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It is aware that big data has gathered tremendous attentions from academic research institutes, governments, and enterprises in
all aspects of information sciences. With the development of diversity of marine data acquisition techniques, marine data grow
exponentially in last decade, which forms marine big data. As an innovation, marine big data is a double-edged sword. On the
one hand, there are many potential and highly useful values hidden in the huge volume of marine data, which is widely used
in marine-related fields, such as tsunami and red-tide warning, prevention, and forecasting, disaster inversion, and visualization
modeling after disasters. There is no doubt that the future competitions in marine sciences and technologies will surely converge
into the marine data explorations. On the other hand, marine big data also brings about many new challenges in data management,
such as the difficulties in data capture, storage, analysis, and applications, as well as data quality control and data security. To
highlight theoretical methodologies and practical applications of marine big data, this paper illustrates a broad view about marine
big data and its management, makes a survey on key methods and models, introduces an engineering instance that demonstrates
the management architecture, and discusses the existing challenges.

1. Introduction

Recently, the data volume all over the world is growing at an
overwhelming speed, which is acquired by various devices
with regard to Internet ofThings and Social Networks. In this
context, big data emerges and has been investigated exten-
sively so far. In terms of marine field, countries around the
world have launched several observing projects, for example,
Argo [1], NEPTUNE-Canada [2], GOOS [3], OOI [4], IOOS
[5], and so forth, and numerous marine observation satellites
[6, 7]. Acquiringmarine data by various observing techniques
leads to a sharp increase in data volume. For example, Argo
[1] has set up four data centers and deployed up to 10231
buoys all over the world, for real-time acquiring marine data
like temperature, salinity, acidity, density, and carbon dioxide.
Even one data center alone has to process 21954 profile data
with 657 active buoys over the whole of last year [8, 9].
The different data collection devices result in various data as
well as their format. We denote the diverse data provisions.
A marine observation satellite emitted by NASA, named as
Aquarius [6], records all the element of ocean circulation,

temperature, and ingredient and sea surface height every
7 days. Statistically, the data volume collected by Aquarius
within every 2 months amounts to that collected by survey
ships and buoys in 125 years [6]. By the end of year 2012,
the annual data volume had been up to 30 PB (1 PB =
1024 ∗ 1024GB) maintained by NOAA and over 3.5 billion
observational files would be gathered together from satellites,
ships, aircrafts, buoys, and other sensors each day [7]. As all-
round marine observation systems and multiple observing
techniques are widely put into service, data volume sharply
increases, data type is greatly diversified, and data value is
highly delivered, which formsmarine big data.

Marine big data contains great values and embodies
giant academic appeal, which can be transformed into a
rich set of information for people to learn, exploit, and
maintain the marine. For example, after analyzing the Argo
data, it is found that the earth is seeking an intensification
of global hydrological cycle [10]. Communities and species
distribution can be determined by analysis of acoustic remote
sensing data, which works as powerful scientific supporting
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evidence to maintain the marine ecological balance [11]. In
addition, researches on forecasting and warning of under-
sea earthquake and tsunami can be successfully preceding,
by analyzing observation data concerning seismic activity,
faulting activity and midoceanic ridges acquired by Neptune
project [12, 13]. In summary, marine big data supports
forecasting and warning potential problems in the field of
ecology, climate, and disasters and helps decision making.

In order to maximally exploit the value in marine data,
it is of great realistic and theoretical significance to study on
the management of marine big data concerning data storage,
data analysis, quality control, and data security.

At present, almost all the existing researches concentrate
on solving general issues about big data management. As a
kind of typical big data, marine big data features massiveness,
diverse data provisions, high-dimension besides temporal-
ity, and spatiality, which brings exceptional challenges and
problems. In terms of data storage, there are problems like
weak scalability in storage system and dissatisfaction on
timeliness. In terms of data analysis, there are still problems
like slow processing speed and failure in real-time response.
Furthermore, the data available and data security are two
features for themarine big datamanagement. In terms of data
available, there are some emerging problems like difference
of data quality, diversity of data error, and unfixed schema
of quality inspection. Additionally, as data security involves
in all the process of marine big data management, security in
data storage, data access, data computation, data sharing, and
data supervision must be considered all over marine big data
management. If the above problems cannot bewell solved, the
value of marine big data would not be fully exploited.

To our best of knowledge, this paper is the first survey on
marine big data management. Our contribution is to study
on marine big data management architecture, summarize
the related methods and models, introduce a practical appli-
cation to demonstrate the architecture of marine big data
management, discuss the facing challenges, and ultimately
prospect the research directions of marine big data manage-
ment.

