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Motivated by the need for loosely coupled and asynchronous dissemination of information, message queues are widely used in
large-scale application areas. With the advent of virtualization technology, cloud-based message queueing services (CMQSs) with
distributed computing and storage are widely adopted to improve availability, scalability, and reliability; however, a critical issue is
its performance and the quality of service (QoS). While numerous approaches evaluating system performance are available, there
is no modeling approach for estimating and analyzing the performance of CMQSs. In this paper, we employ both the analytical
and simulation modeling to address the performance of CMQSs with reliability guarantee. We present a visibility-based modeling
approach (VMA) for simulation model using colored Petri nets (CPN). Our model incorporates the important features of message
queueing services in the cloud such as replication, message consistency, resource virtualization, and especially the mechanism
named visibility timeout which is adopted in the services to guarantee system reliability. Finally, we evaluate our model through
different experiments under varied scenarios to obtain important performance metrics such as total message delivery time, waiting
number, and components utilization. Our results reveal considerable insights into resource scheduling and system configuration
for service providers to estimate and gain performance optimization.

1. Introduction

Originally designed to help communication between pro-
cesses in operating systems, message queues are more widely
used in various application domains nowadays. In particular
in distributed environments, message queues connect differ-
ent system components and ensure that they can exchange
information asynchronously and reliably. Message queues
typically support point-to-point communication fashion [1].
Traditional message queues are already widely applied in
industry applications, for example, Active MQ [2], Rabbit
MQ [3], Kafka [4],MicrosoftMSMQ[5], and IBMWebsphere
MQ, many of which have gained good market repercussion
from the users.

With the advent of virtualization technology, cloud com-
puting becomes a popular topic for blogging andwhite papers

and has been featured in the title of workshops, conferences,
and even magazines [6]. Clouds can be defined as a large
pool of easily usable and accessible virtualized resources
(such as hardware, development platforms, and/or services).
These resources can be dynamically reconfigured to adjust
to a variable load (scale), allowing also for an optimum
resource utilization [7]. Cloud computing provides lots of
advantages, in which the most famous one is the on-
demand provisioning of software, hardware, and data as a
service, preventing the developers frombeing concernedwith
overprovisioning or underprovisioning for a service. Also,
within the cloud, the laws of probability give service providers
great leverage through statistical multiplexing of varying
workloads and easier management [8]. Due to the popularity
andmerits of cloud computing, message queueing services in
cloud computing environment (CMQSs) are broadly adopted
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recently in commercial markets besides traditional message
queues, such as Amazon Simple Queue Service (SQS) [9] and
Microsoft’s Windows Azure Queue [10], both of which have
better support for advanced availability and scalability.

These novel cloud-based message queueing services,
however, pose some serious performance and reliability chal-
lenges. For example, online payment services rely on mes-
saging services which can provide high reliability and high
performance so as to support the acquisition and processing
of real-time data and also help to provide better application
services and strive for greater market share for enterprise
customers. For commercial cloud queueing services, an effec-
tive method is urgently needed to measure and predict the
performance of services as well as their reliability and scala-
bility. Specially, when facing system updating, it is essential
that cloud services are subjected to a rigorous performance
analysis before the launch of new version in order to make
sure that the update will not bring up performance decline in
some aspects. Moreover, because of the flexibility and loose
coupling of CMQSs, performance monitoring and analysis
should better be conducted continuously when providing
services, so as to acquire customer feedback timely and
make adjustments adaptively to achieve optimal performance
accordingly. Commonperformancemetrics of interest are the
expected event notification latency as well as the utilization
and message throughput of the various system components
[11]. In addition, the issue of message consistency, one of
the most essential features of message queueing services, is
also discussed in this paper when modeling CMQSs, and
two types of message consistency options are provided in the
model.

Considering the advantages and disadvantages of the
existing cloud-based message queues, we find that there
is no modeling approach for estimating and analyzing the
performance of CMQSs. Besides, the proposed prototypes
of message queues mentioned in recent literature are mainly
concerned with the system scalability while lacking emphasis
on reliability. In this paper, we present an analytical method
to model the performance of CMQSs, while considering
the system performance with reliability guarantee. We also
demonstrate a novel simulation modeling method using col-
ored Petri nets, which is named as visibility-based modeling
approach (VMA) for the reason that we model a visibility-
timeout mechanism in the performance model, which is
used to ensure the system reliability as well as availability.
Normally, the distributed application driving system will
potentially be hierarchically structured into layers [12]; thus,
we present our CPN model in a hierarchical fashion accord-
ingly. We compare the outcomes reached by both approaches
to validate our model and give reasonable performance
analysis according to the results.

The rest of this paper is organized as follows. In Section 2,
we present a short review of the available literature. In
Section 3, we provide a brief introduction to CMQSs as
well as visibility-timeout mechanism. Section 4 describes the
background on CPN. In Section 5 some necessary assump-
tions and the analytical modelingmethod are provided.Then
we depict the simulation model using VMA approach in
Section 6. Section 7 is focused on the numerical results of

both models as well as the discussions about performance
analysis. Finally in Section 8, some conclusions and direc-
tions of future work are given.

2. State of the Art

Numerous approaches to evaluate system performance are
available in literature. Software performance engineering
(SPE) [13] was firstly proposed by Smith for integrating
performance prediction techniques into the software engi-
neering process over two decades ago. Since then a large
number of performance models are developed and can
be classified into various categories, for example, queueing
networks, layered queues, types of Petri nets, and stochastic
process algebras, which were surveyed in [14]. Particularly,
the authors of paper [15] have a special focus on component-
based performance evaluation methods and survey their
applicability in industrial use. In [16], some problems of
existing modeling methods are summarized, for example, a
lack of theoretical justification for the performance model
and a difficulty in establishing causality across the subsystems
for modeling distributed systems, in which events from
different subsystems provided by different vendors need to
be correlated. Also, the authors present expectations for the
future techniques and tools in the paper.

For modeling the CMQSs described in our paper, we aim
at addressing both of these two problems mentioned above.
We employ both mathematical and simulation modeling
methods to verify and evaluate the performance metrics of
interest together, and the results achieved by the mathemat-
ical model can fit well with the simulation model under the
out-of-order option.Although the analyticalmodel described
in this paper can only capture a subset of the whole system
features (by reflecting the out-of-order model), it can still be
seen as a heuristic method for solving the analytical model
which can fully justify the simulation performance model
theoretically. Moreover, for simulation model, we present a
detailed timed colored Petri nets [17, 18]model in hierarchical
fashion, for the purpose of giving prominence to the different
subsystems that comprise the whole distributed message
queueing system in cloud environment.

