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As the scale of the data centers increases, electricity cost is becoming the fastest-growing element in their operation costs. In
this paper, we investigate the electricity cost reduction opportunities utilizing energy storage facilities in data centers used as
uninterrupted power supply units (UPS). Its basic idea is to combine the temporal diversity of electricity price and the energy
storage to conceive a strategy for reducing the electricity cost. The electricity cost minimization is formulated in the framework of
finite state-action discounted costMarkov decision process (MDP).We apply𝑄-Learning algorithm to solve theMDP optimization
problemandderive a dynamic energy storage control strategy, which does not require any priori information on theMarkov process.
In order to address the slow-convergence problemof the𝑄-Learning based algorithm,we introduce a Speedy𝑄-Learning algorithm.
We further discuss the offline optimization problem and obtain the optimal offline solution as the lower bound on the performance
of the online and learning theoretic problem. Finally, we evaluate the performance of the proposed scheme by using real workload
traces and electricity price data sets. The experimental results show the effectiveness of the proposed scheme.

1. Introduction

Cloud computing is an emerging Internet-based computing
paradigm which offers on-demand computing services to
cloud consumers. To meet the increasing demands of com-
puting and storage resources in cloud computing, there is
an increasing trend toward large-scale data centers. As more
data centers are deployed and their scale increases, energy
consumption cost is becoming the fastest-growing element
in their operation costs, including the computing energy
cost, cooling energy cost, and other energy overheads. It has
been estimated that energy consumption cost may amount
to 30%–50% percentage of operation cost of large-scale data
centers built by companies such as Google, Microsoft, and
Facebook [1]. In fact, data centers consumed approximately
1.5% of all electricity consumption worldwide in 2010, which
was about 56% higher than the preceding five years [2, 3].
In the near future, the energy consumption cost problem
of data centers is likely to worsen and be more challenging
since the technology infrastructures emerge and upgrade
from a recessionary period. Hence, efficiently controlling

the electricity cost of data centers has attracted an intensive
concern of broader research community participating from
both academia and industry in the recent years.

As we know, electricity cost generation depends not only
on the total amount of energy consumed by the data centers,
but also on the electricity price. Therefore, the electricity
price is also an important factor in the electricity cost of
data centers. With the development of smart grid technology
which is a technology for the next generation power grid,
more and more electricity markets are undergoing deregu-
lation where the electricity market operators offer dynamic
electricity rates to large industrial and commercial customers
instead of traditional flat rates at the retail level.Thus, there is
an opportunity for us to achieve the electricity consumption
cost saving in data centers by observing and utilizing the
time-varying electricity price in the deregulated electricity
markets.

Normally, the UPS units may be deployed in data centers,
and provide emergency energy to power themupusing stored
energy before the backup diesel generators (DG) can start
up and operate as a secondary power source when the main

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 380926, 13 pages
http://dx.doi.org/10.1155/2015/380926



2 Mathematical Problems in Engineering

power system experiences an outage. Usually, the transition
from the main power system to the secondary power source
takes 10–20 seconds. As an improvement of the rechargeable
battery, the UPS units have enough energy storage capacity
for keeping a data center working 5–30 minutes at its
maximum power demand [4]. Hence, the excessive energy
storage capacity gives us a good opportunity for electricity
cost saving utilizing the UPS units to dynamically control
energy storage.

Based on the above two facts, the basic principle for
achieving the electricity cost saving is recharging the UPS
units residing in the data center when the outside electricity
price is low and discharging for powering the data center
when the outside electricity price is high. Hence, this paper
focuses on a dynamic energy storage control strategy for
reducing the electricity cost of the data centers. Dynamic
energy storage control is expected to adapt the fluctuation
of the electricity price and the workload by dynamically
making recharge/discharge decisions for the UPS units. It
aims for achieving substantial electricity cost saving without
performance degradation.

In this paper, we formulate the electricity cost reduction
problem utilizing energy storage facilities as the discounted
cost Markov decision process. Since the statistical informa-
tion about the workload arrival and the electricity price is
not available, we propose an online algorithm based on 𝑄-
Learning and Speedy 𝑄-Learning approaches to solve the
optimization problem. Particularly, themain contributions of
this paper are summarized as follows.

(i) The problem of electricity cost minimization in data
centers with energy storage facilities for time-varying
electricity prices under deregulated electricity mar-
kets is modeled by a discounted cost Markov decision
process, which achieves the cost saving by making
decisions to recharge/discharge the battery.

(ii) In order to solve the optimization problem, we
propose a dynamic energy storage control strategy
based on the𝑄-Learning algorithm, which avoids the
reliance on any prior knowledge of the workload and
the electricity prices. Furthermore, we introduce a
Speedy 𝑄-Learning algorithm to accelerate conver-
gence of the standard 𝑄-Learning.

(iii) We formulate an offline optimization problem of
electricity cost minimization for obtaining the opti-
mal offline solution as the lower bound on the
performance of the online and learning theoretic
problem. The offline optimization problem is solved
by mapping it into a tractable mixed integer linear
programming instead of nonlinear programming.

(iv) Finally, the experiments are carried out based on
real workload traces and electricity price data sets to
show the performance of the proposed scheme. By
using the real traces that may not provably follow the
Markovian assumption, the result also shows that the
proposed scheme generally performs well.

The rest of the paper is organized as follows: in Section 2
some related works in this area are presented and discussed.

Section 3 describes a system model for energy manage-
ment system using energy storage facilities in date centers.
Section 4 formulates the problem of electricity cost con-
sumption in the data centers with energy storage facilities
as a discounted cost Markov decision process. Section 5
is devoted to designing a dynamic energy storage control
strategy of battery based on 𝑄-Learning and Speedy 𝑄-
Learning algorithms to solve the optimization problem. The
optimal offline solution is discussed in Section 6. In Section 7,
we provide the numerical evaluation results and performance
comparisons. Finally, conclusions are drawn in Section 8.

2. Related Work

The severe energy consumption problem in data centers has
motivated many works on reducing their electricity cost.
These works may be roughly categorized into two basic
types of mechanisms: (1) reduce the energy consumption or
improve the energy efficiency of the data centers; and (2)
exploit the temporal and geographical variation of electricity
prices to achieve the electricity cost saving.

Regarding the first mechanism, new hardware designs
and engineering techniques such as energy-efficient chips,
multicore servers [5], DC power supplies [6], advanced
cooling systems [7, 8], and virtualization [9, 10] have been
developed in order to improve the power utilization efficiency
(PUE) of data centers. From the perspective of algorithm
design, the energy consumption saving can operate at two
different levels: the server level and the data center level
[4]. At the server level, dynamic voltage-frequency scaling
(DVFS) [11] offers a way to reduce power consumption by
adapting both voltage and frequency of CPU with respect
to changing workloads. However, DVFS can be applicable
only for components (like CPU) that support multiple speed
and voltage levels. DVFS based power saving policies can
be found in [12, 13]. Dynamic power management (DPM)
is another energy conservation approach, which turns off
the power or switches the system to a low-power state when
inactive. It can be employed for any system component with
multiple power states. In [14], DPM is applied to achieve
energy-efficient computation by selectively turning off (or
reducing the performance of) system components when they
are idle (or partially unexploited).

At the data center level, dynamic cluster reconfiguration
(DCR) [15], VM migration and consolidation for load bal-
ancing and powermanagement [16], and so forth, approaches
are widely discussed for reducing energy consumption in the
data centers. DCR in [15] develops an online measurement
based algorithm to decide the number of servers to power
on/off to achieve energy saving while keeping the overload
probability below a desired threshold, whichmakes a decision
without any prior knowledge of the workload statistics.
VM migration and consolidation [16] achieve energy saving
by continuous consolidation of VMs according to current
resource utilization, virtual network topologies connecting
VMs, and thermal state of computing nodes. These meth-



Mathematical Problems in Engineering 3

ods mentioned above mainly focus toward reducing energy
consumption to save electricity cost. They can operate as a
complementary way to assist the method proposed in this
paper to further reduce the electricity cost.