Organization of the rest paper is arranged as follows.
Section 2 covers the source and informal definition of marine
big data and provides an overview of the data characteristics.
Relatedmethods andmodels inmarine big datamanagement
are summarized in Section 3. The project about marine
big data management is presented in Section 4. Section 5
describes the facing challenges of marine big data manage-
ment. Finally, we draw a conclusion.

2. Marine Big Data Management Architecture

2.1. Marine Big Data. There has been no consensus concern-
ing the definition of marine big data. Given 4V (volume,
variety, velocity, and value) characters of big data [14], marine
big data is informally described as large amount of data
which is collected by satellite, aerial remote sensing, stations,
ships, and buoys and serving in the marine-related fields.
According to corresponding profiles [15–17], we summarize
the significant characteristics of marine big data as follows.

(1) Diverse Data Provisions.Marine big data is acquired from
widespread sources, such as satellites, aerial remote sensing,
stations, ships, buoys, and undersea sensing. Different data
sources take diverse data acquisition technologies to capture
marine data; however, varieties in data acquisition technology
specification, data format, arguments, and observation region
make marine big data reveal its characteristic of data type
diversity. Data with different diverse data provisions, as well
as the various data types, is a significant characteristic of
marine big data.

(2) Temporality and Spatiality. Marine big data features
strong timeliness and spatial correlation. Only those marine
data who contain specific spatial and temporal information
will show significant values. The data storage and the data
analysis are based on these two attributes. Without these two
features, the marine data will be useless.

(3) High Dimension. The marine science involves several
disciplines such as physical oceanography, chemical ocean-
ography, biological oceanography, marine environment,
and marine economy. Besides temporality and spatiality,
every marine data still contains multiple attributes like water
temperature, salinity, acidity, density, and velocity according
to the various demands. As a result, it is known as high
dimension data.

(4) Huge Volume. Since marine data grows at an over-
whelming speed, due to its high dimension and real-time (or
periodically) data acquisition by existing marine observation
projects all over the world, all of these factors form the huge
volume of marine big data.

(5) Data Availability. Marine big data also needs the
techniques to keep the data’s reliability. Once some illegal
data injects in the system, we need some techniques to find
out using data sampling technique, data quality inspection
technique, and automatic restoration technique.

(6) Data Security. Marine big data involves privileged, con-
fidential and strategic data, like long-cycle meteorology and
hydrology data helping disaster evaluation and forecasting,
marine fisheries and oil-gas distribution data helping marine
resource utilization, large-scale reef data, and off-coast data
helping military decision making.

2.2. Marine Big Data Management Architecture. Marine big
data comes from various data provisions, and its application
requirement and data type differ in each other. By analysis
of marine big data, the architecture of marine big data
management can be illustrated: data provision, data prepro-
cessing, data storage, data analysis, and data application as
well as quality control and data security throughout thewhole
process, specific as Figure 1.

Themanagement architecture of marine big data involves
several parts. Marine big data derives from various sources
such as satellite, aerial remote sensing, stations, ships, buoys,
and undersea sensing. Due to extra complex data structure
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Figure 1: Marine big data management architecture.

and data type characteristics of marine big data, it is essential
to perform preprocessing operations, such as data extraction,
data transformation, and data integration. At data storage
stage, aspects like storage platform, data classification, index
building, query, and data migration should be properly taken
into account. At data analysis stage, techniques like machine
learning, data mining, and statistics are introduced to pro-
vide the reliable theoretical basis on applications, including
decision support, disaster prevention andmitigation, disaster
inversion and visualization modeling, tsunami warning, and
red-tide forecasting. Data quality and data security are
perceived as the assurance for the whole architecture. Data
quality involves quality dimension, sampling model, quality
inspection, and data availability and automatic restoration,
while data security involves storage security, access security,
computation security, sharing security, and supervision secu-
rity.

3. Methods and Models in Marine Big
Data Management

Nowadays, there are a great many of researches on big
data management, and a few general technologies have been
launched. This section discusses the methods and technolo-
gies, with regard to data storage, data analysis, data quality
control, and data security in marine big data management.

3.1. Data Storage and Analysis. With the advent and develop-
ment of cloud computing, new processing frameworks, com-
puting models, and analytical methods emerge as required,
which provide technical supports for storage and analysis in
big data management. From the view of data storage and
data analysis, this section analyzes these key technologies,
which are applicable to marine big data with significant
characteristics.

