
Research Article
ANN Approach for State Estimation of Hybrid Systems and
Its Experimental Validation

Shijoh Vellayikot and M. V. Vaidyan

Department of Electrical Engineering, National Institute of Technology, Calicut, Kerala 673601, India

Correspondence should be addressed to Shijoh Vellayikot; meshij4u@gmail.com

Received 1 October 2014; Accepted 2 February 2015

Academic Editor: Hak-Keung Lam

Copyright © 2015 S. Vellayikot and M. V. Vaidyan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A novel artificial neural network based state estimator has been proposed to ensure the robustness in the state estimation
of autonomous switching hybrid systems under various uncertainties. Taking the autonomous switching three-tank system as
benchmark hybrid model working under various additive and multiplicative uncertainties such as process noise, measurement
error, process–model parameter variation, initial state mismatch, and hand valve faults, real-time performance evaluation by the
comparison of it with other state estimators such as extended Kalman filter and unscented Kalman Filter was carried out. The
experimental results reportedwith the proposed approach show considerable improvement in the robustness in performance under
the considered uncertainties.

1. Introduction

Many researchers focused their attention towards hybrid
systems, because almost all the technological systems deal
with the variables which are both continuous and discrete in
nature [1–5]. Autonomous switching hybrid systems (AHS),
in which the switching of discrete states is based on the
values of continuous states [5], are considered in this work.
Tank systems were widely used as the benchmark system
for demonstrating the effectiveness of algorithms proposed
for modeling, estimation, fault detection, fault isolation, and
control operations in hybrid systems [6–11]. Most of such
works were confined to simulation studies only [6–10]. But
[11] deals with the experimental validation of the algorithms
for modeling and control of nonlinear hybrid systems. In
this context, the state estimation plays an important role in
controlling the process variables of the hybrid systems with
advanced control algorithm [9, 11, 12].

Since 1960, state estimation has become a very impor-
tant area of study in control engineering, as Kalman [13]
had developed a well-known Kalman filter (KF) for the
linear filtering and prediction problems. But almost all real
systems possess some kind of nonlinearity. So, later on
people started working on the extension of Kalman filter to

the state estimation problems of nonlinear systems [12, 14–
17]. Jazwinski [14] used an extended Kalman filter (EKF) for
the estimation of states of nonlinear systems through local
linearization. In this, the local linearization is carried out
by Taylor series expansion, which requires the calculation
of Jacobians of state transition operator at each time step.
So this method is complex for higher-order systems [12].
Because of the discontinuity in hybrid systems due to the
switching of discrete variables, it was suggested in [12] not
to use EKF for the state estimation of AHS, especially in
the regions where the discrete variables undergo frequent
variations. In 1996, Julier et al. [15] proposed a new approach
to the nonlinear state estimation problems and this uses
the unscented transform principle, known as the unscented
Kalman filter (UKF). Since this method follows a derivative-
free approach, it was extensively utilized by the majority of
the researchers working with nonlinear dynamics especially
in hybrid systems [9, 11, 16, 17]. But the applicability of this
algorithm in fast dynamic processes has to be investigated in
detail in terms of estimation time requirement.

Some works introduced different types of artificial neu-
ral networks (ANN) for modeling and observer design of
nonlinear systems [18–26]. The same concepts were applied
for the identification of a global model for hybrid systems
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using feed forward ANN by Messai et al. [20] and an
adaptive, growing, and pruning radial basis function network
by Alizadeh et al. [21]. Later these types of ANNmodels were
utilized for the model-based predictive and adaptive control
schemes for nonlinear systems. In this regard, a Lyapunov
based neural network adaptive control schemewas developed
by Hayakawa et al. [22], and this guaranteed an asymptotic
stability of closed loop hybrid systems. Al Seyab and Cao
[23] had used a continuous time recurrent neural network
(CTRNN) model in the nonlinear model predictive control
(NMPC) of nonlinear systems. Works were carried out for
finding more dynamic and efficient ANN architectures for
modeling the different types of nonlinear systems and for the
utilization of such models in the online system identification
[24], state estimation [25], and tracking control [26] of
nonlinear systems. But the potential of ANN architecture for
modeling was not extensively explored in the state estimation
of hybrid systems, which is investigated in this work.

Also, the effectiveness of the different state estimation
algorithms for hybrid systems under various real-time uncer-
tainties and constraints was not significantly investigated
[9, 12]. This work proposes an ANN based state estimator
(ANNSE) and carries out a detailed experimental investi-
gation on its performance comparison with EKF and UKF
based state estimators (EKFSE and UKFSE) [17] under
different real-time uncertainties, such as parameter variation,
noise variation, and some valve faults. The efficacies of the
algorithms are demonstrated with the help of a benchmark
three-tank hybrid system under real-time situations. The
performance indices considered for the comparison are ISE
criterion and the time required for estimation.

The organization of the rest of the paper is as follows.
In Section 2, the proposed ANNSE is described along

with a brief idea about the general state estimation schemes
for nonlinear systems. Section 3 provides the details of the
hybrid three-tank system used for the implementation of
the algorithms. Experimental results of the performance
comparison of the proposedANNSEwith EKFSE andUKFSE
are presented in Section 4. Finally, Section 5 deals with con-
clusion and scope for further studies in the state estimation
of AHS.