The second mechanism for reducing electricity cost
relies on the fact of the notable temporal and geographical
variations in electricity prices. In [1], Qureshi et al. develop
and analyze a new method for reducing the electricity costs
when running large Internet-scale systems. The key idea
of the method is to distribute more traffic to data centers
with low electricity price. In [17], Rao et al. utilize both the
location diversity and the time diversity of electricity prices
in the multiple electricity markets environment to minimize
the total electricity cost while guaranteeing the quality of
service (QoS). Luo et al. [18] propose a novel spatiotemporal
load balancing approach to leverage both geographic and
temporal variations of electricity price to minimize energy
cost for distributed internet data centers (IDC). However,
those works mentioned above do not utilize energy stor-
age facilities residing in data centers, which may be used
to achieve further electricity cost saving. Compared with
existing techniques for electricity cost reduction, themethods
of energy storage have no performance degradation of the
data center. In this paper, our work focuses on the problem
of electricity cost minimization in data centers with energy
storage facilities under deregulated electricity markets where
the electricity prices exhibit temporal variation, which is
mainlymotivated by [19]. In [19], an online control algorithm
using Lyapunov optimization theory is proposed for reducing
the time average electric utility bill in a data center, and the
solution has the threshold structure. Although simple, the
technique of Lyapunov optimization is unable to learn the
systemdynamics, whichmay not lead to an optimal control of
energy storage. Alternatively, by exploiting aMarkov decision
process approach and reinforcement learning tool, the pro-
posed algorithms learn the system dynamics and adapt the
control decision accordingly for saving more electricity cost.
Generally, the optimal control policies for Markov decision
process suffer from the “curse of dimensionality.” In ourwork,
we consider the total energy consumption of all components
in the data center as the energy consumption state instead of
each component’s individually. Furthermore, there are only
three actions on the battery, that is, recharging, discharging,
and doing neither. Thus, all of those considerations may
effectively alleviate the problem of “curse of dimensionality.”

3. System Model

In this section, we describe system architecture model for
energy management in data center, present the models for
battery, energy consumption, and electricity cost, as well as
formulating the problem of dynamic energy storage control
to minimize the expected total electricity cost.

3.1. SystemArchitecture. Ageneral system architecturemodel
for data center with energy storage facilities, depicted in
Figure 1, is composed of an energy management system
(EMS) and a data center facility. EMS acts as the heart
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Figure 1: Energy management framework using energy storage
facilities in data center.

of the energy management framework and manages the
energy provision in data center, while the data center facility
provides computation and storage resources for executing
the submitted tasks. In EMS, the key components include
information collector (IC) and energy storage management
unit (ESMU). IC is to collect the information of the electricity
prices, energy storage, and the energy demand generated
by the data center periodically, while ESMU is to make
the optimal decision on whether recharging or discharging
the energy storage facilities for electricity cost minimization
according to the information collected by IC. The energy
storage unit (ESU), that is, UPS, has the capability of storing
energy drawn from the power grid and discharging the stored
energy to power the data center. Below, we use the terms UPS
and battery interchangeably.Themainwork of this paper is to
propose a dynamic energy storage control strategy for ESMU.

The basic running process of EMS can be generally
described as follows. IC periodically collects the battery
level information as well as the electricity price information
from the grid. The data center submits its energy demand
information to IC, and ESMU uses this information to make
the decision that the energy supply draws from grid or the
battery. Finally, the data center can provide services using the
energy managed by EMS.

3.2. Mathematical Model. In this subsection, we introduce
the time-slotted system model used in this paper, and the
time is divided into slots of equal duration of 𝑚 minutes.
It should be noted that small value of the time slot size,
𝑚, is beneficial for characterizing the state variation of
the system in a small time granularity, thus achieving a
better cost saving policy due to its prompt adaptation to the
changes of the system state. But it may increase the battery
cost owing to the increased switching frequency switching
of recharge/discharge battery. Therefore, a time slot size
should be appropriately selected. The energy storage control
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decisions are made at the beginning of each slot, and the
system’s state is assumed to be constant throughout each slot.

From [4], we know that the energy consumption demand
of data center in each slot is proportional to the total
number of workload requests needed to be served in that
slot. The workload requests served in each slot consist of the
unfinished requests in the last slot and the new incoming
requests in current slot, which implies that the energy
consumption demand of data center in each slot depends
upon the previous energy demand, not upon other history
demands, and it fulfills the Markov property.Thus, we model
the energy consumption demands of data center in each slot
as correlated time processes following a first-order discrete-
time Markov model. The energy consumption demand in
each slot is assumed to be known at the beginning of a
time slot. In reality, this has to be estimated. There are
several effective methods for estimating the workload, such
as autoregressive and moving-average (ARMA). Let 𝐿

𝑛
be

energy consumption demand of data center in the slot 𝑛, 𝐿
𝑛
∈

L ≜ {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑁L
}, where 𝑁L is the number of elements

inL. The elements inL have nonnegative and finite values;
that is, 0 ≤ 𝑙

𝑖
≤ 𝑙max, for 𝑖 = 1, . . . , 𝑁L. 𝑟𝑙 (𝑙𝑖, 𝑙𝑗) denotes the

state transition probability which means that the probability
of state transition from 𝑙

𝑖
to 𝑙
𝑗
is 𝑟
𝑙
(𝑙
𝑖
, 𝑙
𝑗
).

The energy market usually consists of Day-Ahead market
and Real-Time market [1]. In this paper, we consider the
data centers in Real-Time market. Real-time market is a spot
market in which the current real-time price is calculated
every five minutes or so, based on actual grid operating
conditions, rather than expected load. The electricity price
in Real-Time electricity market in the slot 𝑛 is denoted by
𝑃
𝑛
, where 𝑃

𝑛
∈ P ≜ {𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑁P
}, 𝑁P is the number

of elements in P, and the elements are assumed to be
nonnegative and finite values; that is, 0 ≤ 𝑝

𝑖
≤ 𝑝max, for 𝑖 =

1, . . . , 𝑁P. Following [20], we model the electricity price 𝑃
𝑛

as a Markov chain, and 𝑟
𝑝
(𝑝
𝑖
, 𝑝
𝑗
) denotes its state transition

probability.
In current data centers, UPS units use lead-acid batteries

typically.There are several characteristics of battery operation
when using a lead-acid battery practically. For a given battery,
each recharge-discharge cycle has energy loss due to AC-DC
conversion, so the battery may not be completely efficient,
and its performance is affected by the recharge efficiency
𝜂
𝑐
∈ (0, 1] and discharge efficiency 𝜂

𝑑
∈ (0, 1] [21]. The

energy in the battery is also subject to dissipation over time; it
exhibits a leaky character. However, considering that storage
leak loss is much smaller than that of interest to us, it is
negligible for lead-acid batteries [19].The recharging rate 𝑅 is
assumed to be constant.This is a reasonable assumptionwhen
the battery recharges in the constant current way. To assess
the impact of repeated recharging and discharging on the
battery’s lifetime, we assume that each recharge and discharge
operation incurs a fixed cost of 𝐶

𝑟
and 𝐶

𝑑
, respectively. From

[19], we have 𝐶
𝑟
= 𝐶
𝑑
= 𝐶
𝑏
/𝐾 when a new battery costs

𝐶
𝑏
dollars and it can sustain𝐾 recharge/discharge cycles. Let

𝐵
𝑛
be the battery energy level in the slot 𝑛, which is no more

than battery capacity of 𝐵max; that is, 𝐵𝑛 ≤ 𝐵max for all 𝑛. The
UPS unit is mainly employed to power data center using the
stored energy in case of power failure before the backup diesel

generators start up and provide power. In order to ensure the
reliability of the data center, the battery energy level 𝐵

𝑛
is

required to maintain a minimum energy level 𝐵min ≥ 0; that
is, 𝐵
𝑛
≥ 𝐵min for all 𝑛. Hence, the battery energy level 𝐵

𝑛
is

subject to a constraint:

𝐵min ≤ 𝐵𝑛 ≤ 𝐵max. (1)

Let 𝑋
𝑛
∈ {−1, 0, 1} be the decision variable of the

event that the battery is recharged/discharged in the slot 𝑛.
Without loss of generality, we assume that recharge/discharge
operations cannot be done simultaneously; that is to say, we
can either recharge or discharge the battery or do neither, but
not both. Thus,𝑋

𝑛
can be defined as follows:

𝑋
𝑛
=

{{

{{

{

1, if recharging the battery in the slot 𝑛
−1, if discharging the battery in the slot 𝑛
0, otherwise.