3.1.1. Data Storage. Cloud storage is widely applied in big
data. Currently there are several cloud storage platforms,
includingGoogle Store [18], Amazon S3 [19],MicrosoftAzure
[20], and IBM Blue Cloud [21, 22]. To make cloud storage
play better applicability in sensitive and spatial marine big
data, operations like partitioning marine big data by security
classification and building suitable index structure should
be carried out to raise query efficiency. With the continual
accumulation of observing data in data storage system,
data should be dynamically migrated, in consideration of
characteristics of marine big data. All the above contributes
to maximum use of storage system.

Data partition helps to increase execution efficiency of
index [23]. In terms of data security, current researches fasten
on taking data sensitivity calculation [17], physical isolation
[24], and user access restriction [25, 26], to partition data
to the corresponding node. Besides, there are some partition
methods based on statistical theory, such as clustering-based
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data partition [27], sampling-based data partition [28, 29],
and adaptive partition based on data distribution [30, 31].
These above methods aims to relieve processing pressure
of massive data, avoid data skew, and achieve stable and
dynamic data distribution. Data partitioning is a process
that a dataset is divided into several fragments according to
certain rules and there is no intersection among the various
fragments. After the data is divided into a number of data
fragments which are stored in clouds, assume that cloud
storage is large enough. When a dataset 𝐷 is uniformly
fragmented stored into the 𝑛 clouds, the information entropy
requires

𝐼 (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) = −

𝑛

∑

𝑖=1

𝑠
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log
2

𝑠
𝑖

𝑠
, (1)

where 𝑠 is the total number of fragments of dataset 𝐷 and 𝑠
𝑖

is the number assigned to the Cloud
𝑖
fragments. When the

value of 𝑛 is greater, indicating that data is split into more
fragments, the greater its entropy.

Index is a powerful technique to improve query efficiency.
Cloud storage is a widely accepted distributed storage plat-
form on marine big data. In this case, current researches
mainly falls into several classes: hash index [32], tree structure
index [33, 34], time-led composite index [35, 36], index
dynamically adjusted with data migration [37, 38], and index
optimized with parallel processing [39].

To improve query efficiency on cloud storage, it is
essential to study on query optimization techniques, so as
to relieve computing pressure and improve transmission
speed. From the view of algorithm implementation, there
are a few improvements, such as sharing history query result
as intermediate result [40], adaptively sampling based on
data characteristics [41], and extracting representative tuples
according to relation compactness [42]. Zadeh introduced
the notion of possibility distributions, which acts as a fuzzy
restriction on the values that may be assigned to a variable.
Given a fuzzy set 𝐹 and a variable𝑋 on𝑈, then the possibility
of 𝑋 = 𝑢, denoted by 𝜋

𝑋
(𝑢), is defined to be equal to 𝜇

𝐹
(𝑢).

The possibility distribution of 𝑋 on 𝑈 with respect to 𝐹 is
denoted by

𝜋
𝑋
= {

𝜋
𝑋
(𝑢)

𝑢
| 𝑢 ∈ 𝑈, 𝜋

𝑋
(𝑢) = 𝜇

𝐹
(𝑢) ∈ [0, 1]} . (2)

Additionally, relevant studies still focus on hardware perfor-
mance improvement, adopting task scheduling [43, 44] to
realize efficient parallel processing.

Dynamic data migration on storage platform ensures
optimal utilization of storage resource. There are two kinds
of traditional data migration methods: one is based on high
and low water level method of storage space [44], and the
other is based on cache replacement migration algorithm
of data access frequency [45, 46]. With the development of
storage technology, several different storage patterns have
been created. In hierarchical storage, migration model is
introduced to support automatic datamigration [47]. Inmul-
tistage storage, CuteMig migration method [48] is involved
to realize data migration. In hybrid cloud storage, calculation

of data sensitivity and migration function contributes to
dynamic data migration [17]. Dremel [49] successes in ana-
lyzing massive data in short time and supports data analysis
platform over the cloud.

3.1.2. Data Analysis. Considering characteristics like real-
time and diversity in data type of marine big data, data
analysis should be performed according to data type and
analysis target. Hence, adaptive algorithm and model should
be taken to ensure the request for real-time data analysis.
MapReduce is widely used in numerous big data applications
to accelerate the data analysis process. As a result, there is
no exception in marine big data application. The paragraph
below briefly introduces some representative big data analysis
models.