In academic world, some studies have been conducted to
apply modeling approaches to messaging systems. The Palla-
dio Component Model (PCM) [19] is one of the approaches
used for software performance prediction. It is an architecture
description language supporting design time performance
evaluation of component-based software systems, and it can
be extended to model specific kinds of systems; for example,
the authors in [20] combine PCM with a performance com-
pletion [21] formessage-orientedmiddleware (MOM) so that
the software architects can specify and configure message-
based communication using a language based on messaging
patterns (e.g., publish-subscribe or competing consumers).
They adopt a model-to-model transformation fashion which
integrates the low-level details of a MOM into the high-
level software architecture model and use a SPECjms2007
benchmark case to evaluate and verify their model. Also, [22]
exploits the possibility of extending the PCM so as to support
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the modeling of event-driven service-oriented systems. The
authors define a set of mapping strategies between system
elements and PCM model elements in order to eliminate
the semantic gap between the system implementation and
the architecture model caused by the approach proposed in
[23] tomodeling the asynchronous events using synchronous
service calls.

In [11] the authors present a modeling methodology for
message-oriented event-driven systems using a case study
in the supply chain management domain. The methodology
is based on queueing Petri nets [24] and the authors use
a standard benchmark to test and verify their model. Also,
the authors present a set of generic modeling patterns under
different system scenarios, which can be applied in other
performance models.

Time analysis is an important performance metric for
message transmission, which is concerned by researchers.
For example, in [25], the message-scheduling problems are
discussed and an asynchronous communicationmodelwhere
messages are delivered in the formof packets is proposed.The
authors analyze the packets completion time in a nonlinear
way and propose an optimization algorithm in the case of
prioritymessages. However, themessage queues in themodel
and algorithm are only considered on the side of the sender
and thus cannot predict the whole message delivery time
through senders, brokers, and receivers.

As the features of messaging infrastructure (e.g., space,
time, and synchronization decoupling between system com-
ponents) are essential in distributed systems like clouds,
products like Amazon SQS and Microsoft’s Windows Azure
Queue are becoming more and more popular and are widely
used in industry. However, in literature, the discussion
about analysis and improvements of cloud message queueing
services still needs more attention and concerns. Some
researchers have made preliminary exploration of combining
message queues with cloud computing environment.

The EQS introduced in [26] presents an architecture of
message queue which can scale elastically in the cloud. The
authors implement a prototype of EQS based on an existing
messaging library (i.e., ZeroMQ) and deploy and evaluate
it on a cloud infrastructure (i.e., Amazon EC2) using cloud
platformmanagement tool Scalr. However, the results should
not be taken as pure performance results but more as a
validation of the elastic anddynamic nature of their algorithm
in consideration of the dependence on best-effort nature of
Amazon EC2 network I/O. Besides, the storage used in EQS
is centralized rather than distributed, which is not realistic in
cloud environment and could dramatically limit the system
availability.

In [27], the authors present the BDQS, that is, a scalable
cloud-based queueing service which is built on a distributed
storage system Cassandra [28]. BDQS can provide at-least-
once and best-effort in-order message delivery.

Another cloud-based message queueing service named
SDQS is introduced in [29]; the authors implement the proto-
type of the message queue on top of a distributed in-memory
cache, IBM WebSphere eXtreme Scale (WXS) [30], which
is a special type of storage system. Based on the elasticity
and fast access of the in-memory cache, SDQS can provide

high scalability and availability, as well as multiple message
delivery options. However, the authors focus their evaluation
of the prototype on scalability rather than message delivery
time and conduct the experiments of different process stages
separately, that is, firstly the sending process and then the
forwarding process, which is unlikely to happen in practical
systems.

Since Hadoop has gained extensive usage in applications,
a distributed message queueing system HBaseMQ, which is
implemented as a light-weight client library to HBase [31], is
presented in [32].The authors useHBase system tables to rep-
resent queues, messages, and clients (i.e., senders/receivers),
in which the “timestamp” columns are used to rapidly pin-
point a message by its timestamp. HBaseMQ inherits many
well-tested cloud-ready properties fromHadoop/HBase such
as scalability and fault tolerance. Moreover, HBaseMQ can
provide two delivery guarantees, that is, “at most once” and
“at least once.” However, the performance evaluations of
HBaseMQ are conducted coarsely and message delivery time
analysis is not provided in the paper.

Because the popular commercial queueing service like
Amazon SQS does not guarantee the order of messages, nor
does it guarantee the exactly once delivery, the authors of [33]
propose a hierarchical distributed message queue (HDMQ),
which eliminates these defects and outperforms SQS in both
throughput and delivery latency. HDMQ is also proved to
support in-order and exactly once message delivery.

Realizing that cloud message queueing services are
becoming popular in practical use encourages researchers to
consider designing systems that can better cooperate with
the CMQSs so as to achieve good system performance as
well as high system utilization. In [34], the authors provide
a highly scalable and distributed job management system
CloudKon, which is built upon cloud computing building
blocks (Amazon EC2, SQS, and DynamoDB). In [35], the
author introduces a novel conceptual model Iris, a decentral-
ized messaging framework, to provide a much simpler way
to specify, design, and implement distributed, cloud-based
services.

Petri net [36] is another widely used modeling technique
for system performance analysis. Pioneered by Carl Adam
Petri in his doctoral dissertation, Petri net was recognized
as a powerful mathematical theory to describe concurrent
and asynchronous systems. Due to the state space explosion
problem caused by analyzing large complex systems, Jensen
introduced an expansion form of Petri net, that is, colored
Petri nets (CPN) [17, 18], which can reduce the size of system
model dramatically through attaching colors to tokens in
order to distinguish various tokens that represent different
system types or components. At present, colored Petri nets
are gatheredwith various features which includemultiple col-
orsets, hierarchy, time, and high-level programming language
(e.g., CPN ML programming language [17, 37]). As CPN can
be used to model extensive systems or services which contain
concurrent behaviors, a large number of researchers have
exploited CPN in sophisticated ways to conduct studies in
their own research fields. For example, in [38], CPN is used
to model network protocols, in [39], workflow executions are
modeled, and in [40] manufacturing systems are analyzed.
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Figure 1: Message delivery process in CMQSs.

Moreover, specialized applications like train classification,
greenhouse management, ERP projects, traffic control [41],
or embedded systems are also able to be modeled using CPN.

3. System Description

In this paper, we model broker-based message queueing
service into the cloud computing infrastructure, and themost
famous CMQSs of this kind are the commercial application
Amazon SQS [9].

Implementing message queueing service into the cloud
computing environment has the advantage of delivering
messages with low cost and high availability and scalabil-
ity. Distributed message queueing service deployed in the
cloud can queue messages quickly and reliably while one
component in the application environment can consume the
messages that are generated by another component. Also, the
queue used in this process can be deemed as a temporary
repository for messages that are waiting for processing;
for example, Amazon SQS has a message retention period
that expands from 60 seconds to 14 days which can be
determined by the function SetQueueAttributes() provided in
the application programming interface. To ensure continuous
available services, a persistent distributed storage system is
also needed in cloud-based message queueing services, for
example, Cassandra in BDQS [27], IBMWXS in SDQS [29],
and HBase in HBaseMQ [32].