2. State Estimation in Nonlinear Systems

State estimation has gained a lot of attention from researchers
working in the process industry in order to control various
process variables efficiently [9–12]. The Kalman filter is one
of the strongest tools used for estimating states of linear
systems, while its nonlinear extensions like EKF and UKF
are commonly used for the estimation problems of nonlinear
systems.This algorithm requires a model of the actual system
as well as some basic knowledge such as initial values of states
and covariance of the system. Figure 1 gives the general block
diagram representation of the general state estimator with
prediction-correction approach.

The estimator receives input (𝑢(𝑘)) and output (𝑦(𝑘))
sampled from the process at each time step. The prediction
model of the process gives a priori estimates of the states
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Figure 1: Block diagram of state estimator [17].

(𝑥(𝑘 | 𝑘 − 1)) based on the input data and preassumed
initial values for the state estimates (𝑥(0)). An innovation
(𝛾(𝑘 | 𝑘 − 1)) between the actual output (𝑦(𝑘)) and model
output (𝑦(𝑘 | 𝑘 − 1)) is then generated. Measurement update
or correction part of the filter calculates a posteriori estimate
of the states using this innovation and a priori state estimates.
These estimated values are given as input to the model, along
with the new input values from the sensor, for the next
iteration.

Now, consider the general representation of the hybrid
systems

𝑥̇ (𝑡) = 𝐹 (𝑥 (𝑡) , 𝑧 (𝑡) , 𝑢 (𝑡)) + 𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐻 (𝑥 (𝑡)) + V (𝑡) .
(1)

In the above hybrid dynamic system equations, 𝑥 and 𝑧
represent the unobserved continuous and discrete states of
the system, while 𝑢 is a known exogenous input and 𝑦 is
the only measured output signal. For autonomous switching
hybrid systems, 𝑧 will be a function of 𝑥 [5]. The process
noise (𝑤(𝑡)) and measurement noise (V(𝑡)) shown in Figure 1
are assumed as additive type zero-mean Gaussian white
noise sequences (cf. (1)) with covariance matrices 𝑄 and 𝑅,
respectively.

The 𝐹 and 𝐻 in (1) symbolize 𝑛-dimensional nonlinear
state and output functions which are assumed to be known.
ANNSE is proposed for estimating unobservable continuous
states (𝑥) of the hybrid process using the only measurable
output (𝑦) and the input measurements (𝑢) in a recursive
manner, so that this algorithm can be implemented online
easily.

2.1. ANNBased State Estimation. ANN is one of the strongest
tools used for the modeling of different types of systems [18–
22]. The main advantage of ANNmodeling is that it does not
require any knowledge about the actual system; but rather the
modeling is done on the basis of the data collected from the
system. It is a black box modeling method, in which output is
expressed as the linear combination of the inputs followed by
a nonlinear activation function. Different types of ANN such
as feed forward, recurrent, radial basis function, and dynamic
neural networks are utilized for modeling of hybrid systems
in literature [20, 21, 23, 24].

The proposed ANNSE scheme is based on prediction-
correction approach of the Kalman filter in which the
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correction part is replaced by a nonlinear autoregressive
network with exogenous input (NARX). As a result, this
algorithm does not require Jacobian matrix calculations in
the correction part, and it becomes a derivative-free state
estimation algorithm. Hence, it overcomes one of the main
limitations of EKFSE [12].

In the first step, a proper value for initial state vector has
to be selected. Using this, a priori estimate of the states and
outputs, based on the nonlinear state and output models of
the system, are calculated as given below:

𝑥 (𝑘 | 𝑘 − 1) = 𝐹 (𝑥 (𝑘 − 1) , 𝑧̂ (𝑘 − 1) , 𝑢 (𝑘)) ,

𝑦 (𝑘 | 𝑘 − 1) = 𝐻 [𝑥 (𝑘 | 𝑘 − 1)] .
(2)

The innovation between the actual output and predicted
output is generated as

𝛾 (𝑘 | 𝑘 − 1) = 𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1) . (3)

The updated state estimates are obtained using the nonlinear
update equation as follows:

𝑥 (𝑘) = 𝐾NN (𝑥 (𝑘 | 𝑘 − 1) , 𝛾 (𝑘 | 𝑘 − 1)) . (4)

𝐾NN is the nonlinear ANN function that is performed by the
recurrent multilayer perceptron with NARX structure. The
details of NARX are given as NARX Strucutre. It receives a
priori state estimates 𝑥(𝑘 | 𝑘 − 1) and innovation 𝛾(𝑘 | 𝑘 − 1)
as exogenous input and gives a posteriori state estimates 𝑥(𝑘)
as output.

The important and time-consuming step involved in the
development of ANNSE is the training and tuning of the
ANN. The training data, generated using EKFSE, cover the
entire operating region of the system in order to ensure that
the functioning of ANNSE is possible in the entire operating
region. Tuning of the ANN is done by varying hidden layer
neurons, number of output delays (𝑛), and number of input
delays (𝑚) by keeping the integral square error (ISE) as the
performance measure. The values of 𝑛 and 𝑚 and number
of hidden layer neurons, for which the minimum ISE is
obtained, are selected as the final ANN parameters which are
listed in Table 1 along with other specifications. Even though
the offline training is performedusing the bulk data, its online
validation is also carried out.

2.2. Kalman Based State Estimators for Nonlinear Systems.
This section reviews the nonlinear extensions of Kalman filter
for state estimation problems using EKF [14] and UKF [15].