MapReduce is the earliest computing model that Google
proposed, which applies to batch processing [50]. MapRe-
duce can be divided into two phase: map phase and reduce
phase. Graph is an effective data structure in representing
relationships or connections between objects in the real
world. Hence, graph computing is a normal computing
pattern. Since graph computing involves continuously data
updating and numerous message passing, it might impose
lots of unnecessary serialization and deserialization overhead
using MapReduce. Pregel [51] is another computing model
proposed by Google after MapReduce, which is mainly
devised to serve graph computing. Its core idea derives from
distinguished BSP [52] computing model. Additionally, there
exists a PageRank algorithm to reflect the computing quality.
The formula is given as follows:

PR (𝐴) = (1 − 𝑑) + 𝑑(
PR (𝑇

1
)

𝐶 (𝑇
1
)

+ ⋅ ⋅ ⋅ +
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𝑛
)

𝐶 (𝑇
𝑛
)
) , (3)

where 𝑇
1
, . . . , 𝑇

𝑛
= Pages that point to page 𝐴 (citations) and

𝐶(𝑇) = number of links going out of𝑇. Dremel [49] successes
in analyzing massive data in short time and supports data
analysis platform over the cloud, that is, BigQuery [53]. As
to its data model, it is based on strongly typed nested records.
Its abstract syntax is given by

𝜏 = dom | ⟨𝐴
1
: 𝜏 [∗ |?] , . . . , 𝐴𝑛 : 𝜏 [∗ |?]⟩ , (4)

where 𝜏 is an atomic type or a record type. Field 𝑖 in a
record has a name 𝐴

𝑖
and an optional multiplicity label.

Repeated fields (∗) may occur multiple times in a record.
Optional fields (?)may be missing from the record. Analysis
tool, PowerDrill [54], adopts column storage and compress
technique to load as much as data into memory. Both
PowerDrill and Dremel are big data analysis tools of Google,
but they fit into different application scenarios, respectively,
and differ in implementation techniques. Dremel is mostly
used in analysis of multidatasets, and it can handle up to
PB data in several seconds. PoweDrill is mostly applied
in analysis of core subset of massive data, and it disposes
less data types than Dremel. Since PowerDrill resides data
in the memory buffer as much as possible, its processing
speed is higher. Microsoft proposed a data analysis model
named Dryad [55], which supports applications of Directed
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Acycline Graph (DAG), the same as Cascading on Hadoop
[56]. The singleton graph is generated from a vertex V as
𝐺 = ⟨(V), 0, {V}, {V}⟩. A graph can be cloned into a new
graph containing 𝑘 copies of its structure using the ∧ operator
where 𝐶 = 𝐺

∧
𝑘 is defined as
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where 𝐺
𝑛
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𝑛

𝐺
, 𝐸
𝑛

𝐺
, 𝐼
𝑛

𝐺
, 𝑂
𝑛

𝐺
⟩ is a “clone” of 𝐺 containing

copies of all of 𝐺’s vertices and edges, ⊕ denotes sequence
concatenation, and each cloned vertex inherits the type and
parameters of its corresponding vertex in 𝐺.

3.2. Data Availability. Facing the quality problems of the
uncertainty and inconsistency of marine big data, a scheme
of data quality control throughout data management is
highly on-demand. So far, academic study on data quality
control involves several aspects, including selection of data
quality dimensions, design of quality inspection scheme,
regulation of quality control standard, and theories of the
data usability and data autorestoration.

Quality Dimensions. In essence, data quality is considered
as the applicability of data in applications [57] and can
be described from five dimensions, including consistency,
integrity, timeliness, usability, and credibility [58]. As for
spatial data, existing researches put forward five important
aspects of data quality evaluation, including spatial accuracy,
thematic accuracy, logical consistency, completeness, and
lineage [59]. In terms of various quality evaluation methods,
spatial data quality is measured as such in ISO/TC211:

𝑅 =

𝑘

∑

𝑖=1

(𝐶
𝑖
⋅ 𝑊
𝑖
) , (6)

where 𝑅 is the result of data quality, 𝑅 ∈ (0.0, 1.0); 𝐶
𝑖
is the

accuracy of the 𝑖th object, 𝐶
𝑖
∈ (0.0, 1.0); 𝑊

𝑖
is the weight of

the 𝑖th object,𝑊
𝑖
∈ (0.0, 1.0); 𝑘 is the amount of all kinds of

ground objects [60].