In order to prevent loss of messages and guarantee the
reliability of system, CMQSs adopt a control mechanism
named visibility timeout. This mechanism assigns a visibility
state to every message, indicating whether a message is
available to be processed. In other words, this visibility state
can be assumed as a lock; a message with visible state is seen
as unlocked while a message with invisible state is locked. A
message newly received by broker is initially in visible state
(i.e., unlocked); it becomes in invisible state (i.e., locked)
while being processed; meanwhile, a time window known as
visibility timeout is set especially on this message to prevent
simultaneous retrieving of the message from other receivers
during this period. Under the circumstance of success-
ful message transmission, an acknowledgment notification
needs to be issued by the receiver so that the broker can delete

the corresponding message without hesitation. Otherwise,
if the message timer expires (i.e., timeout happens), broker
can reset the visibility state of the message as visible, which
means the message is available to be processed again. An
example of message delivery process in broker-based CMQSs
is illustrated in Figure 1.

Message consistency has been the subject of intense schol-
arly discussion since the emergence of CMQSs. Although
Amazon SQS provides extremely high availability, it cannot
guarantee message ordering as well as single delivery. This
is because of the replication storage of messages and the
server sampling scheme, which are adopted in the system
to guarantee high availability. As demonstrated in Figure 1,
broker replicatesmessages inmultiple server nodes to prevent
single point failure. When retrieving messages, one of the
nodes is randomly sampled and returns a message in its
queue. Thus if different nodes which are retaining different
replications of messages are selected during successive pro-
cessing requests, messages could be delivered without order-
ing. In both [29, 33] the authors provide an improvement
of message consistency in their systems, which are claimed
to guarantee in-order and no duplication delivery. Our
modeling method takes message consistency into account
and presents two different models accordingly, that is, the in-
order and out-of-order models. We address the modeling of
in-order delivery type based on the solution provided in [29],
that is, using another queue, queue-index, to maintain the
order of messages; every time before processing a message,
the index needs to be accessed first so as to indicate the oldest
message stored in system and then begins the processing
of the corresponding message. In general, although the two
types of models are distinct with respect to different message
consistency options, the modeling methods are similar in
other parts. We introduce our modeling method in the case
of out-of-order delivery option at first and then depict the
differential between the two models.

4. Background on CPN

Colored Petri nets (CPN) are a language for themodeling and
validation of systems in which concurrency, communication,
and asynchronization play a major role. Modeling complex
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processes in terms of CPNs is a nontrivial task [42]. This
paper uses CPN to model CMQSs, so some basic concepts
are presented here. The following definition for CPN is given
by Jensen [43].

Definition 1 (CPNs). A CPN is a 9-tuple defined as CPN =
(Σ, 𝑃, 𝑇, 𝐴,𝑁, 𝐶, 𝐺, 𝐸, 𝐼), where the following statements are
true.

(i) Σ is a finite set of nonempty types, also called colour
sets.

(ii) 𝑃 is a finite set of places.
(iii) 𝑇 is a finite set of transitions.
(iv) 𝐴 is a finite set of arcs such that

(a) 𝑃 ∩ 𝑇 = 𝑃 ∩ 𝐴 = 𝑇 ∩ 𝐴 = Ø.

(v) 𝑁 is a node function. It is defined from𝐴 into 𝑃×𝑇∪
𝑇 × 𝑃.

(vi) 𝐶 is a colour function. It is defined from 𝑃 into Σ.
(vii) 𝐺 is a guard function. It is defined from 𝑇 into

expressions such that

(b) ∀𝑡 ∈ 𝑇: [Type(𝐺(𝑡)) = 𝐵∧Type(Var(𝐺(𝑡))) ⊆ Σ],

where the type of a variable V is denoted as Type[V]
and the set of free variables in an expression 𝑒 is
denoted as Var[𝑒].

(viii) 𝐸 is an arc expression function. It is defined from 𝐴
into expressions such that

(c) ∀𝑎 ∈ 𝐴: [Type(𝐸(𝑎)) = 𝐶(𝑝)MS ∧
Type(Var(𝐸(𝑎))) ⊆ Σ],

where 𝑝 is the place of𝑁(𝑎) and 𝐶(𝑝)MS denotes the
set of all multisets over 𝐶(𝑝).

(ix) 𝐼 is an initialization function. It is defined from 𝑃 into
closed expressions such that

(d) ∀𝑝 ∈ 𝑃: [Type(𝐼(𝑝)) = 𝐶(𝑝)MS].

Currently, CPN Tools is by far the most widely used Petri
net tool [42]. We adopt CPN Tools version 4.0 to conduct
our modeling, availing our CPN model of the new features
supported by this version, for example, real timestamp, time
colorsets, and advanced communication.

As an industrial-strength computer tool for construct-
ing and analyzing CPN models, CPN Tools realizes the
graphical construction, editing, simulation, and analysis of
CPN model through eleven different pallets. In the aspects
of graphical construction and editing, CPN Tools provides
a hierarchical method to make sure that the constructed
model is clear to understand but without affecting system
functions. Two ways are available to achieve hierarchical
design: one is using subtransitions and the other is using
fusionsets. Both of them can connect different places or
transitions in different pages; more specifically, subtransition

exhibits complex submodels using the concept of subnet
whereas fusionset builds bridges between several submodels
through combining distinct places. To create hierarchical
descriptions, one should first divide large systems into several
small nets, identify relationships between these subnets, and
then define interfaces both among subnets and between
subnets and upper layer nets. Usually, a system can be divided
into multilayers and the complexity of the original system
leads to deciding how deep the model hierarchy would be
the most suitable. Abstractly speaking, in upper levels, model
contains system outline without detail whereas in lower levels
every important behavior is depicted in detail.

Additionally, time plays a significant role in a wide range
of concurrent systems, and different time control strategies
may have huge impact on the performance of systems. It is
possible to capture system event execution time and analyze
the control relationship between events through the concept
of time included in CPN model. CPN Tools adds time stamp
on tokens so as to keep tracking of the execution time
of system events, thus further utilizing the time model to
calculate performance metrics such as events delays, system
throughput, system components utilization rate, and queue
length.

5. Analytical Queueing Model

In this paper, a message queueing system with reliability
guarantee is considered, in which the visibility-timeout
mechanism is used to ensure the system reliability; that is,
no message is lost during the delivery. We can consider the
message delivery process as a Markov process. A message
that is produced by an application in a client-end server
(i.e., sender) which is waiting to be sent to server nodes
in the cloud (i.e., broker) for transmission process will be
called customer. Assume the arriving process of customers is
Poisson stream with the intensity value equal to 𝜆 [44].Thus,
the interarrival times of customers are in accordance with the
exponential distribution and on average a new message will
be produced every 1/𝜆 time.

The service process of customers in the whole system
can be considered containing two phases. The first phase
is the process of transmission for customers from senders
to brokers and the second phase is the process of message
forwarding from brokers to other applications in client-end
servers (i.e., receivers). The two processes are considered
to be cascaded in system model. However, as these two
phases are asynchronous processes rather than synchronized
with each other, there are independent waiting buffers (i.e.,
queues) inside themselves, respectively; we assume that the
capacities of both buffers are infinite. The service time in
both processes is considered exponentially distributed with
parameters 𝜇

1
and 𝜇

2
, respectively. Thus the average service

time of the two phases is 1/𝜇
1
and 1/𝜇

2
, respectively. Actually,

before processing, it is time consuming to search in the
message queue; thus, system side scalable acceleration is
needed [45]. Nevertheless, in cloud computing environment,
the scalability can be realized by adding CPUs or using
state-of-the-art CPUs because multicore can execute linear
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Figure 2: Queueing performance model for cloud message queue-
ing services with reliability guarantee.

searching for queuewith shorter depth (i.e.,message number)
in parallel; as a result, the performance of queue searching can
be improved easily. Moreover, according to [45], searching
speed of message queue when the order of message reception
is different from the receiver’s expectation is accelerated; this
means the extra searching time caused by message ordering
requirement is very small. In the light of these reasons and
the fact that the message searching time is in microseconds,
we assume that the time is so small which is negligible in our
model, regardless of message consistency options.