(2)

Let 𝑅
𝑛
represent the amount of energy bought to recharge the

battery in the slot 𝑛, and 𝐷
𝑛
denote the energy used towards

satisfying demand in the slot 𝑛. Then, 𝑅
𝑛
and 𝐷

𝑛
can be

expressed as follows:

𝑅
𝑛
= 𝛿 (𝑋

𝑛
) 𝑅,

𝐷
𝑛
= 𝛿 (−𝑋

𝑛
) 𝐿
𝑛
,

(3)

where 𝛿(𝑥) is an indicator function, defined as

𝛿 (𝑥) = {
1, if 𝑥 > 0
0, otherwise.

(4)

The update equation for the battery energy level 𝐵
𝑛+1

in the
slot 𝑛 + 1 can be expressed as

𝐵
𝑛+1

= 𝐵
𝑛
+ 𝜂
𝑐
𝑅
𝑛
−
1

𝜂
𝑑

𝐷
𝑛

= 𝐵
𝑛
+ 𝜂
𝑐
𝛿 (𝑋
𝑛
) 𝑅 − 𝛿 (−𝑋

𝑛
)
1

𝜂
𝑑

𝐿
𝑛
,

(5)

where 𝜂
𝑐
𝑅
𝑛
implies that the energy purchased to recharge

the battery is reduced by the recharge efficiency 𝜂
𝑐
, while

(1/𝜂
𝑑
)𝐷
𝑛
implies that only a fraction 𝜂

𝑑
of the discharged

energy is converted into electricity under the discharge
efficiency 𝜂

𝑑
.

According to inequality (1), the battery level 𝐵
𝑛+1

cannot
exceed its maximum capacity and be lower than the mini-
mum battery level. Therefore, 𝑅

𝑛
and 𝐷

𝑛
have to satisfy the

constraints as follows:

0 ≤ 𝜂
𝑐
𝑅
𝑛
≤ 𝐵max − 𝐵𝑛,

0 ≤
1

𝜂
𝑑

𝐷
𝑛
≤ 𝐵
𝑛
− 𝐵min.

(6)

Let 𝐺
𝑛
represent the external energy drawn from the

power grid in the slot 𝑛, which is used to power data center
and recharge the battery. As shown in Figure 1, in order to
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meet the energy consumption demand for powering the data
center in the slot 𝑛, we have

𝐿
𝑛
= 𝐺
𝑛
− 𝑅
𝑛
+ 𝐷
𝑛
. (7)

Thus, the total amount of energy drawn from the grid in
the slot 𝑛 can be written as

𝐺
𝑛
= 𝐿
𝑛
− 𝐷
𝑛
+ 𝑅
𝑛

= 𝐿
𝑛
− 𝛿 (−𝑋

𝑛
) 𝐿
𝑛
+ 𝛿 (𝑋

𝑛
) 𝑅.

(8)

For notational simplicity, according to the indicator function
𝛿(𝑥), 𝐺

𝑛
can also be denoted as

𝐺
𝑛
= 𝛿 (1 + 𝑋

𝑛
) 𝐿
𝑛
+ 𝛿 (𝑋

𝑛
) 𝑅. (9)

Define 𝐶
𝑛
as the total immediate cost incurred in the slot

𝑛. Then, we have for all 𝑛

𝐶
𝑛
= 𝑃
𝑛
𝐺
𝑛
+ 𝛿 (𝑋

𝑛
) 𝐶
𝑟
+ 𝛿 (−𝑋

𝑛
) 𝐶
𝑑

= 𝑃
𝑛
(𝛿 (1 + 𝑋

𝑛
) 𝐿
𝑛
+ 𝛿 (𝑋

𝑛
) 𝑅)

+ 𝛿 (𝑋
𝑛
) 𝐶
𝑟
+ 𝛿 (−𝑋

𝑛
) 𝐶
𝑑
,

(10)

where the term 𝑃
𝑛
𝐺
𝑛
in the first equation is the electricity

cost for the energy consumption in the slot 𝑛, while the term
𝛿(𝑋
𝑛
)𝐶
𝑟
+ 𝛿(−𝑋

𝑛
)𝐶
𝑑
represents the battery cost for each

recharge and discharge operation.
In this paper, the goal of dynamic energy storage control

is to minimize the expected total electricity cost in the data
centers with energy storage facilities. Based on the above
models, the problem can be formulated as follows:

min
{𝑋𝑖}
∞

𝑖=0

lim
𝑁→∞

E{
𝑁

∑
𝑛=0

𝛾
𝑛

𝐶
𝑛
}

s.t. (5) and (6) ,

(11)

where E[⋅] denotes expectation operator, and 0 < 𝛾 < 1 is
the discount factor that represents value reduction over time.
The reason for considering discounted electricity costs is to
emphasize early decisions and costs, in order to emulate the
effect of reduced battery efficiency over time. Note that the
total discounted electricity cost is finite, since the per-slot
costs are bounded. We call this problem the expected total
electricity cost minimization problem (ETC-problem) as the
data center aims at minimizing the total electricity cost.

According to (10), (11) can be rewritten as

min
{𝑋𝑖}
∞

𝑖=0

lim
𝑁→∞

E{
𝑁

∑
𝑛=0

𝛾
𝑛

[𝑃
𝑛
(𝛿 (1 + 𝑋

𝑛
) 𝐿
𝑛
+ 𝛿 (𝑋

𝑛
) 𝑅)

+ 𝛿 (𝑋
𝑛
) 𝐶
𝑟
+ 𝛿 (−𝑋

𝑛
) 𝐶
𝑑
]}

s.t. (5) and (6) .

(12)

3.3. Discussion. In data center, the lower-level management
routines like server consolidation and instantiation of new
VMs may be executed. Different management routines may
have different demand profiles of energy consumption. But
once the lower-level management routine is given, the
demand profile for the workload is determined and can be
mathematically modeled. Hence, we can still apply the above
mentioned model to achieve the electricity cost saving.

4. Cost Management Problem as an MDP

In this section, we will map the problem (12) into the
framework of Markov decision process (MDP). A Markov
decision process, also referred to as a discrete time stochastic
control process, provides a mathematical framework for
modeling decision-making situations where outcomes are
partly random and partly under the control of the deci-
sion maker [22]. An MDP can be defined via a 4-tuple
⟨S,A, 𝑝

𝑥
(𝑠, 𝑠


), 𝐶
𝑥
(𝑠, 𝑠


)⟩, where

(i) S is the finite set of states,
(ii) A is the finite set of actions,
(iii) 𝑟
𝑥
(𝑠, 𝑠


) = Pr(𝑠
𝑛+1

= 𝑠


| 𝑠
𝑛
= 𝑠, 𝑥

𝑛
= 𝑥) denotes

the probability that the system is in state 𝑠 ∈ S at the
(𝑛+1)th slot when the decisionmaker chooses action
𝑥 ∈ A in state 𝑠 at the 𝑛th slot,

(iv) 𝐶
𝑥
(𝑠, 𝑠


) denotes the immediate cost yielded when the
state of the system at the 𝑛th slot is 𝑠, action 𝑥 ∈ A is
selected, and the system occupies state 𝑠 at the (𝑛 +
1)th slot.