2.2.1. Extended Kalman Filter [14]. The EKF [14] was
attempted to overcome the limitation of KF [13] by using a
linearized approximation where the linearization was per-
formed about the current state estimate. As per [12], the
usage of EKF for the state estimation of hybrid systems is not
allowed only at the point of mode switching. In the current
problem of three-tank system explained in Section 3, this
condition occurs only when the level in tanks is exactly 0.3m.
But the chances of reaching this situation are negligibly small
as the measurements are taken only once in one second.

Table 1: Values of different ANN parameters.

Parameter Value
ANN structure NARX
Number of hidden layers 1
Hidden layer neurons 5
Hidden layer activation function “tansigmoid”
Output layer activation function “purelin”
Number of epochs 100
Number of exogenous inputs 4
Number of delayed inputs 0
Number of outputs 3
Number of feedback output delays 2
Training method Back propagation
Training function Levenberg–Marquardt
Performance function Mean square error

EKF for the AHS is developed by defining different Jacobian
functions for each mode of operation based on the discrete
variables (𝑧

1
and 𝑧
2
). Also, in the case of level exactly 0.3m,

the Jacobian of the previous sampling instant is taken for
the correction part of the state estimator. This may lead to
negligible estimation error at that particular sampling instant.

EKF involves the recursive estimation of the mean and
covariance of the state.The function𝐹 can be used to compute
the predicted state from the previous estimate and similarly
the function 𝐻 can be used to compute the predicted mea-
surement from the predicted state. However, 𝐹 and𝐻 cannot
be directly applied for the calculation of covariance. Instead,
a matrix of partial derivatives (Jacobians) was computed at
each time step with current predicted state and evaluated.
This process essentially carries out the linearization of the
nonlinear function around the current estimate.

The predicted state estimates are obtained using a predic-
tion model as in ANNSE

𝑥 (𝑘 | 𝑘 − 1) = 𝐹 (𝑥 (𝑘 − 1) , 𝑧̂ (𝑘 − 1) , 𝑢 (𝑘)) . (5)

The covariance matrix of estimation errors in the predicted
estimates is obtained as

𝑃̂ (𝑘 | 𝑘 − 1) = Φ (𝑘) 𝑃̂ (𝑘 − 1)Φ
𝑇
(𝑘) + 𝑄, (6)

where Φ(𝑘) is nothing but the Jacobian matrix of partial
derivatives of 𝐹 with respect to 𝑥 at 𝑥(𝑘 − 1):

Φ (𝑘) = [
𝜕𝐹

𝜕𝑥
]
[𝑥(𝑘−1)]

. (7)

The measurement prediction, innovation, and covariance
matrix of innovation are computed as given below:

𝑦 (𝑘 | 𝑘 − 1) = 𝐻 [𝑥 (𝑘 | 𝑘 − 1)] ,

𝛾 (𝑘 | 𝑘 − 1) = 𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1) ,

𝑉 (𝑘) = 𝐶 (𝑘) 𝑃̂ (𝑘 | 𝑘 − 1) 𝐶
𝑇
(𝑘) + 𝑅,

(8)
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where 𝐶(𝑘) is the Jacobian matrix of partial derivatives of𝐻
with respect to 𝑥:

𝐶 (𝑘) = [
𝜕𝐻

𝜕𝑥
]
[𝑥(𝑘−1)]

. (9)

The Kalman gain is computed using the following equation:

𝐾 (𝑘) = 𝑃̂ (𝑘 | 𝑘 − 1) 𝐶
𝑇
(𝑘) 𝑉
−1
(𝑘) . (10)

The updated state estimates are obtained using the Kalman
gain and the innovation

𝑥 (𝑘) = 𝑥 (𝑘 | 𝑘 − 1) + 𝐾 (𝑘) 𝛾 (𝑘 | 𝑘 − 1) . (11)

The covariance matrix of estimation errors is updated as
follows:

𝑃̂ (𝑘) = [𝐼 − 𝐾 (𝑘) 𝐶 (𝑘)] 𝑃̂ (𝑘 | 𝑘 − 1) . (12)

These steps are repeated for the entire process run with new
estimates of state and covariance.

2.2.2. Unscented Kalman Filter [15]. In order to overcome
the limitations of EKF algorithm in the state estimation
of nonlinear systems, Julier et al. [15] had proposed UKF.
The main advantage of this estimator was that it does not
require any Jacobianmatrix calculation at each time step.This
utilized the unscented transform principle for computing
approximate solutions to the filtering problems. Unscented
transform is a method of calculating the statistics of a
random variable which undergoes nonlinear transformation.
In this algorithm too, the initial values of state 𝑥(𝑘 − 1) and
covariance 𝑃̂(𝑘−1) have to be chosen properly from the prior
knowledge about the system. In the next step, 2𝑛 + 1 sigma
points have to be identified such that 𝑥(𝑘 − 1) and 𝑃̂(𝑘 − 1)

form their mean and covariance, respectively, as given below:

𝑥
(0)

= 𝑥 (𝑘 − 1) , (13)

𝑥
(𝑖)
= 𝑥 (𝑘 − 1) ± √(𝑛 + 𝜆) 𝑃̂ (𝑘 − 1), (14)

where 𝑖 = 1, 2, . . . , 2𝑛 and 𝑛 is the dimension of the state
vector. The 𝜆 in (14) is computed as

𝜆 = 𝛼
2
(𝑛 + 𝜅) − 𝑛. (15)

The spread of the sigma points around the mean, 𝑥(𝑘 −
1), is determined by 𝛼, whose value may vary between 0.001
and 1. The value of secondary scaling parameter, 𝜅, is usually
0 for state estimation and (3 − 𝑛) for parameter estimation
[16]. Each sigma point is then passed through the nonlinear
process model so that a cloud of 2𝑛 + 1 new sigma points is
obtained as follows:

