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The nonlinear dual-porosity flowmodel, specifically considering the quadratic pressure gradient term, wellbore storage coefficient,
well skin factor, and interporosity flow of matrix to natural fractures, was established for well production in a naturally fractured
formation and then solved using a semianalytical method, including Laplace transform and a transformation of the pressure
function. Analytical solution of the model in Laplace space was converted to numerical solution in real space using Stehfest
numerical inversion. Nonlinear flow process for well production in a naturally fractured formation with different external
boundaries was simulated and analyzed using standard pressure curves. Influence of the quadratic pressure gradient coefficient
on pressure curves was studied qualitatively and quantitatively in conditions of a group of fixed model parameters. The research
results show that the semianalytical modelling method is applicable in simulating the nonlinear dual-porosity flow behavior.

1. Introduction

The fluid flow in porous media was proved to be of nonlin-
earity [1–3]. The nonlinear flow models with the quadratic
pressure gradient term for well production in underground
formations were especially investigated in the past. Early in
1989, a steady-state and semisteady-state flowmodel with the
quadratic pressure gradient term was presented [4]. In 1991,
a transient flow model with the quadratic gradient term was
established and solved [5]. In 1993, the pressure distribution
of a radial flow model with the quadratic gradient term was
studied and plotted [6, 7]. In 1994, a nonlinear flow model
for a dual-porosity formation was established [8, 9]. In 1996,
the analytic solution to the nonlinear diffusion equation with
the quadratic pressure gradient by considering a constant
compressibility of fluidwas derived [10]. In 1998, the solutions
between linear and nonlinear models were compared [11]
and a special nonlinear model for variable-rate well-tests was
especially researched [12]. In 2004, the exact solution of a
flow model with the quadratic gradient term by considering
wellbore storage effect was deduced [13]. In 2005, a fractal
model with the quadratic gradient term was presented [14].
In 2008, a class of nonlinear type equations for porous flow

was especially proved to be of existence using mathematical
theory [2]. In 2009, the nonlinear equation of pressure
diffusion was solved using a Hopf-Cole transformation [15].
In 2010, a spherical flow model for a partial perforation
well in a formation with a larger thickness was established
[16]. In 2013, the effects of the quadratic gradient term
on the pressure curves and pressure derivative curves were
analyzed qualitatively and quantitatively for homogenous and
multiple-zone composite reservoirs [17–19]. Despite copious
literatures on the nonlinear flow subject with the quadratic
pressure gradient term, most of them were focused on the
single porositymedium and only two papers [8, 9] studied the
dual-porosity media; however the nonlinear dual-porosity
flow model of Bai suffered some limitations in face of the
real world: (1) well skin and wellbore storage effects that
actually exist in every real well were not considered in his
model; (2) a standard set of log-log type curves for nonlinear
flow process analysis was not developed; (3) quantitative
difference between nonlinear and linear models was not
compared.Therefore, the main task of this paper is to address
the three issues and clearly show the readers the nonlinear
dual-porosity flow behavior in a different way.
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2. Physical Model

Physical model assumptions are as follows.
(1) For a single well production at constant rate in an

underground dual-porosity formation saturated by a single-
phase liquid (oil or water), the external boundary of forma-
tion may be infinite or closed or constant pressure.

(2) Underground dual-porosity formation is constructed
by natural fracture system and matrix system. It is supposed
that fracture permeability is far larger thanmatrix permeabil-
ity, so the flow pathway directly connected with wellbore is
considered as fracture system.

(3) Slightly compressible rock and liquid with a constant
compressibility are considered.

(4)Theporous flow is isothermal and conforms toDarcy’s
law and the gravity and capillary forces are ignored for the
flow, and the effect of pressure on fluid viscosity is also
ignored for the flow.

(5) Skin effect is considered (near the wellbore where
the formation could be damaged by drilling and completion
operations there would be an additional pressure drop during
production, with the “skin” being a reflection of additional
pressure drop).

(6)Wellbore storage effect is considered (in the beginning
of opening well, the fluid stored in wellbore starts to flow, and
the fluid in the formation does not flow).

(7) At time 𝑡 = 0, pressure is uniformly distributed in
formation, equal to initial pressure (𝑝

𝑖
).

3. Mathematical Model

3.1. Establishment of Mathematical Model. The nonlinear
governing equation of fluid flow in the radial cylindrical
system is
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where 𝑟 is radial cylindrical coordinate; 𝑘
𝑚
is matrix perme-

ability, 𝜇m2; 𝑘
𝑓
is fracture permeability, 𝜇m2; 𝑝

𝑚
is matrix

pressure, MPa; 𝑝
𝑓
is fracture pressure, MPa; 𝜇 is viscosity,

mPa⋅s; 𝜙
𝑚
is matrix porosity, fraction; 𝜙

𝑓
is fracture porosity,

fraction; 𝐶
𝜌
is liquid compressibility, MPa−1; 𝐶

𝑚𝑡
is total

compressibility of rock and liquid of matrix system, MPa−1;
𝐶
𝑓𝑡

is total compressibility of rock and liquid of fracture
system, MPa−1; 𝛼

𝑚
is geometric shape factor of matrix block,

m−2; 𝑡 is well production time, ℎ; the subscripts “m” and “f ”
represent “matrix” and “fracture,” respectively.

The second power of the pressure gradient in (1) is called
the quadratic pressure gradient term.

Initial condition is

𝑝
𝑚

𝑡=0 = 𝑝𝑓
𝑡=0

= 𝑝
𝑖
, (3)

where 𝑝
𝑖
is initial formation pressure, MPa.