The energy management system in data center, as
described above, can be formulated as a finite-state discrete-
timeMDP. In themodel, let 𝑆

𝑛
denote the joint state (hereafter

state) of the system at the 𝑛th slot, and 𝑆
𝑛
consists of the

energy consumption demand 𝐿
𝑛
, the battery energy level 𝐵

𝑛
,

and the electricity price 𝑃
𝑛
. Thus 𝑆

𝑛
can be expressed as the

triple (𝐿
𝑛
, 𝐵
𝑛
, 𝑃
𝑛
). Since all components of 𝑆

𝑛
are discrete and

finite, the number of elements in S is finite, and the set of
states can be denoted by S = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑁S
}, where 𝑁S

is the number of elements in S. An action set represents
all allowable actions in all possible states. According to the
definition of 𝑋

𝑛
in (2), let A = {−1, 0, 1} be the set of

actions for the system, where action −1 indicates that the
battery is discharged while action 1 indicates that the battery
is recharged, and action 0 indicates that the battery is neither
recharged nor discharged. A policy specifies the decision
rule to be used at all decision epoches, and here the time of
making decision-making is referred to as decision epoches.
The policy provides the decision maker with a prescription
for action selection under any possible future system state
or history. The policy 𝜋 = {𝜋

𝑖
, 𝑖 ≥ 0} maps the state space

to the action space. In this paper, we restrict our attention
to stationary deterministic policies that do not depend on
time but only on the current state. Let 𝑟

𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
) denote the

transition probability from state 𝑠
𝑖
to state 𝑠

𝑗
when action 𝑥

𝑘

is taken. The immediate electricity cost is 𝐶
𝑥𝑘
(𝑆
𝑛
, 𝑆
𝑛+1
) when

the action 𝑥
𝑘
∈ A is taken in state 𝑆

𝑛
at the 𝑛th slot, and
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then the state changes to 𝑆
𝑛+1

at the (𝑛 + 1)th slot. Thus, the
objective of an MDP is to find the optimal energy storage
control policy 𝜋(⋅) : S → A that minimizes the expected
total discounted electricity cost for the energy consumption
in the data center over an infinite time horizon. Here the
immediate cost function can be expressed as

𝐶
𝑥
(𝑆
𝑛
, 𝑆
𝑛+1
) = 𝑃
𝑛
(𝛿 (1 + 𝑋

𝑛
) 𝐿
𝑛
+ 𝛿 (𝑋

𝑛
) 𝑅)

+ 𝛿 (𝑋
𝑛
) 𝐶
𝑟
+ 𝛿 (−𝑋

𝑛
) 𝐶
𝑑

(13)

and the expected total discounted electricity cost is equivalent
to (12), and 𝑋

𝑛
= 𝜋(𝑆

𝑛
) is the action taken when the system

is in state 𝑆
𝑛
.

As described in Section 3, the energy consumption
demand and the electricity price can be described by the state
transition probability functions, while the battery energy
level 𝐵

𝑛+1
can be uniquely derived by the update equation

(5) under the given policy 𝜋 and the current system state 𝑆
𝑛
.

Since the system state consists of the energy consumption, the
battery energy level, and electricity price, the transition of the
system state depends only on the current state and the current
action. This means that the model described above fulfills
the Markov property which indicates that a state depends
only on the previous state not on more previous states.
Thus, we can make use of dynamic programming (DP) and
reinforcement learning (RL) theories to solve the problem
(12). For convenience, we will introduce the definition of the
state-value function and action-value function before solving
the MDP problem [23].

Being in search of an optimal policy, the decision maker
needs a facility to differentiate the desirability of possible
successor states, in order to decide on the best action. A
common way to rank states is by computing and using a
so-called state-value function which estimates the expected
discounted sum cost when starting in a specific state 𝑠

𝑖
and

taking actions determined by policy𝜋. Accordingly, the state-
value function for policy 𝜋 is defined as follows:

𝑉
𝜋

(𝑠
𝑖
) ≜ ∑

𝑠𝑗∈S

𝑟
𝜋(𝑠𝑖)

(𝑠
𝑖
, 𝑠
𝑗
) [𝐶
𝜋(𝑠𝑖)

(𝑠
𝑖
, 𝑠
𝑗
) + 𝛾𝑉

𝜋

(𝑠
𝑗
)] . (14)

Equation (14) is also called the Bellman equation for 𝑉𝜋, and
it expresses a relationship between the value of a state and the
value of its successor states.

Similarly, define the value of taking action 𝑥
𝑘
in state 𝑠

𝑖

under the policy 𝜋, denoted by 𝑄𝜋(𝑠
𝑖
, 𝑥
𝑘
), as the expected

discounted cost starting from 𝑠
𝑖
, taking the action 𝑥

𝑘
∈ A,

and thereafter following policy 𝜋. 𝑄𝜋(𝑠
𝑖
, 𝑥
𝑘
) is expressed as

𝑄
𝜋

(𝑠
𝑖
, 𝑥
𝑘
) ≜ ∑

𝑠𝑗∈S

𝑟
𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
) [𝐶
𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
) + 𝛾𝑉

𝜋

(𝑠
𝑗
)] . (15)

𝑄
𝜋 is referred to as action-value function for policy 𝜋.
For finite MDPs, an optimal policy can be precisely

defined in the following way. A policy𝜋 is defined to be better
than or equal to a policy 𝜋 if its expected discounted cost
of 𝜋 is less than or equal to that of 𝜋 for all states. In other
words, 𝜋 ≥ 𝜋 if and only if 𝑉𝜋(𝑠

𝑖
) ≤ 𝑉

𝜋

(𝑠
𝑖
) for all 𝑠

𝑖
∈ S.

Let 𝜋∗ be the optimal policy which is better than or equal

to all the other policies. Accordingly, the state-value function
under the optimal policy 𝜋∗ is

𝑉
𝜋
∗

(𝑠
𝑖
) = min
𝑥𝑖∈A

𝑄
𝜋
∗

(𝑠
𝑖
, 𝑥
𝑖
) . (16)

Intuitively, (16) expresses the fact that the value of a state
under the optimal policy 𝜋∗ must equal the expected dis-
counted cost for the best action from that state. So we can
see that the optimal policy is the greedy policy. According to
(16), the optimal action-value function 𝑄𝜋

∗

(𝑠
𝑖
, 𝑥
𝑖
) under the

optimal policy 𝜋∗ can be written as

𝑄
𝜋
∗

(𝑠
𝑖
, 𝑥
𝑘
)

= ∑

𝑠𝑗∈S

𝑟
𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
) [𝐶
𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
) + 𝛾min
𝑥𝑖∈A

𝑄
𝜋
∗

(𝑠
𝑗
, 𝑥
𝑖
)] .

(17)

As seen from the above analysis, in order to minimize
the expected total electricity cost, we can obtain the optimal
policy by learningQ-value, instead of estimating the demand
and real-time electricity prices to solve (11) directly. Thus,
solving the ETC-problem requires the prior information on
the values of 𝑟

𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
). Unfortunately, accurate probability

distribution of state transition is usually difficult to be
known beforehand in practice. Consequently, 𝑉𝜋

∗

and 𝜋∗
cannot be computed using value iteration. To overcome
this difficulty, we consider applying a model-free learning
theoretic algorithmbased onRL to arrive at an optimal policy
𝜋
∗ which minimizes the expected discounted total cost by

taking actions and observing their corresponding costs. In
the next section, the detailed learning theoretic algorithm is
presented.