𝑥
(𝑖)
(𝑘 | 𝑘 − 1) = 𝐹 (𝑥

(𝑖)
(𝑘 − 1) , 𝑧̂ (𝑘 − 1) , 𝑢 (𝑘)) . (16)

Now these new sigma points are fed to measurement model
as

𝑦
(𝑖)
(𝑘 | 𝑘 − 1) = 𝐻 (𝑥

(𝑖)
(𝑘 | 𝑘 − 1)) . (17)

Based on their statistics newmean 𝑥(𝑘 | 𝑘−1) and covariance
𝑃̂(𝑘 | 𝑘 − 1) are calculated:

𝑥 (𝑘 | 𝑘 − 1) =

2𝑛

∑
𝑖=0

𝑊
(𝑖)

𝑚
𝑥
(𝑖)
(𝑘 | 𝑘 − 1) , (18)

𝑃̂ (𝑘 | 𝑘 − 1) =

2𝑛

∑
𝑖=0

𝑊
(𝑖)

𝑐
[𝑥
(𝑖)
(𝑘 | 𝑘 − 1) − 𝑥 (𝑘 | 𝑘 − 1)]

⋅ [𝑥
(𝑖)
(𝑘 | 𝑘 − 1) − 𝑥(𝑘 | 𝑘 − 1)]

𝑇

+ 𝑄.

(19)

A priori estimate of the output is computed as

𝑦 (𝑘 | 𝑘 − 1) =

2𝑛

∑
𝑖=0

𝑊
(𝑖)

𝑚
𝑦
(𝑖)
(𝑘 | 𝑘 − 1) . (20)

The associatedweights in the calculation ofmean, covariance,
and output in (18)–(20) are obtained as

𝑊
(0)

𝑚
=

𝜆

(𝑛 + 𝜆)
,

𝑊
(0)

𝑐
=

𝜆

(𝑛 + 𝜆)
+ (1 − 𝛼

2
+ 𝛽) ,

𝑊
(𝑖)

𝑚
= 𝑊
(𝑖)

𝑚
=

1

2 (𝑛 + 𝜆)
.

(21)

Here𝛽 is employed to include the prior information about
the distribution of the state and for Gaussian distribution,
𝛽 = 2 is selected as the optimum value [16]. The innovation
covariance and the cross covariance between the innovation
and a priori estimates are given below:

𝑃
𝑦𝑦
=

2𝑛

∑
𝑖=0

𝑊
(𝑖)

𝑐
[𝑦
(𝑖)
(𝑘 | 𝑘 − 1) − 𝑦 (𝑘 | 𝑘 − 1)]

⋅ [𝑦
(𝑖)
(𝑘 | 𝑘 − 1) − 𝑦(𝑘 | 𝑘 − 1)]

𝑇

+ 𝑅,

𝑃
𝑥𝑦
=

2𝑛

∑
𝑖=0

𝑊
(𝑖)

𝑐
[𝑥
(𝑖)
(𝑘 | 𝑘 − 1) − 𝑥 (𝑘 | 𝑘 − 1)]

⋅ [𝑦
(𝑖)
(𝑘 | 𝑘 − 1) − 𝑦(𝑘 | 𝑘 − 1)]

𝑇

.

(22)

These values were used for the calculation of Kalman gain as

𝐾 (𝑘) = 𝑃
𝑥𝑦
𝑃
−1

𝑦𝑦
. (23)

This Kalman gain is used for the measurement update of
mean and covariance of the states as

𝑃̂ (𝑘) = 𝑃̂ (𝑘 | 𝑘 − 1) − 𝐾 (𝑘) 𝑃
𝑦𝑦
𝐾
𝑇
(𝑘) ,

𝑥 (𝑘) = 𝑥 (𝑘 | 𝑘 − 1) + 𝐾 (𝑘) [𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1)] .

(24)

These new values of state and covariance are fed as input to
the time update part for the next iteration.
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Table 2: ISE in estimating the three levels under normal operating
conditions.

Estimator ISE1 ISE2 ISE3 Est. Time
EKFSE 0.0597 0.0480 0.0336 0.0235
UKFSE 0.0599 0.0482 0.0337 0.0917
ANNSE 0.0634 0.0542 0.0070 0.0641
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Q1 Q2

Q5
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k1 k2
k5
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Figure 2: Schematic representation of autonomous three-tank
hybrid system [17].

3. Autonomous Switching Hybrid
Three-Tank System [17]

The benchmark autonomous three-tank hybrid system,
shown in Figure 2, is used for demonstrating the efficacy of
the proposed ANNSE and its performance comparison with
EKFSE and UKFSE. It consists of three cylindrical tanks with
corresponding cross-sectional area denoted by 𝐴

1
, 𝐴
2
, and

𝐴
3
. These tanks are connected to each other and to sump

through seven hand valves with valve coefficients denoted by
𝑘
1
to 𝑘
7
(experimental values are given in Table 9) and two

variable speed pumps as shown in Figure 2.
The two inflows (Fin

1
and Fin

2
) make the inputs, 𝑢,

and the levels in the three tanks (ℎ
1
, ℎ
2
, and ℎ

3
) make

the continuous states, 𝑥, of the system shown in the block
diagramof estimator (Figure 1).The discrete variables (𝑧

1
and

𝑧
2
) are decided by the direction of flow through the 3rd and

4th hand valves and they in turn depend on the three water
levels. Since the switching of discrete state variables is decided
by the continuous state variables and further no external
input is required for the switching of discrete variables, this
system comes under the group of AHS.