Sampling Schemes for Spatial Data. Sampling method is
an effective way for processing of massive information, by
choosing a small amount of sample to represent the popu-
lation. The sampling method is efficient with low cost. When
spatial samples are not independent, the Bootstrap algorithm
introduces two-time sampling technique [61], using the Bag
of Little Bootstraps (BLB) functions as follows:

𝑠
−1

𝑎

∑

𝑗=1

𝜉 (𝑄
𝑛
(𝑃
𝑗

𝑛,𝑏
)) , (7)

which has greatly improved the efficiency of data quality eval-
uation under parallel or distributed computing circumstance.
In spatial data sampling, the “Sandwich” sampling model
solves the problemof spatial heterogeneity, based on stratified
sampling [62, 63] by considering autocorrelation of the spatial
objects.

Quality Inspection Schemes for Spatial Data. During the past
several years, efforts have been made on quality inspection of
marine big data. These studies have put forward an available
quality inspection scheme for marine big data, especially for
one or a few dimensions. Marine dataset is usually composed
of multidimension, multiscale, and multisource. Thus, it is
required to propose a quality inspection scheme to inspect
the quality of marine big data as a complete, indivisible set
[64].

The purpose of quality inspection is to judge whether
the data reach the quality levels required by data analysis
or data utilization [65]. The principal goal of designing
an optimal sampling scheme is to obtain high accuracy of
product inspection and to reduce the inspection cost [66].
Current studies have proposed many sampling schemes of
quality inspection for industrial product based on statistical
theory [67–72]; based on hypergeometric distribution, the
accepting probability is calculated as follows:

𝐿 (𝑝) =

𝑐

∑

𝑑=0

ℎ (𝑑, 𝑛, 𝐷,𝑁) , (8)

where 𝑑 is the actual number of unaccepted data products
in the sample, 𝑛 is the sample size, 𝐷 is the total number of
unaccepted data products in the lot, and𝑁 is the lot size.

Thus, the inspection model of marine big data is also
brought up:

min 𝜀
𝑛

s.t. 𝜀 = 𝜀
𝜀
=

𝑐

∑

𝑑=0

(
𝑁−𝐷

𝑛−𝑑
) (
𝐷

𝑑
)

(
𝑁

𝑛
)

− (1 − 𝛼) ,

(0 < 𝑐 < 𝑛 − 1, 𝜀 > 0) ,

(9)

where 𝜀 is the residual of the accepting probability and 𝛼

represents the quality demand of data user.

Data Usability. The usability of dataset includes data
consistency, data integrity, data accuracy, timeliness, and
entity identity [73]. Studies on data consistency are mainly
based on description of semantic rules [74] and statistics
[75].Themost classic resolution dealing with data integrity is
an incomplete data expression system based on conditional
table [76]. There are few researches on data accuracy.
The most common one is a description method of data
accuracy based on possible world semantics. In terms of
timeliness, researches mainly fasten on autodetection and
autorestoration [77]. Studies on entity identity are based on
the detection of entity identity error, including semantic
rules and similarity measurement [78].

DataAutodetection andAutorestoration. Studies on data error
detection include two aspects, data consistency and entity
identity. As for data consistency, studies mainly focus on
designing on autodetection algorithm [79] and distributed
database detecting method [80]. The purpose of entity iden-
tity detection is to maximize the identification accuracy [81]
and the recognition efficiency [82]. In terms of studies on
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data restoration, traditional functional dependency is used
to solve the problem of data inconsistency [83], while data
fusion techniques are mostly used for data entity identity
issues [84].

3.3. Data Security. According to the challenges in marine
big data security, the related researches and development
techniques are summarized in the following five aspects
as secure data storage, secure data access, secure data
computation, secure data sharing, and secure data
supervision.

Secure Data Storage. Since the existing data storage security
depends on the credibility of the cloud servers, we needs to
study the ciphertext-based data storage techniques [85], to
resist the administrators of the storage servers and adversary
from the server side exposing and tampering data. Besides,
it is also necessary to research on the multiauthorities in the
access control to reduce the loss due to a single authority
compromised by the malicious adversary. In addition, the
techniques for data integrity checking [86] and data storage
proofing [87] are also essential in the ciphertext-based
storage.

Secure Data Access. Marine big data are used for different
scenarios and accessed by different users with different roles
and different security levels. Traditional access control is no
longer suitable for the ciphertext-based storage platform. It
is necessary to research the techniques of ciphertext-support
data retrieval [88], the fine-grained data access control [89],
and supporting the flexible functions such as “and,” “or,” and
“not” logical connectives data access control [90], indexing
[91], keyword searching and ranking [92], and similarity
searching [93] on the encrypted data to realize the access
security.