Normally, when a customer is served by these two pro-
cesses, the applications in receiver will retrieve the message
successfully.However, because of the unpredictable situations
in network, for example, network congestion or link failure,
messages may be lost or delayed for a long time during
transmission, thus degrading the system performance. These
failure events have been considered and modeled in litera-
tures. For example, [46] has discussed the performance of
distributed, content-based publish-subscribe systems while
considering the uncertainty in underlying overlay networks
in the proposed model. In cloud queues, by performing the
visibility-timeout mechanism to guarantee system reliability,
thosemessages which are believed to be lost will be sent again
from brokers to receivers, which means some customers in
the model will be served again through the second process.
Let 𝑝 be the probability of failure (including network failure
and client failure), which means the proportion of messages
which needs retransmission is 𝑝, and thus the number of
messages that have been retrieved successfully by the receiver
(i.e., the arrival rate in receiver) is reduced by a factor 𝑞 =
1 − 𝑝, which is the reliability probability.

According to the above descriptions, we can model the
cloudmessage queueing system as an openMarkov queueing
model, which is depicted in Figure 2. The model consists of
two service processes, that is, Sender to Broker (denoted as
Proc1) and Broker to Receiver (denoted as Proc2). Suppose
the arriving rates of customers in Proc1 and Proc2 are
Λ
1
and Λ

2
, respectively. In open Markov queueing model

with 2 server nodes (i.e., the sender queue and the broker
queue), because of the continuity of customers and the
flow conservation feature, under the circumstance of infinite
waiting capacity, the arriving rate of customers is equal to the
departure rate of queue [44], and we can have the balance
equation for a server node 𝑖:

Λ
𝑖
= 𝑞
𝑠,𝑖
𝜆 + ∑

𝑘=1,2

𝑞
𝑘,𝑖
Λ
𝑘
, (1)

where 𝜆 denotes the customers arriving rate of the source
node 𝑠, Λ

𝑖
denotes the arriving rate of node 𝑖, 1 ≤ 𝑖 ≤ 2, and

𝑞
𝑘,𝑖
denotes the probability of a customerwho has finished the

service from node 𝑘 and goes to node 𝑖 for the next service.
Thus from the model shown in Figure 2, the arriving rate
equation for each node can be expressed by

Λ 1 = 𝜆,

Λ 2 = Λ 1 + pΛ 2.
(2)

To solve the equations we have

Λ
1
= 𝜆,

Λ
2
=

𝜆

1 − 𝑝

=

𝜆

𝑞

.

(3)

Assume the number of customers in node 𝑖 (includingwaiting
in queue and being served) is 𝑙

𝑖
and the probability that 𝑙

𝑖
=

𝑘
𝑖
is denoted by 𝑝

𝑖
(𝑘
𝑖
). The system matches the hypotheses

of Jackson theorem on queueing networks, and therefore
solutions follow the product form.

According to [44], in open Markov queueing networks,
the joint probability 𝑃(𝑘) = 𝑃(𝑘

1
, 𝑘
2
), which means the

number of customers in sender queue and broker queue is
𝑘
1
and 𝑘
2
, respectively, can be expressed as follows:

𝑃 (𝑘) = ∏

𝑖=1,2

𝑝
𝑖
(𝑘
𝑖
) , (4)

indicating that themean number of customers in each node is
independent of each other. In our model, the processes Proc1
and Proc2 are both modeled as an M/M/N queueing, so we
can derive the mean number of messages in our model from
the queue length distribution in M/M/N queueing model,
which is

𝑝
𝑖
(𝑘
𝑖
) =

{
{
{
{

{
{
{
{

{

(𝑛
𝑖
𝜌
𝑖
)

𝑙𝑖

𝑙
𝑖
!

𝑆
𝑖
, 𝑘 < 𝑛

𝑖

𝑛

𝑛𝑖

𝑖
𝜌

𝑙𝑖

𝑖

𝑛
𝑖
!

𝑆
𝑖
, 𝑘 ≥ 𝑛

𝑖
,

(5)

such that

1 ≤ 𝑖 ≤ 2,

𝑆
𝑖
= (

𝑛𝑖−1

∑

𝑗=0

(𝑛
𝑖
𝜌
𝑖
)

𝑗

𝑗!

+

(𝑛
𝑖
𝜌
𝑖
)

𝑛𝑖

𝑛
𝑖
! (1 − 𝜌
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(6)

Note that because we use multithreads to handle each
message delivery process, 𝑛

𝑖
means the number of threads

in sender and broker and 𝜇
𝑖
means the average message

processing time of each thread in sender and broker. So the
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Figure 3: A three-level hierarchical structure of timed CPN model.

mean number of messages in the system (including sender
and broker) is calculated as
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Applying Little’s law, we can have the sojourn time of
messages in Proc1 and Proc2 as
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Finally, assume the one-way network link delay as 𝐷link;
considering that before a message has been successfully
received by the receiver, two times of network transmission
processes are needed, and an extra message retransmission
process is also needed in case failure occurs, then the total
message delivery latency can be gained as

𝑇 = 𝑊 + (2 + 𝑝)𝐷link. (9)

6. Hierarchical Timed CPN Model

In this section, we introduce our visibility-based modeling
approach (VMA) for message queueing services in the cloud
concerning reliability using colored Petri nets (CPN). Our
approach includes two features: firstly the inherent hierarchi-
cal characteristic of timed CPN to afford model complexity

Senders Receivers

Sender RTxMsgSend_and_Recv

Cloud queue

Figure 4: Layer 1 model.

and secondly the steps that we employed to construct the
detailed submodels from the beginning [47].

6.1. System Model Architecture. From a programming point
of view, we construct timed CPNmodel in different modules
and organize them in different hierarchy levels. We present a
three-level hierarchical timed CPNmodel for CMQSs, as the
model structure is shown in Figure 3.

At the top layer of the hierarchical structure is the system
model, which represents an overview of system behavior;
it is the layer which depicts the semanticity of message
queue most clearly. However, we should notice that the
double-headed arrows between sender and receiver do not
indicate synchronous communication; on the contrary, they
are decoupled and exchange events asynchronously due to
the distributed environment. The corresponding model is
shown in Figure 4.The scenariomanifested here is as follows:
sender computes the unique identity number of the corre-
sponding queue, locates the queue, and puts message into the
server nodes redundantly where the queue exists; similarly,
a receiver needs to compute and locate the corresponding
queue first when trying to retrieve messages; then a sampled
server node which holds the queue returns a message to the
receiver according to consistency requirement specified by
the receiver. These detailed behaviors are described in sub-
models, and according to the consistency options discussed
in the above section, the submodels can be classified into two
types: out-of-order and in-order.