The value of continuous variable varies between 0 and
overflow height (0.55m) of corresponding tank continuously.
The discrete variables, 𝑧

1
and 𝑧

2
, may take the values 0,

+1, or −1 depending on whether flows 𝑄
3
and 𝑄

4
are 0,

towards tank 3 or away from tank 3, respectively [17]. Let
the flow rate of water through the 𝑖th valve be 𝑄

𝑖
, which is

calculated using Bernoulli’s equation based on the upstream

and downstream water heads and the corresponding valve
parameters as below:

𝑄
1
= 𝑘
1
sign (ℎ

1
− ℎ
3
)√2𝑔

󵄨󵄨󵄨󵄨ℎ1 − ℎ3
󵄨󵄨󵄨󵄨,

𝑄
2
= 𝑘
2
sign (ℎ

2
− ℎ
3
)√2𝑔

󵄨󵄨󵄨󵄨ℎ2 − ℎ3
󵄨󵄨󵄨󵄨,

𝑄
3
= 𝑧
1
𝑘
3
√2𝑔

󵄨󵄨󵄨󵄨𝑎 (ℎ1 − ℎ0) − 𝑏 (ℎ3 − ℎ0)
󵄨󵄨󵄨󵄨,

𝑄
4
= 𝑧
2
𝑘
4
√2𝑔

󵄨󵄨󵄨󵄨𝑐 (ℎ2 − ℎ0) − 𝑏 (ℎ3 − ℎ0)
󵄨󵄨󵄨󵄨,

𝑄
5
= 𝑘
5
√2𝑔 (ℎ

1
+ ℎ
𝑑
1

),

𝑄
6
= 𝑘
6
√2𝑔 (ℎ

3
+ ℎ
𝑧
),

𝑄
7
= 𝑘
7
√2𝑔 (ℎ

2
+ ℎ
𝑑
2

),

(25)

where 𝑎, 𝑏, and 𝑐 are used to indicate whether water in
the three tanks is above or below the threshold level, ℎ

0
.

Threshold level is the height of the middle interconnecting
pipe from the bottom of the tanks. The dead heights of the
5th, 6th, and 7th valves from the tank bottom are represented
by ℎ
𝑑
1

, ℎ
𝑧
, and ℎ

𝑑
2

, respectively. Based on the volume balance
equation, nonlinear state space representation of the system
is as follows:

𝑑ℎ
1

𝑑𝑡
=

1

𝐴
1

[Fin
1
− 𝑄
1
− 𝑄
3
− 𝑄
5
] ,

𝑑ℎ
2

𝑑𝑡
=

1

𝐴
2

[Fin
2
− 𝑄
2
− 𝑄
4
− 𝑄
7
] ,

𝑑ℎ
3

𝑑𝑡
=

1

𝐴
3

[𝑄
1
+ 𝑄
2
+ 𝑄
3
+ 𝑄
4
− 𝑄
6
] .

(26)

This state space representation constitutes the prediction
model of the state estimator shown in Figure 1.

4. Results and Analysis

All the three state estimation algorithms explained in
Section 2 were simulated using Matlab for 15000 seconds
and the sampling time considered was 1 second. Further, it
was validated using the data collected from the experimental
setup of autonomous three-tank hybrid systemand the results
are given in this section. LabVIEWandNIDAQwere used for
data collection from the system.The discharge coefficients of
different hand valves of the three-tank hybrid setup (shown
in Figure 14), given in Table 9, were found by activating the
actual system with the general input sequence, tabulated in
Table 10. Other process parameters of the system are also
given in Table 11.

The estimators have been designed such that only one
level (middle tank level, ℎ

3
) is available for measurement,

and using this level as well as the two inputs (Fin
1
and

Fin
2
), all the three levels are estimated at each time step

in an iterative manner. Two types of noises taken into
account are process noise and measurement noise which
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Table 3: Performance measure of the state estimators under process–model parameter mismatch.

Mismatch factor Estimator ISE1 ISE2 ISE3 Est. Time

𝑒
𝐴
= 1

𝑒
𝑘
= 1.05

EKFSE 0.9079 1.0908 0.8325 0.0216
UKFSE 0.9185 1.0931 0.8336 0.1566
ANNSE 0.0964 0.0898 0.0071 0.1120

𝑒
𝐴
= 1.25

𝑒
𝑘
= 1

EKFSE 0.1454 0.1244 0.1106 0.0252
UKFSE 0.1479 0.1280 0.1117 0.1147
ANNSE 0.0696 0.0581 0.0071 0.0948

𝑒
𝐴
= 1.2

𝑒
𝑘
= 1.05

EKFSE 0.7945 0.8994 0.6773 0.0250
UKFSE 0.7983 0.9022 0.6798 0.0946
ANNSE 0.1083 0.0866 0.0071 0.0664

𝑒
𝐴
= 0.75

𝑒
𝑘
= 1

EKFSE 0.2521 0.2454 0.2303 0.0215
UKFSE 0.2634 0.2533 0.2314 0.1609
ANNSE 0.0690 0.0561 0.0070 0.1228

𝑒
𝐴
= 1

𝑒
𝑘
= 0.95

EKFSE 0.9246 1.0577 0.8327 0.0214
UKFSE 0.9341 1.0669 0.8328 0.1796
ANNSE 0.0954 0.1045 0.0071 0.1170

𝑒
𝐴
= 1.2

𝑒
𝑘
= 0.95

EKFSE 0.7267 0.8531 0.6458 0.0235
UKFSE 0.7387 0.8552 0.6420 0.0961
ANNSE 0.0894 0.1096 0.0071 0.0717

Table 4: Performance measure of the state estimators under initial state vector mismatch (initial state vector for process: [0; 0; 0]; initial state
vector for model: [0.1; 0.1; 0]).