5. Learning Theoretic Algorithm

In this section, we will introduce learning theoretic algo-
rithms, namely, 𝑄-Learning and Speedy 𝑄-Learning, which
we have used to find optimal energy storage control policy.
𝑄-Learning is a reinforcement learning (RL) algorithm for
solving the MDP problems and it directly estimates 𝑄𝜋

∗

under the assumption that the system’s dynamics are com-
pletely unknown a priori. It is a well-known model-free
algorithm, so themain advantages of the algorithm are simple
and easy implementation as well as online operation [24].
Hence, 𝑄-Learning is well-suited for our ETC-problem. The
core of 𝑄-Learning algorithm is a 𝑄-table and an algorithm
for updating the 𝑄-table and choosing actions. A 𝑄-table
𝑄(𝑠
𝑖
, 𝑥
𝑘
) is a matrix indexed by state 𝑠

𝑖
and action 𝑥

𝑘
, which

is the expected discounted cost of taking action 𝑥
𝑘
in state 𝑠

𝑖
.

According to (15), we can see that the action-value
function 𝑄𝜋(𝑠

𝑖
, 𝑥
𝑘
) can be expressed as a combination of

the expected immediate cost and the state-value function
𝑉
𝜋

(𝑠
𝑗
) of the next state when following the policy 𝜋. Note

that𝑄𝜋(𝑠
𝑖
, 𝑥
𝑘
)provides the expected long-term consequences

for each state-action pair. Then the action incurring the
lowest expected cost can be taken as the optimal action
just by observing 𝑄𝜋

∗

(𝑠
𝑖
, 𝑥
𝑘
). Hence, the optimal action-

value function allows optimal actions to be selected without
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knowing anything about 𝑟
𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
), and we can derive the

optimal policy 𝜋∗ by estimating 𝑄𝜋
∗

(𝑠
𝑖
, 𝑥
𝑘
). The 𝑄-Learning

process tries to find 𝑄𝜋
∗

(𝑠
𝑖
, 𝑥
𝑘
) in a recursive manner. Let

𝑄
𝑛
(𝑠
𝑖
, 𝑥
𝑘
) be the estimate of 𝑄𝜋

∗

(𝑠
𝑖
, 𝑥
𝑘
) in the 𝑛th iteration.

Then, in each slot the update process of the estimate𝑄
𝑛
(𝑠
𝑖
, 𝑥
𝑘
)

can be described as follows:

(i) observe the current state 𝑠
𝑖
← 𝑆
𝑛
∈ S,

(ii) choose action 𝑥
𝑘
← 𝑋
𝑛
∈ A, and then perform the

chosen action 𝑥
𝑘
,

(iii) observe the next state 𝑠
𝑗
← 𝑆
𝑛+1

∈ S, and receive an
immediate cost 𝐶

𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
),

(iv) update the estimate 𝑄
𝑛
(𝑠
𝑖
, 𝑥
𝑘
) according to

𝑄
𝑛
(𝑠
𝑖
, 𝑥
𝑘
) = (1 − 𝜌

𝑛
) 𝑄
𝑛−1
(𝑠
𝑖
, 𝑥
𝑘
)

+ 𝜌
𝑛
[𝐶
𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
) + 𝛾min
𝑥𝑖∈A

𝑄
𝑛−1
(𝑠
𝑗
, 𝑥
𝑖
)] ,

(18)

where 𝜌
𝑛
is the learning rate in the 𝑛th iteration, and it

is responsible for weighing the newly learnt experience.
The sequence 𝑄

𝑛
(𝑠
𝑖
, 𝑥
𝑘
) can be proven to converge with

probability 1 to 𝑄𝜋
∗

(𝑠
𝑖
, 𝑥
𝑘
) as 𝑛 → ∞ when 𝜌

𝑛
satisfies the

stochastic approximation conditions 0 < 𝜌
𝑛
< 1 and further,

∑
𝑛
𝜌
𝑛
= ∞, ∑

𝑛
𝜌
2

𝑛
< ∞ [25]. 𝑄

0
(𝑠
𝑖
, 𝑥
𝑘
) can be initialized

arbitrarily for all (𝑠
𝑖
, 𝑥
𝑘
) ∈ S ×A.

Based on the above discussion, the estimate 𝑄
𝑛
(𝑠
𝑖
, 𝑥
𝑘
)

can be used for determining an action. However, the optimal
action is determined depending on the accurate estimate for
𝑄
𝜋
∗

(𝑠
𝑖
, 𝑥
𝑘
). Otherwise, there will always be cases that the

actions with current minimum cost are not producing the
real lowest cost return.During the learning process, unguided
randomized exploration cannot guarantee acceptable perfor-
mance, while taking greedy actions exploiting the available
information in 𝑄

𝑛
(𝑠
𝑖
, 𝑥
𝑘
) can guarantee a certain level of

performance, but exploiting what is already known about the
system prevents the discovery of better actions. In order to
estimate 𝑄𝜋

∗

(𝑠
𝑖
, 𝑥
𝑘
) accurately, the action selection method

should harmonize the trade-off between exploitation and
exploration such that EMS can reinforce the evaluation of
the actions it already knows to be good but also explore new
actions. Here, we consider the 𝜖-greedymethod.Thismethod
selects a random action (explores) with probability 𝜖 and the
best action (exploits), that is, the one that has the lowest Q-
value at the moment, with probability 1−𝜖 at each slot, where
0 < 𝜖 < 1. Therefore, exploration probability 𝜖 provides 𝑄-
Learning to be able to continuously explore itself in the new
environment for other possibilities of actions despite of the
current lowest cost.

Although it has been shown that the sequence 𝑄
𝑛
(𝑠
𝑖
, 𝑥
𝑘
)

converges to the optimal action-value function 𝑄𝜋
∗

(𝑠
𝑖
, 𝑥
𝑘
),

𝑄-Learnging suffers from slow-convergence when the dis-
count factor 𝛾 is close to one. To address this problem,
asynchronous Speedy𝑄-Learning (ASQL) method is applied
to improve the convergence rate. At each slot step, ASQL
uses two successive estimates of the action-value function to
update the Q-values for achieving a faster convergence rate

than standard 𝑄-Learning. The update process for ASQL is
described as follows:

𝑄
𝑛+1
(𝑠
𝑖
, 𝑥
𝑘
) = 𝑄

𝑛
(𝑠
𝑖
, 𝑥
𝑘
)

+ 𝜌
𝑛
(𝑄est1 (𝑠𝑖, 𝑥𝑘) − 𝑄𝑛 (𝑠𝑖, 𝑥𝑘))

+ (1 − 𝜌
𝑛
) (𝑄est2 (𝑠𝑖, 𝑥𝑘) − 𝑄est1 (𝑠𝑖, 𝑥𝑘)) ,

(19)

where the action 𝑥
𝑘
is chosen in state 𝑠

𝑖
using the 𝜖-greedy

exploration method, and the system occupies state 𝑠
𝑗
next.

Let 𝑄
0
(𝑠
0
, 𝑥
0
) = 𝑄

−1
(𝑠
0
, 𝑥
0
) = 0, ∀𝑠

0
∈ S and 𝑥

0
∈ A.