6.2. Detailed Submodels Description. In Figure 5, the square
with double border is called subtransition, representing an
abstraction of a CPN subnet, that is, model in the lower layer
of the hierarchical structure. The middle layer is a detailed
expression of subtransition cloud queue in layer 1, as well as
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Figure 5: Layer 2 model.

an abstraction of detailedmessage delivery process models in
layer 3. Figure 5 exhibits the model of layer 2, which shows
the major system components of CMQSs unambiguously
as well as strengthening the impression of asynchronous
communication of messages through the information flow.
Nevertheless, this layer still provides the procedures of
message flow via queues macroscopically for the fact that
three subtransitions Send Proc, Broker, and Recv Proc hide
the detailed behaviors.

In this paper, we describe the three kernel submodels in
layer 3 step by step in the following, and here we employ the
methodology introduced in [47].

Step 1 (determine model elements: places). Firstly, we have
to map the system components and resources into respective
elements of CPN model. Generally, hardware or software
resources, such as thread, CPU, disk (IO) processes, and
network, are usually modeled using tokens inside places.
The number of tokens is used to show the size of available
resources in the system. Logical entities such as messages,
queues, and timers are also modeled using places and tokens
in them. Secondly, because of the color feature provided in
CPN, we need to assign a specific colorset to each place in
which the tokens will be put on the same color. All the tokens
in a place can be expressed as a multiset whose elements
are predefined colors in colorsets. From the perspective of
structure, there are two forms of colorsets: simple colorsets
and compound colorsets; usually the latter are defined using
the previously declared former. The colorsets used in our
models are presented in Tables 1 and 2. Typical resources
such as sender, receiver, thread, and visibility are modeled
as simple colorsets while message, message queue, and visi-
bility indication are belonging to compound colorsets. Take
message queue as an example; the List colorset is commonly
used to represent queueing structure in modeling, so we use
colset Msgs = list Msg to represent the color of token in the
queue that stores all messages sent by related senders. Queue
operations such as enqueue, dequeue, and search can be
implemented through the list operation interfaces supported
by SML language. Particularly, time stamp is a way that CPN
provides to indicate the resource usage time; it can only be
used in timed colorsets of which the declarations are being
appended by the keyword timed at the end. Tokens in timed
places are timed tokens, which is identified by the charterer
@ + and a number followed, indicating the specific model

Table 1: Simple colorsets.

Simple colorsets
(1) colset UNIT = unit timed;
(2) colset INT = int;
(3) colset MsgTimeout = int timed;
(4) colset REQ = with req timed;
(5) colset Sender = with sender;
(6) colset Thread = with thread;
(7) colset MsgContent = with A | B;
(8) colset Visibility = with visible | invisible;

time at which the token is available for output transitions to
use. This time stamp can also help to calculate the resources
occupation time of system behavior, with the time length
equal to the difference of current time stamp and the produce
time stamp of the token. For instance, a token with color
MsgTimeout is a timed token, indicating the specific timeout
point of a message.

Step 2 (determine model elements: transitions). System
behaviors that lead to state change are generally modeled as
transitions, and the action of transition fire will cause tokens
to disappear or emerge in the places connected with the
transition. An arc from place to transition is called output
arc and, conversely, input arc. Through output arc, tokens
disappear in places while, through input arc, tokens emerge
in places.Thus, using tokens, we canmodel the resources flow
of system behaviors explicitly. Function is one of the features
provided by CPN to model complex system workflows,
objects, operations, or particular restraints. In transitions
and arcs, there are special spaces to describe those functions
needed in model, called code segments and expressions,
respectively. Figure 6 shows the interactionmodel ofmessage
flows, that is, the Send Proc submodel. In this submodel, there
are 13 places and 7 transitions in all.

Step 3 (analyze workloads in model). After determining
which resources and processes should be included in model,
we need to analyze the workloads that system would involve.
In distributed computing and storage systems, CMQSs are
usually used as a middleware to communicate with inde-
pendent components; it receives information (i.e., messages)
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Figure 6: Detailed Send Proc submodel.

Table 2: Compound colorsets.

Compound colorsets
(1) colset Msg = record
id: INT ∗

msgContent: MsgContent ∗

AT: INT ∗

IT: INT ∗

OT: INT;
(2) colset MsgTimed = record
id: INT ∗

msgContent: MsgContent ∗

AT: INT timed;
(3) colset Msgs = list Msg;
(4) colset ThreadxMsg = product
Thread ∗ Msg timed;
(5) colset MsgxTime = product Msg ∗ INT;
(6) colset LMsgxTime = list MsgxTime;
(7) colset IdxVis = product INT ∗ Visibility;
(8) colset LIdxVis = list IdxVis;

from senders and distributes them to receivers. Thus, the
cloud message queues workload is mainly composed of one
kind of item: message.

For the workload intensity, assume the interarrival times
of messages are exponentially distributed with the mean
interarrival time equal to 1/𝜆, and this means the input
process of messages is Poisson process with parameter 𝜆.
CPN Tools provides function for generating values from

exponential distribution: exponential(r: real), where themean
value is equal to 1/𝑟.

In our model, each token that represents message is made
up of message ID and content. Message ID is an increasing
sequence to ensure both the production and the processing
of messages are ordered; we simply assume it as integer
number with initial number equal to 1. This is set in the
model by putting the initial marking of place Msg ID in
Figure 6 as 1 and increasing the marking by 1 each time
of message production. Noticing that the message content
and length are varied in practical systems, which leads to
the unequal process time of messages, we assume in our
model that the processing time of messages through system
components (e.g., CPU and disk) accords with exponential
distribution with parameter 𝜇; that is, the mean service time
is 1/𝜇. Additionally, in order to facilitate the data collection
process and performance analysis of our model, we join
three time stamps into message token (see Table 1): AT
(message generation time), IT (message enqueue time), and
OT (message dequeue time).The example usage of these time
stamps will be explained in Section 7.1.

Step 4 (construct detailed CPNmodel). After identifying the
basic elements which should be included in the model, we
can establish a full CPNmodel that represents various system
components and includes all the principal system behaviors,
so as to correctly take advantage of the performance analysis
results of the model and identify the possible bottleneck that
exists in the system. Certainly, just like the iterations and
code review of programming used in software engineering,
CPN model also needs several times of adjustments and
refinements to obtain a model that addresses the initial
modeling goals.

Figures 7 and 8 depict the detailed Broker submodel
and Recv Proc submodel, respectively, that is, the detailed
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Figure 8: Detailed Recv Proc submodel.

message forwarding process in cloud. Notice in Figure 7,
the place Queue in Broker submodel represents the logical
queue of messages in distributed storage cluster in the
cloud. Actually, the real contents of messages are stored in
replication among multiple data server nodes to support
system robustness, as discussed before, and the allowance
of simultaneous nodes failure to maintain system liveness is
𝑛 − 1 given the total number of server nodes equal to 𝑛 (see
Figure 1).