Estimator ISE1 ISE2 ISE3 Est. Time Convergence time for ℎ
1

Convergence time for ℎ
2

Convergence time for ℎ
3

EKFSE 0.0575 0.0563 0.0070 0.0245 12 16 14
UKFSE 0.1858 0.1941 0.0354 0.1040 400 350 320
ANNSE 0.1035 0.1601 0.0016 0.0667 75 125 18

Table 5: Performance measure of the state estimators under higher
degree of process noise.

Estimator ISE1 ISE2 ISE3 Est. Time
EKFSE 0.9684 0.9724 0.9628 0.0245
UKFSE 0.9684 0.9718 0.9615 0.1006
ANNSE 1.0694 1.0447 0.2616 0.0722

are considered as additive Gaussian white noise [12]. By
knowing the characteristics of the output level sensor, the
measurement error covariance, 𝑅, is assumed to be known;
the process noise covariance, 𝑄, used in (6) and (19) is
unknown and this is considered as the tuning factor for the
state estimator. Both EKFSE andUKFSE are tuned for finding
the optimal value of the tuning factor, such that the integral
square error (ISE) between the actual and estimated states is
minimized.

Quantitative comparison of all the three estimators is also
carried out in terms of ISE and estimation time. Figures 4–12
are the graphical comparison of the estimators under various
operating conditions in which the legend ACTUAL stands
for the real-time data collected from the experimental setup.
For better understanding of the performance comparison,
expanded views of the graphs are provided in most of

the cases. The abbreviations ISE
1
, ISE
2
, and ISE

3
in Tables

2–8 are the corresponding integral square errors (expressed
in m2s) in estimating levels in the 1st, 2nd, and 3rd tanks,
respectively. Est. Time is the time requirement in seconds
for estimating the states, once the data from the process is
available.

4.1. Performance of the Estimators under Normal Operating
Condition. Under normal operating condition, no other
uncertainties except process noise and measurement noise
are considered. Prediction model conditions were made as
close as possible with that of the actual process. At this stage
the performance of EKFSE and UKFSE was found to be
better than that of ANNSE as shown in Figure 3 and Table 2.
Figure 4 gives the expanded view of the initial portion of
Figure 3 for a better understanding of results of different
algorithms.

4.2. Performance of the Estimators under Various Uncertain-
ties. Also various uncertainties have been considered in the
performance analysis in order to investigate the robustness of
these estimators. They are given below:

(1) process–model parameter mismatch,
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Table 6: Performance measure of the state estimators under noise contaminated input measurements.

Input noise factor Estimator ISE1 ISE2 ISE3 Est. Time

0.0001
EKFSE 0.0601 0.0481 0.0336 0.0242
UKFSE 0.0603 0.0482 0.0337 0.1171
ANNSE 0.0635 0.0536 0.0070 0.0728

0.003
EKFSE 0.7915 1.0372 0.6708 0.0253
UKFSE 0.7948 1.0404 0.6734 0.1164
ANNSE 0.1832 0.1696 0.0071 0.0765

0.01
EKFSE 5.2209 0.6269 0.7513 0.0244
UKFSE 5.2217 0.6276 0.7543 0.1167
ANNSE 2.1571 0.5078 0.0071 0.0796

Table 7: Performance measure of the state estimators under differ-
ent input sequence.

Estimator ISE1 ISE2 ISE3 Est. Time
EKFSE 0.0225 0.0229 0.0234 0.0274
UKFSE 0.0228 0.0232 0.0234 0.1150
ANNSE 0.0249 0.0252 0.0042 0.0891
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Figure 3: Evolution of three levels under normal operating condi-
tions.

(2) initial state vector mismatch,
(3) higher level of process noise,
(4) noise in inflow measurement,
(5) introduction of different input sequence,
(6) clogging and leakage faults in hand valves.
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Figure 4: Expanded view of evolution of three levels under normal
operating conditions.

The uncertainties due to parameter mismatch and hand
valve faults are directly getting multiplied with the states,
while those due to process noise and measurement noise are
considered additive in nature.

4.2.1. Process and Model Parameter Mismatch. As the param-
eters (area of tanks and valve coefficients) used for the model
are found out by human measurements, experiments, and
calculations, the parameters of the prediction model and the
actual system will never be identical. These variations have
been considered in this work by introducing a parameter
mismatch factor in the state estimators. As the magnitude of
mismatch factor is increasing, the corresponding ISEs also get
increased. Under this state of affairs, ANNSE is giving better
estimates than other Kalman based state estimators. Both
EKFSE and UKFSE were giving offset in the state estimates
under parameter mismatched condition. The cases of both
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Table 8: Performance measure of the state estimators valve fault conditions (clogging and leakage).

Condition Estimator ISE1 ISE2 ISE3 Est. Time

Clogging
EKFSE 0.8405 0.7793 0.9545 0.0259
UKFSE 0.8423 0.7806 0.9571 0.1440
ANNSE 0.0752 0.0732 0.0131 0.0827

Leakage
EKFSE 0.7645 0.5161 0.5407 0.0286
UKFSE 0.7659 0.5171 0.5422 0.0286
ANNSE 0.0951 0.1472 0.0126 0.0807

Table 9: Discharge coefficients of hand valves.