Secure Data Computation. Since the servers cannot be
fully trusted and computation services are often in an
outsourcing way, it requires that the input/output should
be in an encrypted form for data calculation and data
analysis, rather than that the storage ciphertext is decrypted
before computation and analysis [94]. In the marine big
data computation and analysis, it requires the techniques
involving solving the ciphertext-based large scale linear
equations [95], analyzing and mining the knowledge from
the encrypted data, processing the ciphered images [96], and
fully homomorphic encryption/decryption [97] to realize
the computation security.

Secure Data Sharing. The marine data sharing security
depends on the user’s secret key. To keep the data secure
sharing and data dissemination in the cloud environment
[98], it is inevitable to research the techniques of leakage
key tracing like white-box traceability [99, 100] and black-
box traceability [101] and access ability revocation [102].
Meanwhile, faced to marine data, it also requires efficient
encrypted data sharing and dissemination techniques [103],
marine data privacy-preserving techniques [104], and

optimized implementation techniques [105] to improve the
batch processing ability of marine big data.

Secure Data Supervision. In the data storage, computation,
sharing, and dissemination, it needs secure data supervision
techniques [106] such as removing illegal data [107], reducing
the cost of redundant data [105], checking the completeness
of the storage content [87], verifying the correctness of the
calculation results [95], andmining the sensitive information
and knowledge in the marine data usage. Furthermore, it
also requires rules from the government to coordinate the
personal privacy preserving and marine big data analyzing
[108].

4. Application in Marine Big Data

In terms of the marine big data management architecture,
we introduce a practical application of the marine big data—
a disaster inversion visualization instance that reproduces a
marine disaster happened in Chinese Yellow Sea to show our
marine big data.

The disaster results, including latitude and longitude, flow
velocity, flow direction, water depth, and height, produced
every 10 minutes, involve over 40000 inversion grids. Each
monitoring of disaster lasts 5 days, and the disaster data
amount alone is up to 4.5GB. (If we employ more precise
data, the data volume will be much huger.) Thus, we choose
it as an application since it satisfies all of the characteristics
of marine big data. Furthermore, to achieve authenticity and
quasireal-time of disaster process, massive data about the
geographic locations and continuously risingwater level need
to be loaded in the disaster visualization, which leads to
higher requirements for data transmission, data storage, data
analysis, and rendering efficiency.

In this project, we apply hybrid cloud storage architecture,
including public cloud and private cloud shown in Figure 2.
The project partitions the marine big data in terms of the
difference between spatial and temporal attributes. The data
with strong timeliness attribute and location related attribute
are stored in the private cloud. Public cloud assists to store the
rest of the marine data.

Meanwhile, data migration is the key problem in such
hybrid cloud storage architecture.Things like data sensitivity,
data access frequency, data time length, and data size should
be fully considered when performing data migration. To
improve query efficiency in the cloud, we use the query
optimization technique and improve transmission speed.
We take the migration algorithm [17] to help to lower the
management cost without sacrificing to slow down the data
access speed. The migration function is the key of migration
algorithm shown as follows:

𝑀(𝐷) =

𝑛

∑

𝑖=1

1

𝑇
𝑖

×

𝑛

∑

𝑘=1

𝑓
𝑘
×
1

𝑆
, (10)

where𝑇
𝑖
represents time-length of the 𝑖th access of themarine

dataset𝐷, 𝑓
𝑘
represents access frequency ofmarine dataset𝐷

over the period of 𝑇
𝑘
, and 𝑆 is the size of marine dataset 𝐷.
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Figure 2: Hybrid cloud storage architecture.

The system performs migration by judging the value of the
formula (10).

In this hybrid cloud storage platform, to keep the data
availability, we set the data quality inspectionmodel [68] to fit
in marine big data and improve the data usage and reliability.
The acceptance number 𝑐directly affects the inspection result.
Given a sample size 𝑛, we can obtain 𝑐 from the formula
shown as follows:

𝑐 = −
1

2
+

𝑛

log (𝑝
2
/𝑝
1
) / log (𝑞

1
/𝑞
2
) + 1

, (11)

where 𝑝
1
represents accepting probability and 𝑝

2
is rejecting

probability. And 𝑞
1
= 1 − 𝑝

1
, 𝑞
2
= 1 − 𝑝

2
.

We also use the data security technique to encrypt data in
the cloud and keep the data confidential in the private cloud
and to distribute the access right for cloud users and provide
an effective access to the cloud data.