6.3. Modeling Threads Contention. In distributed systems,
application usually uses multiple threads to work simultane-
ously in its host to communicate or cooperate with others.

The adoption of multithreads mechanism not only enables
the processes of tasks in cloud to execute at the same time,
but also improves the system resource utilization by sharing.
We include this multithreads communication mechanism in
our model (see place Thread Pool in Figure 6 and Figure 8)
and consider it as server windows with number equal to 𝑛 in
queueing analytical model; as a result, the message handling
process can be modeled as an M/M/N queueing model as
discussed in Section 5.What is worthmentioning here is that,
due to the scalability mechanism supported by the cloud, we
assume there are 𝑛 CPUs in a server node given the number
of threads equal to 𝑛, so as to ensure that these threads can
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Figure 9: Visibility-timeout model.

work in real parallel rather than alternation in different time
slice.

Consider 𝑛
1
and 𝑛

2
are the number of threads in sender

and broker, respectively. If 𝑛
1
or 𝑛
2
is equal to 1 or a very

small number, there will be a long time of response delay
for each concurrent message processing because of waiting
for idle thread. So not only the message waiting time and
the delivery time will be relatively large but also the actual
interval processing time does not meet the Poisson process,
which is obeyed by the interval message production time.
On the contrary, if 𝑛

1
or 𝑛
2
is relatively very large compared

with system workload, we can assure that every time when
a message needs to be sent or received, an idle thread is
always available for processing immediately. Consequently,
thewaiting anddelivery time ofmessage processing is shorter.
However, if 𝑛

2
≪ 𝑛
1
, the queue length in broker is possible to

increase sharply. Moreover, more idle threads would occupy
more system resources without improving system through-
put, thus decreasing system utilization. So the simulation and
performance results of our model can help to analyze as well
as provide suggestions for the optimal system configurations,
for example, optimal threads number, in order to achieve
relatively minimum mean message waiting time, minimum
mean delivery delay, and the maximum system resource
utilization rate.

6.4. Modeling Visibility-Timeout Mechanism. Visibility-
timeout mechanism is adopted in commercial CMQSs such
as Amazon SQS and Windows Azure Queue to manipulate
the message lifecycle and it is included in our model as
a unique characteristic which guarantees the reliability of
system (i.e., ensuring every message is delivered despite

client failure or network failure) and distinguishes our model
from others.

The model of visibility-timeout mechanism is illustrated
in Figure 9; it is a lower layer submodel that details the
subtransition Visibility Timeout which is contained in the
Broker submodel. Every time when the broker is ready to
process a message and send it to a receiver, the real content
of this message is still stored in queue rather than be deleted
immediately; instead, the visibility of message acts as an
indication of whether a message in queue is being processed
or not.

The default message visibility is visible, which means this
message is waiting in queue and is available to be processed
and delivered. As shown in Figure 9, the place Msg Vis
indicates these visible messages. The color of place Msg Vis
is LIdxVis, which means the tokens in the place are in the
form of (msgid, visible), and notice that this place plays as
an interface to connect with the Send Proc submodel shown
in Figure 6. Every time when a newly produced message has
been inserted into the queue, a new token emerges in the
placeMsg Vis, in which the “msgid” field of the token accords
with the unique sequence number of this message. Then
every time when the broker delivers a message, it retrieves
a message whose visibility is visible from the queue. Once the
message is being processed, the visibility of thismessage turns
into invisible, which being reflected in ourmodel is the fire of
the transitionGet Msg inBroker submodel (see Figure 7), and
the token (msgid, visible) is deleted and a new token (msgid,
invisible) is added in place Invisible.

Additionally, when a message 𝐴 is being processed, a
timer is set to thismessage. If the broker receives the acknowl-
edgment message for A (i.e., the ACK message instructs
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Function description: cancel the timer on the message and delete its real content in queue
Source code:
(1) fun cancelTimer (msgd: Msg, msgs: Msgs, indexxvis: IndexxVis, lindexxvis: LIndexxVis) =
(2) let
(3) val msgd0 = setOTimeZero (msgd)
(4) in
(5) if #1 indexxvis = #id msgd
(6) then (listsub msgs [msgd0], lindexxvis)
(7) else (msgs, indexxvis::lindexxvis)
(8) end;

Algorithm 1: Function cancelTimer.

Function description: trigger the timer on the message and make it ready to be sent in queue
Source code:
(1) fun triggerTimer (𝑛: int, indexxvis: IndexxVis, lindexxvis: LIndexxVis, lindexxvis2: LIndexxVis) =
(2) if #1 indexxvis = 𝑛
(3) then ([(#1 indexxvis, visible)] ∧∧ lindexxvis, lindexxvis2)
(4) else (lindexxvis, indexxvis::lindexxvis2);

Algorithm 2: Function triggerTimer.

the broker to delete the original message 𝐴 in queue after
successfully delivering A) in time, the system will cancel
the timer and delete all replications of 𝐴 stored in cloud.
Otherwise, the timer will trigger and the broker will send
𝐴 again assuming that the last sending failed. In Figure 9,
the place Timer models the timers set for every message
and the place Delete Req models the acknowledgment mes-
sages. The transitions Cancel and Trigger model the actions
of system under two opposite message delivery situations,
respectively, while the detailed action codes are shown in
Algorithms 1 and 2, respectively. Specially, when the timer is
triggered, the token (msgid, invisible) is removed from place
Invisible and the token (msgid, visible) is added again in place
Msg Vis; that is, the message in queue is available to be sent
again.

6.5. Modeling Queue Operations. The queue operations are
contained inBroker submodel. Asmentioned above, the place
Queue models the logical queue of messages in distributed
storage cluster in the cloud and the type of colorset of
the place is List, so queue operations like enqueue (i.e.,
inserting a message into queue) and dequeue (i.e., retrieving
a message from queue) are implemented using list-related
functions. The enqueue operation is simply realized using
list connection function while the dequeue operation is more
complex. This is because the real content of message is still
stored in queue while the message is being processed, so
we have to retrieve an available message according to the
visibility indication, which is referred to as the placeMsg Vis
in ourmodel.The implementation code of dequeue operation
uses a recursive procedure, as shown in Algorithm 3.

Function description: find the oldest message in queue
Source code:
(1) fun getIndexMsg (msgs: Msgs, index: int) =
(2) if #id (hd msgs) = index
(3) then (hd msgs)
(4) else getIndexMsg ((tl msgs), index)

Algorithm 3: Function getIndexMsg.

As discussed in previous section, we model two message
consistency situations in CMQSs in this paper, that is, the in-
order option and the out-of-order option. Notice that all the
figures displayed above are suitable for both options except
the Broker submodel (see Figure 7, which shows the graph
under the out-of-order option), for the reason that there is
a difference in the dequeue operation between them.