Discharge
coefficient Value (m2) Discharge

coefficient Value (m2)

𝑘
1

2.6363E − 5 𝑘
4

3.4316E − 5
𝑘
2

2.4891E − 5 𝑘
6

2.2538E − 5
𝑘
3

3.7984E − 5 𝑘
5
, 𝑘
7

0

Table 10: Values of inflows to the system with sampling instants.

Sampling instants Fin1 (m
3/s) Fin2 (m

3/s)
1–3000 1.7901E − 5 1.76062E − 5
3001–6000 3.60528E − 5 1.76062E − 5
6001–9000 3.60528E − 5 2.75055E − 5
9001–12000 1.7901E − 5 2.75055E − 5
12001–15000 1.7901E − 5 1.76062E − 5

Table 11: Values of different system parameters.

Parameter Value
Tank height 0.60m
Tank overflow height 0.55m
Rated flow rate of pumps 240 lph
Input voltage to pump 0–5V
Tank inner diameter 0.15m
Inter connecting pipes inner diameter 0.0125m

higher and lower model parameter values are considered
and the corresponding quantitative performance measures
were tabulated in Table 3. Figure 5 shows the sample graph
for estimation of states under process—model parameter
mismatched condition (𝑒

𝐴
= 1.2 and 𝑒

𝑘
= 1.05), where 𝑒

𝐴

and 𝑒
𝑘
are the mismatch factors in area and valve coefficients.

4.2.2. Initial State VectorMismatch. It has already been stated
that the level in the third tank is onlymeasurable. But the state
estimation algorithm requires the initial value for all the state
variables. So it is required to make some assumptions about
the levels in the first and second tanks.These assumed values
need not be the same as the actual value. In order to include
this condition, a different initial state vector was considered
for the prediction model of the algorithms, and along with
the other two performance measures, the convergence time
in seconds is also compared for the three methods as given
in Table 4. As we are interested in the initial convergence
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Figure 5: Expanded view of evolution of three levels under process
andmodel parameter mismatched condition (𝑒

𝐴
= 1.2 and 𝑒

𝑘
= 1.05).

characteristics only, the estimation has been done for 3000
seconds in this case.

The results show that all the algorithms are good enough
in computing the estimated levels to the actual value, as it is
clear from the expanded view of the evolution of the three
levels, which is shown in Figure 6. FromFigure 6 and Table 4,
it is clear that EKFSE is giving the fastest convergence,
whereas the UKFSE is giving very slow convergence as
compared to EKFSE and ANNSE.

4.2.3. Higher Degree of Process Noise. At the time of imple-
mentation stage, the degree of process noise may become
higher than that at the time of tuning the estimators. This
condition is incorporated by increasing the noise in the actual
process and keeping the same tuned value for process noise
covariance (𝑄) of the estimator. The result shown in Figure 7
proves the robustness of the estimators under this condition.
Performance indices of the three estimators are compared in
Table 5.

4.2.4. Noise Contaminated Input Measurements. In this case,
input data with measurement noise was fed to the prediction
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Figure 6: An expanded view of evolution of three levels under initial
state vector mismatch (initial state vector for process: [0; 0; 0]; initial
state vector for model: [0.1; 0.1; 0]).
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Figure 7: Expanded view of evolution of three levels under higher
degree of process noise.

model of the estimator. Random noise is added as the
uncertainty in the input sequence. The performances of the
three estimators are compared in Figure 8 and Table 6, which
shows that ANNSE is giving better estimates of the states
under higher degree of input uncertainties.
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Figure 8: Expanded view of evolution of three levels under noise
contaminated input measurements (input noise factor = 0.003).
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Figure 9: Evolution of three levels under different input sequence.

4.2.5. Applying an Input Sequence Different from Input
Sequence of Tuning. In all the above-mentioned conditions,
input sequence applied to the process exactly matches
with the input sequence in the tuning of the estima-
tors (cf. Table 10). Now, the process was activated with
a higher input sequence (Fin

1
= 0.0000360528m3/s and

Fin
2
= 0.0000275055m3/s) from the beginning to the end



10 Mathematical Problems in Engineering

0.4
0.42
0.44
0.46

0.4
0.42
0.44
0.46

Le
ve

l i
n 

ta
nk

 1
 (m

)

7000 7500 8000 8500 9000 9500 10000

Le
ve

l i
n 

ta
nk

 2
 (m

)

0.38
0.4

0.42
0.44

Le
ve

l i
n 

ta
nk

 3
 (m

)

Sampling instants

7000 7500 8000 8500 9000 9500 10000
Sampling instants

7000 7500 8000 8500 9000 9500 10000
Sampling instants

ACTUAL
EKFSE

UKFSE
ANNSE

Figure 10: Expanded view of evolution of three levels under
clogging fault in hand valve 6.
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Figure 11: Expanded view of evolution of three levels under leakage
fault in hand valve 5.

of estimation (5000 sampling instants). The performance
comparisons are given in Figure 9 and Table 7, which shows
that all the estimators give satisfactory performance with
a different input sequence, as in the case under normal
condition.