Along with data storage, data analysis and quality control
finishing their works, the loaded disaster data would be
cached on cloud, to facilitate demonstration fluency of dis-
aster inversion process. The visualization cases of 3D terrain
representation, water level rising process,and detail disaster
situation are shown in Figures 3, 4, and 5, respectively.

In belief, the disaster inversion visualization has made
significant contributions for marine big data.

(1) Terrain Reconstruction. The project has visualized the
disaster of sea terrain in the form of 3-dimension style, which
could help to analyze the causes of the disasters based on
terrain conditions.

(2) Disaster Reproduction. The project, in a quasireal-time
way, has reproduced multiple dataset involved in disaster
process, including velocity, flow direction, and water depth,
which could further help to fleetly evacuate victims.

(3) Disaster Evaluation. The project has reconstructed the
postdisaster scene, which helps to evaluate the economic
losses and human victims of the disaster area. (The project
(Grant number 20905014-06) is finished by Digital Ocean
Institute, College of Information, Shanghai Ocean University
in May, 2014.)

5. Challenges in Marine Big Data Management

Prominent characteristics of marine big data have brought
about new issues. In this case, this section discusses practical
and theoretical challenges in the existence of marine big data
management: data storage, data analysis, quality control, and
data security.

5.1. Data Storage. Data storage underpins and sustains
the efficient application of data. Under storage platform,
rational data partition and suitable index building assist
to realize efficient data queries. It has to be noted that
there are some present situations in traditional storage
system, mainly including lack in supporting dynamic
scalability, simplified data storage method, relatively fixed
data structure, controllable data size, and aware data type.
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Figure 3: 3D terrain graph.

Figure 4: Water rising graph.

However, characteristics of marine big data, including large-
volume, sensitivity, real-time, high dimension, diversity
in data provision, and type, pose new challenges for data
storage, mainly in two aspects.

(1) Scalability Requirement for Storage Space. Due to huge-
volume and real-time characteristics of marine big data, it
poses new challenges towards hardware architecture and file
system, which requires data storage to be more scalable.
Along with real-time acquisition of observing data, data
storage should be more flexible.

(2) Diversity Requirement for Storage System and Storage
Model.Multisource characteristic of marine big data imposes
a great diversity in data type. Marine big data basically falls
into three catalogs: structured attribute data (∗.MDB, ∗.dbf,
∗
.bak, ∗.dmp, etc.), spatial data (∗.shp, ∗.adf, ∗.tif, ∗.jpg,
etc.), and unstructured data (∗.doc, ∗.xls, ∗.pdf, ∗.txt, ∗.xml,
etc.). Diversity in data type puts forward higher request
for database consistency, database usability, and partition
tolerance.

5.2. Data Analysis. The purpose of data analysis is to find
patterns and extract information from complex and vast data,
which is the key to effectively exploit the value of marine big
data. The object in traditional data analysis tends to be small
datasets, which are structured dataset and single objects.

Figure 5: Postdisaster graph.

Data analysis and data mining prefer to build models by
manual in advance according to priori knowledge and then
analyze based on the selected data model. Diversity in data
provision and heterogeneous characteristics of marine big
data has raised some new issues, such as huge data amount,
nonunified data type, and low data quality. Additionally,
traditional analysis techniques like data mining, machine
learning, and statistical analysis should be adjusted to make
it adaptive to marine big data. Marine big data brings along
with some analytical challenges, specific as follows.

(1) Effectiveness Requirement. Marine big data contains its
unique characteristics, such as huge data amount, complex
data type, and uncertain data distribution. Therefore,
adaptive algorithm and model should be selected according
to its data type and analysis target, to fleetly process marine
data.This further leads to some challenges towards hardware
and software, especially on data analysis algorithms.

(2) Efficiency Requirement.The application with marine data
requires a higher demand on real-time response. Under
such circumstances as Snow Dragon’s expedition on extreme
conditions in polar, it is essential to make a comprehensive
analysis of real-time information on weather, sea ice, seabed,
ship, and so forth. However, massive data processing and
analyzing in real-time consumes huge computing resources,
while traditional computing technologies are insufficient
to that. Basically, it performs better in cooperation with
cloud computing but proposes new challenges towards the
scalability and real-time of its algorithm.

5.3. Data Availability. Quality of marine big data is the
foundation of the development of marine Geographic
Information Science. Due to the restriction of the acquisition
and processing method, there exist a large number of
random errors in marine big data, which leads to the
unreliability of the marine data products.The existing theory
of quality management is mainly used to control the quality
of traditional industrial product, which is not quite suitable
for the quality control marine big data with characteristics
of multisource, massiveness, spatial relativity, and so forth.
Therefore, development of quality control theories based on



Mathematical Problems in Engineering 9

characteristics of marine big data is one of the key issues in
data management. The challenges are combing conventional
quality control theory with marine big data management.