Then, ∀𝑘 ≥ 0, 𝑄est1(𝑠𝑖, 𝑥𝑘) and 𝑄est2(𝑠𝑖, 𝑥𝑘) are calculated,
respectively, by

𝑄est1 (𝑠𝑖, 𝑥𝑘) = 𝐶𝑥𝑘 (𝑠𝑖, 𝑠𝑗) + 𝛾min
𝑥𝑖∈A

𝑄
𝑛−1
(𝑠
𝑗
, 𝑥
𝑖
) , (20)

𝑄est2 (𝑠𝑖, 𝑥𝑘) = 𝐶𝑥𝑘 (𝑠𝑖, 𝑠𝑗) + 𝛾min
𝑥𝑖∈A

𝑄
𝑛
(𝑠
𝑗
, 𝑥
𝑖
) . (21)

In the ASQL algorithm, let 𝜌
𝑛
decay linearly with time;

that is, 𝜌
𝑛
= 1/(𝑛 + 1), where 𝑛 is the number of learning

iteration. Note that other (polynomial) learning steps can
also be used with Speedy 𝑄-Learning. However, it has been
shown that the rate of convergence of ASQL is optimized for
𝜌
𝑛
= 1/(𝑛 + 1) [26]. Intuitively, the third term in the right-

hand side of (19) does not play a role for small 𝑛, 𝜌
𝑛
≈ 1, and

the aggressive steps are taken as 𝑛 increases when the error
in the estimate 𝑄est2(𝑠𝑖, 𝑥𝑘) − 𝑄est1(𝑠𝑖, 𝑥𝑘) is large. Further,
when 𝑛 is very large, the error of the estimate goes to zero
as 𝑄
𝑛
approaches its optimal value 𝑄∗, and then there has

𝑄est2(𝑠𝑖, 𝑥𝑘) ≈ 𝑄est1(𝑠𝑖, 𝑥𝑘), thus the third term does not affect
the updates.

By applying the proposed scheme, we can obtain the
optimal energy storage control policy using storage facilities
in data centers for electricity cost minimization. The more
detailed procedures of the proposed scheme are presented in
Algorithm 1.

6. Optimal Offline Solution

In this section, we give a lower bound on the performance of
the learning theoretic problemby the optimal offline solution,
which is employed as a benchmark to evaluate the optimality
of the proposed learning theoretic algorithm. In order to
formulate the offline optimization problem, we assume that
all the future workload arrivals as well as the electricity price
variations are known noncausally before the decisions of
energy storage control are made. This information can be
obtained from the traces of the workload and electricity price
in advance. Online learning theoretic problem optimizes the
expected total electricity cost over an infinite horizon while
the offline solution does that over a realization of the MDP
for a finite number of time slots. As previously described,
an MDP realization is a sequence of state transitions of the
workload, the battery energy level and the electricity price
state processes for a finite number of time slots. Hence, we
can optimize𝑋

𝑛
such that the expected total electricity cost is
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(1) Initialize:
for each 𝑠

𝑖
∈ S, 𝑥

𝑘
∈ A do

Initialize 𝑄(𝑠
𝑖
, 𝑥
𝑘
) arbitrarily

end for
Initialize learning counter 𝑛 ← 0

Initialize starting state 𝑠
𝑖
← 𝑆
𝑛
∈ S

(2) Learning:
repeat
Decide to explore/exploit action with probability 𝜖
if exploration then
Choose action 𝑥

𝑘
∈ A at random

else if exploitation then
choose action 𝑥

𝑘
= arg
𝑥𝑖
log
𝑥𝑖∈A

𝑄(𝑠
𝑖
, 𝑥
𝑖
)

end if
Take action 𝑥

𝑘

Observe the next state 𝑠
𝑗
← 𝑆
𝑛+1

∈ S

Receive an immediate cost 𝐶
𝑥𝑘
(𝑠
𝑖
, 𝑠
𝑗
)

Calculate 𝑄est1(𝑠𝑖, 𝑥𝑘) according to (20)
Calculate 𝑄est2(𝑠𝑖, 𝑥𝑘) according to (21)
Update the 𝑄(𝑠

𝑖
, 𝑥
𝑘
) estimate as follows:

𝑄
𝑛+1
(𝑠
𝑖
, 𝑥
𝑘
) ← 𝑄

𝑛
(𝑠
𝑖
, 𝑥
𝑘
)

+ 𝜌
𝑛
(𝑄est1 (𝑠𝑖, 𝑥𝑘) − 𝑄𝑛 (𝑠𝑖, 𝑥𝑘))

+ (1 − 𝜌
𝑛
) (𝑄est2 (𝑠𝑖, 𝑥𝑘) − 𝑄est1 (𝑠𝑖, 𝑥𝑘))

Update the current state 𝑠
𝑖
← 𝑠
𝑗

Update learning counter 𝑛 ← 𝑛 + 1

until 𝑛 = 𝑁
𝐿

Algorithm 1: Dynamic energy storage control strategy based on 𝑄-Learning and Speedy 𝑄-Learning algorithms.

minimized for a givenMDP realization in the offline problem.
According to (12), the offline optimization problem can be
written as follows:

min
X,B

𝑁

∑
𝑛=0

𝛾
𝑛

[𝑃
𝑛
(𝛿 (1 + 𝑋

𝑛
) 𝐿
𝑛
+ 𝛿 (𝑋

𝑛
) 𝑅)

+ 𝛿 (𝑋
𝑛
) 𝐶
𝑟
+ 𝛿 (−𝑋

𝑛
) 𝐶
𝑑
]

(22a)

s.t. 1

𝜂
𝑑

𝛿 (−𝑋
𝑛
) 𝐿
𝑛
+ 𝐵min ≤ 𝐵𝑛, (22b)

𝐵
𝑛
≤ 𝐵max − 𝜂𝑐𝛿 (𝑋𝑛) 𝑅, (22c)

𝐵
𝑛+1

= 𝐵
𝑛
+ 𝜂
𝑐
𝛿 (𝑋
𝑛
) 𝑅 −

1

𝜂
𝑑

𝛿 (−𝑋
𝑛
) 𝐿
𝑛
, (22d)

𝑋
𝑛
∈ {0, 1} , 𝑛 = 0, . . . , 𝑁, (22e)

where X = [𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑁
] and B = [𝐵

0
, 𝐵
1
, . . . , 𝐵

𝑁
].

From definition (4), it can be seen that the function 𝛿(𝑥)
is nonlinear. So the problem in (22a), (22b), (22c), (22d), and
(22e) is a nonlinear programming (NLP) problem where the
objective function or some of the constraints are nonlinear
[27]. As we all know, it is difficult to solve the nonlinear
optimization problem. For this reason, we will show that

(22a), (22b), (22c), (22d), and (22e) can be mapped into a
tractable linear programming before solving it.

Let us define the following variables regarding recharge
and discharge operations in the slot 𝑡, respectively:

𝑐
𝑛
= {

1, if recharging in the slot 𝑛,
0, otherwise.

(23)

𝑑
𝑛
= {

1, if discharging in the slot 𝑛,
0, otherwise,

(24)

where 𝑐
𝑛
indicates the recharge operation in the slot 𝑡, while

𝑑
𝑛
indicates the discharge operation in the slot 𝑡. Under the

assumption that the recharge/discharge operations cannot be
done simultaneously, there is a constraint on 𝑐

𝑛
and 𝑑
𝑛
in each

slot as follows:

𝑐
𝑛
+ 𝑑
𝑛
≤ 1. (25)

Here, we define the vector 𝐴
𝑛
= (𝑐
𝑛
, 𝑑
𝑛
) as the joint decision

variable to control the recharge/discharge operation in the
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slot 𝑛. As a result, the optimization problem (22a), (22b),
(22c), (22d), and (22e) can be rewritten as

min
A,B

𝑁

∑
𝑛=0

𝛾
𝑛

[𝑃
𝑛
((1 − 𝑑

𝑛
) 𝐿
𝑛
+ 𝑐
𝑛
𝑅) + 𝑐

𝑛
𝐶
𝑟
+ 𝑑
𝑛
𝐶
𝑑
] (26a)

s.t. 𝑐
𝑛
𝜂
𝑐
𝑅 ≤ 𝐵max − 𝐵𝑛, (26b)

𝑑
𝑛

1

𝜂
𝑑

𝐿
𝑛
≤ 𝐵
𝑛
− 𝐵min, (26c)

𝐵
𝑛+1

= 𝐵
𝑛
+ 𝑐
𝑛
𝜂
𝑐
𝑅 − 𝑑
𝑛

1

𝜂
𝑑

𝐿
𝑛
, (26d)

𝑐
𝑛
+ 𝑑
𝑛
≤ 1, (26e)

𝑐
𝑛
, 𝑑
𝑛
∈ {0, 1} , 𝑛 = 0, . . . , 𝑁, (26f)

where A is an optimal sequence of control decisions to (26a),
(26b), (26c), (26d), (26e), and (26f), and A = [𝐴

0
, 𝐴
1
,

. . . , 𝐴
𝑁
].