4.2.6. Clogging and Leakage Faults. Two types of faults in
the hand valves, clogging and leakage faults, have also been

considered in this work. These faults were introduced by
partially closing one of the hand valves (6th valve) and
partially opening the fully closed 5th hand valve at the
7500th sampling instants in separate runs. Performance of
the ANNSE is much better than that of other two estimators
under these hand valve faults (cf. Table 8 and Figures 10 and
11). In this case, the inflows given to the tank are the same as
that in Section 4.2.5 for the entire duration of the estimation.

5. Conclusion

ANNSE was developed for the state estimation of
autonomous switching hybrid system and its performance
under different real-time operating conditions and
uncertainties was compared with that of EKFSE and
UKFSE both qualitatively and quantitatively. Even though
a negligible compromise is made with the estimates at the
mode switching point of AHS, EKFSE was found to be
the best method for the real-time implementation of state
estimation under normal operating conditions especially that
with faster dynamics, as the estimation of AHS under normal
operating condition as the estimation time is considerably
small. Considering the estimation time given in Tables
2–8, EKFSE method makes the lowest time whereas the
UKFSE makes the highest for all the cases of operating
conditions illustrated in this work. But under process–model
parameter variations, noise affected input, and hand valve
faults conditions the proposed ANNSE gave better estimates
than the other two methods. It was observed that even
though the ANN is trained using the data set of EKFSE, the
better performance of ANNSE when the AHS is under these
considered uncertainties, compared with the other methods,
is obtained due to the following advantages of ANNSE.

(i) In the correction part of EKFSE and UKFSE, some
approximation using linearization around the operat-
ing point is carried out, whereas, in ANNSE, nonlin-
ear ANN is used to correct the a priori estimates.

(ii) The correction part of ANNSE is completely parame-
ter independent, which gives the better state estimates
under parameter mismatch.

(iii) ANN has built-in noise rejection capability.

(iv) Dynamic ANN structure (NARX) selected is suitable
for this application.

(v) Training of the ANNSE is carried out with a very huge
set of data which covers the entire operating region of
the process.

In the operating situation when the process noise exceeds
its normal value used for training of filters, UKFSE was
found to be a better estimator, as the ISEs are lowest when
compared to EKFSE and ANNSE. In the case of initial state
vector mismatch, EKFSE gave the estimates with very fast
convergence to the actual value. In these two conditions
also, the estimates of ANNSE were converging to the actual
values, but the accuracy of estimation was found to be poor
compared to other methods.
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Figure 14: Experimental setup of three-tank hybrid system.

In this work it was strongly recommended to use ANNSE
for the state estimation of AHS under parameter uncer-
tainties, noise contaminated input, and hand valve leakage
and clogging conditions, EKFSE for the state estimation of
AHS under normal operating conditions, initial state vector
mismatch, and faster dynamic situations, and UKFSE for the
state estimation of AHS with higher degree of process noise
than that at the time of training. It is also concluded that

the proposed ANNSE is a robust method compared to the
conventional Kalman basedmethods, for the state estimation
of AHS operating under different uncertainties (especially
parameter uncertainties).

As a scope of the work, since there is a chance for
the process parameters, especially the valve coefficients, of
getting changed, it is better to estimate the process parameters
along with the states so that these estimated parameters can
be used in the prediction model which may further lead to
better estimates of the states. Present practice of using first
principlemodel can be replaced with ANNpredictionmodel,
so that the estimation algorithm becomes a black box state
estimation algorithm which does not require any knowledge
about the system, except input output data collected from the
actual system. Also, based on the proposed ANNSE, some
control schemes can be developed, which may overcome
the limitations with existing model-based controllers thereby
ensuring the robustness in the control of hybrid systems
under uncertainties. Instead of benchmark application, this
proposed method can be applied for more realistic and killer
engineering applications. Works in this connection can open
up a new research direction.
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Appendix

NARX Structure and Its Specifications

NARX is a recurrent dynamic neural network with feedback
connections from different layers of the network. The NARX
model is based on linear ARX model which finds the
application in time series modeling. The current output can
be predicted as a function of present and past inputs and past
outputs as follows:

𝑌 (𝑘) = 𝐾NN {𝑋 (𝑘) , 𝑋 (𝑘 − 1) , . . . , 𝑋 (𝑘 − 𝑚) ,

𝑌 (𝑘 − 1) , 𝑌 (𝑘 − 2) , . . . , 𝑌 (𝑘 − 𝑛)} ,
(A.1)

where 𝑌 and 𝑋 represent the outputs and inputs of the
network, respectively, and 𝐾NN is a nonlinear function. The
exogenous input,𝑋(𝑘), is a vector which is passed through an
input time delay unit, ITD (0:𝑚), and this gives a sequence of
current and past input vectors (𝑋(𝑘), 𝑋(𝑘−1), . . . , 𝑋(𝑘−𝑚)).
Similarly output time delay unit, OTD (0:𝑛), operates on
output 𝑌(𝑘) which yields a sequence of past output vectors
(𝑌(𝑘 − 1), 𝑌(𝑘 − 2), . . . , 𝑌(𝑘 − 𝑛)). In the problem stated in
Section 4, the a priori state estimates (𝑥(𝑘 | 𝑘 − 1)) and
innovation (𝛾(𝑘 | 𝑘−1)) are the exogenous input to the ANN
and the output of the ANN is represented by a posteriori state
estimates (𝑥(𝑘)).

In Figure 12, 𝑊 and 𝐵 represent the corresponding
weights and bias in the ANN structure, the optimum values
of which are obtained after the training of the ANN. The
NARX structure used for the considered problem is given
in Figure 13.
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