(1) Quality Inspection Plan Designing. Considering the
characteristics of marine big data, it has become a priority
issue to take the required precision into account, to design
the optimal the sampling number and the acceptance
number.

(2) Spatial Sampling Method Deducing. Due to the spatial
autocorrelation characteristic of marine big data, the method
of selectingmarine data samples is different from the classical
sampling method. The distance between data restricts the
information redundancy between the sample points. Both
considering the spatial autocorrelation of marine big data
and achieving the maximum of information under the same
inspection cost guarantee the implementation of the quality
control of marine big data.

(3) Theory of Usability and Autorestoration. In terms of the
quality inspection result, marine big data can be divided into
usable data and risk data. Due to various data acquisition
methods, most of marine big data are irreversible, which
makes it significant to study on the usability of marine data
products and data autorestoration.

5.4. Data Security. Compared to the traditional data
security, marine data’s security and privacy protection appear
significantly different and show the typical structure-based
characteristics including “one to many” structure (one
user stores the data, multiple users access), “many to one”
structure, and “many to many” structure. From the data
processing perspective, the service of marine big data can be
divided into data storage service, data access service, data
computation service, data share service, and data supervision
service. In short, the challenges in marine big data security
can be also summarized as “secure data storage, secure data
access, secure data computation, secure data sharing, and
secure data supervision.”

(1) Secure Data Storage Requirement. From the case of
Snowden, people all over the world have realized that the
users’ privacy as well as the sensitive data will be greatly
harmed if the data are not in a properly secure storage.
The storage of marine data often relies on the credibility
of the servers/nodes, which could not resist the servers’
administrators and the inside adversary wiretapping and
tampering the data. If the data is not discriminated and used
directly, the factual data also cheat the users; in particular
forgery or deliberately manufacturing data often leads to the
incorrect and incomplete conclusions.

(2) Secure Data Access Requirement. Data access control is
an effective way to realize the data sharing. Marine big data
are used for different scenarios and accessed by different
users with different roles and different security levels. The
access control requirements are very prominent since the

traditional access control techniques mainly depend on the
security of the database and cloud service providers. Once
the database administrators and cloud service providers take
malicious behaviors, the data are no longer secure in the
database and data sharing, which results in violation of the
data confidentiality and the users’ privacy.

(3) Secure Data Computation Requirement. Data compu-
tation such as calculation and analysis of marine data is
another important application. Since marine big data ser-
vice providers cannot be fully trusted and computation
services are often in an outsourcing way, it is an important
requirement that how to achieve the data confidentiality and
realize the data calculation and analysis simultaneously. In
addition, it is also important to improve the efficiency of data
calculation and analysis as well as ensure the effectiveness of
the storage data.

(4) Secure Data Sharing Requirement. In the marine data
sharing and dissemination, the data are often shared among
the authored users. Thus, the security is based on the users’
secret keys. The data will be given away if the user’s secret
keys were leaked intentionally or unintentionally, which is
unable to realize the secure data sharing and dissemination
mechanism in the cloud. Furthermore, since the security of
modern cryptographic systems depends only on the secret
keys, the whole security systems would collapse if there is no
technique to trace and revoke leaked secret keys.

(5) Secure Data Supervision Requirement.Data supervision is
a guarantee to marine data security. In the processing stages
of data storage, computation, sharing, and dissemination,
malicious adversaries may insert false data intentionally and
unintentional users may insert error data if there is a lack
of the techniques of data supervision and monitoring. It
is also important to remove illegal information, reduce the
redundancy cost, check the content completeness, and verify
the correctness of the calculation results in the marine data
supervision.

6. Conclusions

As we have entered an era of marine big data, it is of great
realistic and theoretical significance to study on the marine
big datamanagement. Unfortunately, existing techniques and
theories are very limited to solve the real problems completely
in the marine big data. To tackle above issues, this paper has
analyzed the existing challenges in data storage, data analysis,
quality control, and data security, summarized themarine big
data models, algorithms, methods, and techniques in field of
marine big data management, and finally presented a practi-
cal engineering instance that demonstrates the management
architecture. There is no doubt that study on marine big
data management is still in the initial stage of development;
thereby more scientific investments from both academy and
industry should be poured into this scientific paradigm to
capture huge values from marine big data.
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