily implementable as
shown in Section 4.

Themethod described in this paper is quite robust andwe
propose to further experiment it on more complex models.
For example, the catch-rate function (5) could be used instead
of the function (3); the intrinsic growth of rate 𝑟 and the
carrying capacity of the fish population could be periodic
functions; the Gompertz law of growth (8) could be used
instead of the logistic growth rate (2); and/or a discounted
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cost function with either a constant or dynamic discount
factor could be used.
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