From (26a), (26b), (26c), (26d), (26e), and (26f), we
can observe that the objective and constraint functions are
linear. Moreover, the optimization variables 𝑐

𝑛
and 𝑑

𝑛
are

constrained to be binary. Therefore, the problem in (26a),
(26b), (26c), (26d), (26e), and (26f) is a mixed integer linear
programming (MILP) problem. Currently, many existing
tools can solve the MILP problem, such as GLPK [28],
YALMIP [29], and Ip solve [30]. In this paper, we employ
Ip solve to solve the proposed MILP problem. Ip solve is a
free linear (integer) programming solver based on the revised
simplex method and the Branch-and-bound method for the
integers, and it can solve pure linear, (mixed) integer/binary,
semicontinuous and special ordered sets (SOS) models.

7. Performance Evaluation

In this section, the performance of the proposed dynamic
energy storage control scheme is characterized quantitatively.
Real-world workload traces and electricity price data sets
are employed to evaluate the performance of the proposed
scheme. In the following, we elaborate on the design of the
experiments and presenting the experimental results.

7.1. Experimental Setup. In the experiments, we simulated a
cloud-scale data center which hosts up to 2 × 104 servers
[4]. For simplicity, we assume that the servers in data center
are homogeneous, and it is easy to extend the experiments
for the heterogeneous servers with little modifications. In
order to evaluate the performance of the proposed scheme,
we conducted experiments based on real-world workloads
and electricity price data sets.

7.1.1. Workload Data. The real workload request is extracted
from trace data gathered from Intel Netbatch Grid in 2012
[31]. We set the time slot size to 15 minutes, and count
the number of job requests executed in each slot. The
original traced period is only one month, so we repeat it
for obtaining a three-month workload trace to complete the
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Figure 2: Workload arrival patterns of Intel Netbatch Grid for four
days.

performance evaluation. Figure 2 shows the variations of
workload requests in each 15min period for four days. In
order to perform the experiment with a larger-scale workload
of data center, the number of requests extracted from Intel
Netbatch Grid has to be scaled up. One of the approaches to
scale up the workloads is to capture the underlying structure
of the trace by separating the steady part and random part
from the original workloads trace, and to scale the steady
part up and add random part to it. However, it requires
an appropriate method to capture the characteristics of the
random part. We will try this approach to perform our
experiment in the future work. In the current experiment,
we assume that the number of users is scaled up by 1000
times, and accordingly, the number of requests should be
statistically scaled up by 1000 times. The normal power
consumption demand 𝐿

𝑛
for the workload request of data

center in each slot 𝑛 can be approximated by the following
formula [4]:

𝐿
𝑛
= 𝑚
𝑛
⋅ (𝛼𝜇

]
𝑛
+ 𝛽) ⋅ PUE, (27)

where 𝛼, 𝛽, ], and PUE are constants determined by the data
center. Particularly, 𝛽 is the average energy consumption of a
server in one slot when it is idle, and𝜇

𝑛
denotes the number of

workload requests served by one server in the slot 𝑛. Hence,
𝛼𝜇

]
𝑛
+ 𝛽 gives the energy consumption of one server when it

serves𝜇
𝑛
requests in one slot.𝑚

𝑛
denotes the number of active

servers in each slot 𝑛 and has themaximumvalue𝑀 = 2×10
4.

PUE is the ratio of total power drawn by a data center facility
(including cooling power) to IT equipment power. In today’s
energy-efficient data centers, the value of PUE is in interval
from 1.1 to 2.0 generally, for example, Google data center has
the average PUE of 1.12 in 2012 [32]. In our experiment, we
set PUE = 1.2. The Intel Netbatch Grid is used for running
its chip-simulation workloads, and it takes considerable time
to serve one request by one server. According to the real
workload trace, the average service time of each workload
served by one server is 7-8 minutes, so we set 𝜇

𝑛
= 2.

According to [4], 𝛼 = 12.5, 𝛽 = 150 Watt, ] = 3 when the
CPU type of server in data center is AMDAthlon and service
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Figure 3: Real-time electricity prices at Houston from January 3 to
January 6, 2013.

rate is 2 requests/s. Accordingly, we set 𝛼 = 11250, 𝛽 = 13500
Watt after calculation and ] = 3 in our experiment.

7.1.2. Electricity Price Data. We use real-time electricity
prices at Houston obtained from the Electric Reliability
Council of Texas (ERCOT), and the real-time electricity
prices vary on a 15min basis [33]. The time horizon we
consider in the experiment covers the period from January 1
to March 31, 2013. In these three months, there are 8640 real-
time electricity price samples. Figure 3 shows the real-time
electricity price variation characteristics at Houston from
January 3 to January 6, 2013.

In the experiments, we simulated a time slotted system
with slot duration of 15 minutes, that is, 𝑚 = 15. The unit
for energy consumption or battery energy level is MWh,
and the unit for real-time electricity price is $/MWh.
We discretize the energy consumption demand into 4
equal interval bins, with the boundaries specified by
{[0, 950) , [950, 1000), [1000, 1050), [1050, +∞)}MWh, and
choose the energy consumption demand state space to be
L = {950, 1000, 1050, 1100}MWh. Similarly, real-time
electricity price is also discretized into 4 equal interval
bins, with the boundaries specified by {[0, 20), [20, 30),

[30, 40), [40, +∞)} $/MWh, and C = {20, 25, 35, 40} $/MWh
is chosen to be as the electricity price state space. For a
given maximum battery capacity 𝐵max, we also discretize
the battery energy level into 4 equal interval bins, with the
boundaries specified by {[0, 0.25𝐵max), [0.25𝐵max, 0.5𝐵max),
[0.5𝐵max, 0.75𝐵max), [0.75𝐵max, 𝐵max]}MWh, and choose
the battery energy level state space to be B = {0.25𝐵max,
0.375𝐵max, 0.625𝐵max, 0.875𝐵max}MWh. Meanwhile, we let
the power used for recharging the battery in one slot is
500MWh, that is, 𝑅 = 500MWh, and let the discount factor
𝛾 = 0.9, which has been justified in [34]. Since the minimum
energy level 𝐵min is a constant, the value of 𝐵min has no
effect on the experimental results, and we set 𝐵min = 0 in the
experiments.

7.2. Experimental Results. In order to demonstrate the perfor-
mance improvement of the proposed dynamic energy storage
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Figure 4: Expected total discounted electricity cost with respect to
the number of iteration learning𝑁

𝐿
.

control algorithm, we considered the Lyapunov optimiza-
tion algorithm [19] and the offline optimization problem.
The Lyapunov optimization algorithm makes decisions to
recharge/discharge the battery for minimizing the electricity
cost using the solution with threshold structure.The solution
of the offline optimization problem can be considered as an
lower bound on the performance of the proposed learning
theoretic algorithm and the Lyapunov optimization algo-
rithm.

7.2.1. Impact of the Number of Learning Iteration. In the
first experiment, we intend to investigate the convergence
rate and performance improvement of the proposed scheme
using the real-world workload and electricity price traces. Let
𝑁
𝐿
denote the number of learning iterations. The value for

𝑁
𝐿

covers {1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000},
and the battery maximum capacity 𝐵max is chosen to be
5000MWh. The initial battery energy level is set to be zero,
that is, 𝐵

0
= 0, and we evaluate the optimal policy for a fully

efficient battery (𝜂
𝑐
= 𝜂
𝑑
= 1). The new battery costs involve

a unit price 𝑔
𝑏
(in $ per MWh) [35].That is, for a new battery

with the capacity 𝐵, the battery cost is given by 𝐶
𝑏
= 𝑔
𝑏
𝐵.