In [29], the authors suggest using another queue named
queue-index to store the sequence order of messages. This
queue-index queue exists in the distributed storage clusters
just like the message queue except that the former is not
stored in replication but rather in only one partition. So every
time when delivering a message, the system visits the queue-
index queue first to get the message sequence number of the
oldest one before retrieving the corresponding message from
the queue. Because the authors use IBMWebSphere eXtreme
Scale [30] as an in-memory cache storage as well as the FIFO
ObjectMap API provided by it to realize the oldest message
access process, we can assume that the searching time of the
oldest message through multiple server nodes is negligible.
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Figure 10: Detailed Broker submodel with consideration of message ordering.

Function description: determine whether the corresponding message has already exists in queue
Source code:
(1) fun ifMsgArrived ([], index: int) = false
(2) | ifMsgArrived (msgs: Msgs, index: int) =
(3) if #id (hd msgs) = index
(4) then true
(5) else ifMsgArrived ((tl msgs), index)

Algorithm 4: Function ifMsgArrived.

The Broker submodel under the in-order option is shown
in Figure 10, in which we use the place Queue Index instead
of Msg Vis to distinguish the two different models (the
differences are emphasized in bold frame), and the tokens in
placeQueue Index are used to indicate the oldest message ID
implicitly.

Under the in-order option, the dequeue operation is
modeled by the transition Get Oldest Msg. Additionally, we
set an occurring condition for dequeue operation, that is, a
guard function for the transition, as shown in Algorithm 4.
This function is set to handle the case that message with
larger sequence number (newer message) arrives earlier in
queue than the message with smaller sequence number
(older message). In such situation, the operation has to
wait for a while until the corresponding message indicated
by queue-index is sent to the queue. As a result, we can
infer that the message delivery time under the in-order
option is certainly longer than the opposite option. We
can quantitatively measure this tradeoff between message
consistency and system performance (i.e., extra time delay)
according to the simulation results illustrated in the next
section.

7. Performance Analysis

Performance is often a central issue in the design, develop-
ment, and configuration of systems. It is not always enough
to know that systems work properly, and they must also work
effectively. Performance analysis can help to evaluate existing
or planned systems, to compare alternative configurations, or
to find an optimal configuration of a system. Notice that all
parameters used in simulation are chosen for the purpose of
illustration.

7.1. Parameters Setting and Simulation Design. In order to
validate the performance of our model for CMQSs, we use
MATLABR2014a to test the experiments of themathematical
queueing model, and we compare the analytical results
with the simulation outcomes of the CPN model, which is
simulated using CPN Tools 4.0. We assume that the interval
message production time is exponentially distributed with
intensity parameter 𝜆 = 30.3, which means in average every
33 milliseconds (short as ms) a message is produced. Let the
service time follow exponential distribution and let the mean
service rate be {𝜇

1
= 10, 𝜇

2
= 10}, where 𝜇

1
and 𝜇

2
are for
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Function description: calculate and gather data related with message transmission
Source code:
(1) fun obs (bindelem) =
(2) let
(3) fun obsBindElem (Recv Proc'Deliver (1, {msg, recvtime})) = Real.fromInt (recvtime − (#AT msg))
(4) | obsBindElem = ∼1.0
(5) in
(6) obsBindElem bindelem
(7) end

Algorithm 5: Observer function of monitorMsg Delivery Latency.

senders and brokers, respectively. In other words, the mean
service time for each message is 100ms in both senders and
brokers.

Speaking of CPN model, it is possible to investigate
the behaviour of the modelled system using simulation,
and to conduct simulation-based performance analysis [18].
Because of the uncertainty of the simulation output, it is
very necessary to make detailed simulation solution before
the experiments are carried out, and appropriate statistical
techniques are also needed to guarantee the correctness
and rationality of the simulation output data. For more
flexibility, in our experimental scheme, a function is designed
to control the variables used in simulation: simulateConfigs
(n: int), where the parameter 𝑛 represents the repeat times
of simulation. In this function, we can set system parameters
such as mean service time and the number of threads, which
facilitates the simulation process. In our simulation scheme,
we design 26 monitors, which are the facilities used to
collect simulation data or control the simulation execution
process. For example, we use a monitor of breakpoint type to
control the stop criteria of simulation, for example, setting the
simulation time at 100 seconds.

Besides, to gain the performance metrics, some calcu-
lations have to be made using monitors. The monitors of
data collection type are the most frequently used type. For
instance, in order to calculate the whole message delivery
time which is the most concerning metric for decision
makers, we design the observer function for the monitor
Msg Delivery Latency, as shown in Algorithm 5. This func-
tion will be executed every time when the transition Deliver
(see the Recv Proc submodel) fires; that is, a message is
accepted by a receiver successfully, and then the delivery time
of this message will be calculated using the current system
time (variable recvtime in the function) minus the message
generation time (variable #AT msg in the function). Each of
the data for message delivery time will be collected as output
of this monitor; using these raw data, we can get the final
statistics that we are interested in.

7.2. Analysis of Numerical Results. Using the parameters set
above, we present the reached numerical results in this
section. Notice that we run 20 independent replications of
simulation for each experiment and take their average value

to make sure that the data collected during the simulation is
independent and identically distributed (IID).

Figure 11 illustrates the average message delivery time
with a different number of threads (i.e., server windows) 𝑛

1
=

𝑛
2
= 4, 5, . . . , 10, where 𝑛

1
is the number in sender and 𝑛

2
is

the number in broker. The reason 𝑛
𝑖
≥ 4, 𝑖 = 1, 2, is to satisfy

the constraint condition of system steady state:𝜌
𝑖
< 1, 𝑖 = 1, 2.

The results of analytical model and CPN model are shown
in the graph as symbols and lines, respectively. Two different
values of reliability probabilities, 𝑞 = 99%, 𝑞 = 88% (i.e.,
the probability of message loss is 𝑝 = 1%, 𝑝 = 12%, resp.),
are used. As can be seen in Figures 11(a) and 11(b), the results
obtained by solving the analytical model agree very well with
those obtained by simulation under out-of-order option.

For the same input variables and the same values of
reliability probabilities, Figure 12 shows the mean number of
messages waiting in queue in case 𝑛

1
is not equal to 𝑛

2
. More

specifically, Figure 12(a) shows the average waiting number
when 𝑛

1
is fixed with the value of 6 and 𝑛

2
is increasing by 1

starting with 4; Figure 12(b) shows the results with different
𝑛
1
while 𝑛

2
is unchanged with the value of 6. Similar to

above, the solid lines relate to different message consistency
options for the simulation results while the symbols relate to
the analytical results. As the number of threads increases, the
mean number ofmessages waiting in queue decreases sharply
at first and then smoothly up to the threads number of around
𝑛
1
= 7 or 𝑛

2
= 7, when it begins to stabilize. As could

be expected, the agreement between the calculation results
of mathematical model and the simulation results of CPN
model is very well under out-of-order option, which validates
ourmodelingmethod, that is, theVMAapproach formessage
queueing services in the cloudwith reliability guarantee using
CPN.

In addition, we compare the results of performance
metrics obtained between two different message consistency
options, as shown in Figures 11 and 12. In both figures, the
red line corresponds to the results under in-order option
and the blue line corresponds to the results under out-of-
order option. As can be confirmed from the graphs, either
the mean message delivery time or the mean number of
messages waiting in queue is larger in the case of in-order
option than in the case of out-of-order option.This is because,
under in-order option, the broker has to send messages
according to their sequence numbers; thus, if some messages
with larger sequence numbers arrive earlier than those with
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Figure 11: Mean message delivery time with a different number of threads.
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Figure 12: Mean number of messages waiting in queue with a different number of threads.

smaller sequence numbers, they would have to wait for a
long time before they can be handled. Moreover, once some
messages happen to be lost due to failure, the delivery latency
of the following messages tends to be even longer. Also, it
can be significantly noticed that the curves for in-order line
and out-of-order line are nearly equidistant in each graph,
which reveals that there is an approximate linear dependence
among them. The results help us to do quantitative analysis
of the tradeoff between system performance and message

consistency, in which the performance of out-of-order option
is about 50% higher than that of in-order option. In addition,
by comparing the two graphs in Figure 12, we can notice that,
in the case of in-order option (i.e., the red line), the mean
number of waiting messages is stabilized at around 3000 per
second in the upper graph while this number is stabilized
at around 4000 per second in the bottom graph, which is
relatively larger than the previous one. Thus, we can infer
that, under in-order option, increasing the number of threads
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Figure 13: System components utilization with a different number of threads.

in broker (i.e., the parameter 𝑛
2
) is more helpful than that

in sender in decreasing the waiting number of messages as
well as the message delivery time. This finding can ensure
the service providers to put emphasis on the improvement of
broker capability rather than sender.

We also analyze and compare the system component
utilization in both senders and brokers through simulation,
as shown in Figure 13. The graphs show, at a fixed number
of threads, the sender utilization tends to remain the same
regardless of the message consistency options or the values
of reliability probabilities (i.e., the lines related to sender
utilization are overlapped). However, the broker utilization
rate varies a lot according to different simulation configura-
tions. With 𝑞 = 99%, increasing the number of threads in
senders and brokers reduces the broker utilization, and the
decreased amplitude is nearly the same as that of the sender
utilization under out-of-order option (i.e., the thinner lines),
while the amplitude is much larger under in-order option
(i.e., the thicker lines). This is because when the broker sends
messages according to their sequence numbers, the broker
has to wait for an extra period of time in the case that newer
messages (i.e.,messageswith larger sequence numbers) arrive
earlier in the queue than older messages, which leads to
an increased idle time. Once the older message has arrived,
several messages will begin to be processed in the same time,
which leads to an increase in the parallel degree of processing.
As the utilization is an estimation of the percentage of system
busy time, with the increased idle time and reduced busy
time, the broker utilization is much lower under the in-order
options. With the reliability probability 𝑞 = 88%, more
messages are triggered and sent again by the broker; thus the
utilization of broker is higher than sender. However, under
in-order option, for the same reason, the broker utilization
turns to be lower than sender when the number of threads
increases to a certain point, that is, 𝑛

𝑖
> 5, 𝑖 = 1, 2. These

observations can help the cloud message queueing service
providers to regulate the limited resources more effectively
to minimize their costs as well as maximize their commercial
interests.

Moreover, we also calculate the three performance met-
rics under different service times while fixing the average
arrival rate at 30 messages per second. The reliability prob-
ability is set as 𝑞 = 99% under out-of-order consistency
option and the results are shown in Figure 14. According to
Figure 14(a), it can be observed that longer service time leads
to longer delivery time, and for each 𝑛

𝑖
(i.e., the number of

threads), the delivery time is linearly increasing when mean
service time is less than a particular value; for example, when
the number of threads is 5, the value is 100ms while, for
a number of 7, the value is 140ms. Also, we can see that
larger 𝑛

𝑖
can result in an improvement in the performance of

delivery time when mean service time is larger than 100ms.
Figure 14(b) shows, before certain points (e.g., 80ms for
service timewhen 𝑛

𝑖
= 5, or 120ms for service timewhen 𝑛

𝑖
=

7), increasing service time almost has no effect on the number
of waiting messages, while afterwards, the number increases
sharply. These turning points can help to warn the cloud
service providers to pay attention to the system resource
consumption and replan the resource allocation when nec-
essary. Figure 14(c) illustrates that the sender utilization and
the broker utilization both grow sharply at first and then
rise smoothly as service time gets longer. Also, the relatively
steady period (i.e., the utilization rate remains at around 47%)
stays longer as the number of threads 𝑛

𝑖
increases.

We also examine the effects of message arrival rate on
total delivery time, mean number of waiting messages, and
components utilization, given that the mean service time is
unchanged at 100ms; that is, service rate per second is 𝜇

1
=

𝜇
2
= 10. Unlike the above experiment, we set the reliability

probability at 𝑞 = 88% for a change. Figure 15 presents the
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Figure 14: Performance metrics with different service time, for 𝜆 = 30 and 𝑞 = 99%.

performance metrics. From Figure 15(a), it can be seen that
the message delivery time increases slowly before a steep rise
for any 𝑛

𝑖
; this is because when the arrival rate increases,

the system workload traffic (i.e., the parameter 𝜌
𝑖
) increases

as well. The closer 𝜌
𝑖
is to 1, the greater the traffic intensity

will be, which leads to a surprising congestion in queue,
thus further resulting in the abrupt rise of delivery time. The
congestion alsomeans a larger number ofmessageswaiting to
be processed in system with respect to increased arrival rate,
as shown in Figure 15(b). Similar to the above experiment,
the utilization of sender and broker which are depicted in

Figure 15(c) increases as the arrival rate gets larger, except
that the utilization of broker is always a little higher than the
sender because of low reliability probability.

8. Conclusions

Cloud has been identified to have many advantages and
realizing the full benefits of this new paradigm will require
rethinking the way we build applications. As the progressive
improvement of cloud-based message queueing services,
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Figure 15: Performance metrics with different arrival rate, for 𝜇
1
= 𝜇
2
= 10 and 𝑞 = 88%.

performance analysis has become a crucial interest for both
cloud providers and cloud consumers before its universal
usage in the industrial area. In this paper, we present both
analytical and simulation modeling methods to analyze
the performance of CMQSs with reliability guarantee. The
mathematical model is presented using queueing theory
and Markov process, while the simulation model is created
employing colored Petri nets. Considering different message
consistency requests, we develop two simulation models
dealing with in-order message delivery and out-of-order

delivery, respectively.We name our novel modeling approach
as VMA in virtue of the visibility-timeout mechanism which
is adopted in system to enhance reliability. We examine
the effects of various parameters such as message arrival
rate, broker service rate, message consistency options, and
number of resources on the system performance metrics of
interest, for example, message delivery time, waiting number
of messages, and system components utilization. We also
quantitatively analyze the tradeoff between system perfor-
mance and message consistency. Numerical and simulation
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results show that the presented models are able to model the
performance of CMQSs with reliability guarantee, which is
not emphasized in other researches.

Future workwill consider other service time distributions
such as general distribution or Erlang distribution, which
makes the model more flexible and realistic in cloud envi-
ronment, as well as increasing the diversity of service time.
We would also like to model differentiated quality of service
requirements for classifiedmessages, aiming at improving the
performance of CMQSs in multiple levels.
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