Here, we set 𝑔
𝑏
to 100 $/MWh, and the recharge/discharge

cycles 𝐾 to 2800. The other parameters for the Lyapunov
optimization are set as follows: the constant 𝜒min = 𝐶max,
where𝐶max denotes the maximum of the real-time electricity
price, the control parameter 𝑉 = 𝑉max, and the maximum
power that can be drawn from the grid in any slot 𝑃peak =
𝐿max + 𝑅, where 𝐿max is the maximum energy consumption
demand in any slot. The parameters set above for Lyapunov
optimization are justified in [19].

In Figure 4, we illustrate the expected total electricity cost
by the 𝑄-Learning based approaches against the number of
learning iteration, 𝑁

𝐿
, together with the performance of the

Lyapunov optimization approach. As shown in Figure 4, it
can be observed that for 𝑁

𝐿
≥ 3000 the 𝑄-Learning based
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approaches have less total electricity cost than Lyapunov
optimization, and for 𝑁

𝐿
≥ 5000 the Speedy 𝑄-Learning

algorithm with 𝜖 = 0.07 yields approximately 11% more
electricity cost than the offline solution. We also see that
the expected total electricity costs for the 𝑄-Learning based
approaches decrease as the number of iteration learning 𝑁

𝐿

increases, while the costs for the Lyapunov optimization
and the data center without energy storage facilities do not
vary with 𝑁

𝐿
. The reason for the trend of the total costs

of 𝑄-Learning based approaches with 𝑁
𝐿
is that the larger

𝑁
𝐿
implies that more accurate 𝑄𝜋

∗

(𝑠, 𝑥) is estimated, thus
the policy taken by estimated 𝑄

𝜋
∗

(𝑠, 𝑥) is closer to the
optimal policy, so the lower cost is yielded. The result shows
that the 𝑄-Learning based approaches can approximate the
optimal policy with increasing accuracy as 𝑁

𝐿
increases.

From the Figure 4, it can also be observed that for Speedy𝑄-
Learning algorithm with a low exploration probability (𝜖 =
0.001) causes low learning rate, compared to the exploration
probability (𝜖 = 0.07). Speedy 𝑄-Learning algorithm with
𝜖 = 0.07 has faster convergence rate of 𝑄

𝑛
(𝑠, 𝑥) to 𝑄𝜋

∗

(𝑠, 𝑥)

than the standard 𝑄-Learning (𝜖 = 0.07). This is because
that the speedy 𝑄-Learning algorithm uses two successive
estimates of the state-action value function to update the Q-
values in order to achieve faster convergence. Since larger 𝜖
is more likely to explore better action which might remain
unexplored, it can accelerate convergence of 𝑄

𝑛
(𝑠, 𝑥) to

𝑄
𝜋
∗

(𝑠, 𝑥). Therefore, with a suitable choice of 𝜖 > 0, Speedy
𝑄-Learning algorithm may be able to strike a balance in the
exploration versus exploitation trade off, and achieve a faster
convergence rate.

Figure 5 shows the long-run average electricity cost for
different number of learning iteration𝑁

𝐿
. It can be observed

from Figure 5 that the long-run average electricity costs of
the 𝑄-Learning based approaches decrease as the number
of learning iteration 𝑁

𝐿
, while the costs for the Lyapunov

optimization and the data center without energy storage
facilities remain unchanged as 𝑁

𝐿
varies. For 𝑁

𝐿
≥ 4000,

the Speedy 𝑄-Learning algorithm (𝜖 = 0.001 or 𝜖 = 0.07)
yields lower average cost than the Lyapunov optimization
algorithm. Compared with the Speedy𝑄-Learning algorithm
with 𝜖 = 0.001 and standard 𝑄-Learning algorithm, the
Speedy 𝑄-Learning algorithm with 𝜖 = 0.07 has better per-
formance. The reason is that for smaller number of learning
iteration 𝑁

𝐿
, the error between the Q-value estimated by

𝑄-Learning based algorithm and the optimal Q-values is
larger, then the policies are not optimal and this results in
higher average costs. As the number of learning iteration
increases, more accurate Q-values are estimated and Speedy
𝑄-Learning with larger 𝜖 also accelerates convergence of Q-
values, and then more cost can be saved.

7.2.2. Impact of Battery Capacity. In this subsection, we
further carried out an experiment in order to investigate the
impact of the battery capacities of data centers by setting
𝐵max = 2000, 3000, 4000, 5000, 6000MWh. We chose the
number of learning iteration 𝑁

𝐿
= 6000, the exploration

probability 𝜖 = 0.07.The other parameters and the simulation
settings were the same as those in Section 7.2.1.
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Figure 5: Long-run average electricity cost with respect to the
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Figure 6: Expected total discounted electricity cost for different
𝐵max and𝑁𝐿 = 6000.

In Figure 6 we show the impact of battery capacity,
𝐵max, on the expected total electricity cost for 𝑁

𝐿
= 6000.

It can be observed that the expected total electricity cost
decreases upon increasing 𝐵max, that is, the larger the battery
capacity is, the more cost saving by the Speedy 𝑄-Learning
based scheme can be obtained. Additionally, we also see
that the Speedy 𝑄-Learning algorithm with 𝜖 = 0.07 yields
at most approximately 10% more electricity cost than the
offline solution, and lower than the Lyapunov optimization
algorithm. The reason is that for larger battery capacity the
Speedy𝑄-Learning based schemewould be likely tomake the
optimal policy to store more power at lower prices, while the
threshold structure of the optimal solution for the Lyapunov
optimization algorithm has no capability of learning system
dynamics, and it stores power at the prices lower than
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Figure 7: Long-run average electricity cost for different 𝐵max and
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= 6000.

the thresholds, but higher than the prices used by the Speedy
𝑄-Learning based scheme.

Figure 7 shows the long-run average electricity costs for
different battery capacities 𝐵max. We plot the performance
of the Speedy 𝑄-Learning based scheme for 𝑁

𝐿
= 6000

and 𝜖 = 0.07, compared with the other approaches. From
Figure 7, it can be observed that as 𝐵max increases, the
average costs yielded by Speedy 𝑄-Learning algorithm and
Lyapunov optimization algorithm decrease, while the Speedy
𝑄-Learning algorithmachievesmore average cost saving than
the Lyapunov optimization algorithm.

8. Conclusion

In this paper, we investigated the problem of electricity cost
minimization of data centers using energy storage for time-
varying electricity prices under deregulated electricity mar-
kets, whichwas formulated as a discounted costMarkov deci-
sion process. Adynamic energy storage control strategy based
on the 𝑄-Learning algorithm was designed to reduce the
electricity cost, and we also applied the Speedy 𝑄-Learning
algorithm in order to accelerate convergence. The advantage
of the proposed scheme is that it makes decision without any
priori information about the energy management system of
the data centers, and it can also adapt to the variations of
the workload and the electricity prices. We also studied the
offline optimization problem which was characterized as an
MILP problem, and its optimal solution can be considered as
a lower boundon the performance of the proposed algorithm.
In the experiments, real workload traces and electricity price
data sets were used for verifying the performance of the
proposed scheme. The results illustrated the effectiveness
of the proposed scheme in saving the electricity cost via
comparison with the benchmark algorithm. Results for the
real traces that may not provably follow the Markovian
assumption also show that the proposed scheme generally
performs well.
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[27] R.Hemmecke,M. Köppe, J. Lee, and R.Weismantel, “Nonlinear
integer programming,” in 50Years of Integer Programming 1958–
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