Well production condition at constant rate production
based on effective radius is

𝑘
𝑓
ℎ

𝜇
(𝑟
𝜕𝑝
𝑓
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)

𝑟=𝑟
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= 1.842 × 10
−3
𝑞𝐵 + 0.04421𝐶

𝑠

d𝑝
𝑤

d𝑡
,

(4)

where 𝐵 is fluid volume factor, dimensionless; 𝐶
𝑠
is wellbore

storage coefficient, m3/MPa; 𝑝
𝑤
is wellbore pressure, MPa; 𝑞

is well rate at wellhead, m3/d; 𝑟
𝑤𝑎

is effective wellbore radius,
m; ℎ is formation thickness, m.

The effective wellbore radius 𝑟
𝑤𝑎

is defined as [20]

𝑟
𝑤𝑎
= 𝑟
𝑤
e−𝑆, (5)

where 𝑟
𝑤
is real wellbore radius, m; 𝑆 is skin factor, dimen-

sionless:

lim
𝑟→∞

𝑝 = 𝑝
𝑖 (infinite) ,

𝑝
𝑟=𝑟e

= 𝑝
𝑖
(constant pressure) ,

𝜕𝑝

𝜕𝑟

𝑟=𝑟e
= 0 (closed) ,

(6)

where 𝑟e is external boundary radius, m.
The following dimensionless definitions are introduced to

solve the mathematical model:

dimensionless radial distance 𝑟
𝐷
= 𝑟/(𝑟

𝑤
e−𝑆);

skin factor 𝑆
𝑡
= 𝑘
𝑓
ℎΔ𝑝
𝑠
/(1.842 × 10−3𝑞𝜇𝐵); here Δ𝑝

𝑠

is additional pressure drop near wellbore;
dimensionless production time 𝑡

𝐷
= 3.6𝑘

𝑓
𝑡/

(𝜙𝜇𝐶
𝑡
𝑟2
𝑤
);

dimensionless fracture pressure 𝑝
𝑓𝐷
= 𝑘
𝑓
ℎ(𝑝
𝑖
− 𝑝
𝑓
)/

(1.842 × 10−3𝑞𝐵𝜇);
dimensionless fracture pressure 𝑝

𝑚𝐷
= 𝑘
𝑓
ℎ(𝑝
𝑖
−𝑝
𝑚
)/

(1.842 × 10−3𝑞𝐵𝜇);
dimensionless wellbore storage coefficient 𝐶

𝐷
= 𝐶
𝑠
/

[6.2832ℎ𝑟2
𝑤
(𝜙
𝑓
𝐶
𝑓𝑡
+ 𝜙
𝑚
𝐶
𝑚𝑡
)];

dimensionless time for dual media reservoir 𝑡
𝐷
=

3.6𝑘
𝑓
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𝑤
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𝑓
𝐶
𝑓𝑡
+ 𝜙
𝑚
𝐶
𝑚𝑡
)];

interporosity flow factor of matrix to fracture systems
𝜆
𝑚𝑓
= 𝛼
𝑚
𝑟
2

𝑤
(𝑘
𝑚
/𝑘
𝑓
);

fluid capacitance coefficient of fracture subsystem
𝜔
𝑓
= 𝜙
𝑓
𝐶
𝑓𝑡
/(𝜙
𝑓
𝐶
𝑓𝑡
+ 𝜙
𝑚
𝐶
𝑚𝑡
);

fluid capacitance coefficient of matrix subsystem
𝜔
𝑚
= 𝜙
𝑚
𝐶
𝑚𝑡
/(𝜙
𝑓
𝐶
𝑓𝑡
+ 𝜙
𝑚
𝐶
𝑚𝑡
), 𝜔
𝑓
+ 𝜔
𝑚
= 1;

dimensionless coefficient of nonlinear term𝛽 = 1.842

×10−3𝑞𝐵𝜇𝐶
𝜌
/(𝑘
𝑓
ℎ).
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The dimensionless mathematical model is as follows.
The dimensionless governing equation of fluid flow in a

radial cylindrical system is
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,

(7)

𝜆
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) = 𝜔
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𝐷

. (8)

In real cases, 𝛽 cannot be equal to 0 for the nonlinear flow
model. If we take a limit of 0 to 𝛽 (lim𝛽 → 0), the nonlinear
model will be reduced to the conventional linear model.

Initial conditions are

𝑝
𝑓𝐷

𝑡
𝐷
=0
= 𝑝
𝑚𝐷

𝑡
𝐷
=0
= 0. (9)

Well production condition at constant rate is

𝐶
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External boundary conditions are
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𝐷
→∞

𝑝
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𝑝
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𝑟
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(11)

3.2. Solution to Dimensionless Mathematical Model. Because
(7) is a nonlinear equation with two unknown functions of
𝑝
𝑓𝐷

and 𝑝
𝑚𝐷

, the first- and second-order derivatives of 𝑝
𝑓𝐷

to 𝑟
𝐷
, the quadratic power of the first-order derivative, and

the first-order derivative of𝑝
𝑓𝐷

to 𝑡
𝐷
, it is hard to linearize the

nonlinear equation. Therefore, we have to seek the analytical
solution of the nonlinear model in the other way.

We introduce the Laplace transform on the basis of 𝑡
𝐷
:

𝐿 [𝑝
𝐷
(𝑟
𝐷
, 𝑡
𝐷
)] = 𝑝

𝐷
(𝑟
𝐷
, 𝑢) = ∫

∞

0

𝑝
𝐷
(𝑟
𝐷
, 𝑡
𝐷
) e−𝑢𝑡𝐷d𝑡

𝐷
,

(12)

where 𝑝
𝐷
is the variable in real space; 𝑝

𝐷
is the variable in

Laplace space; 𝑡
𝐷
is the dimensionless time in real space; 𝑢 is

the time in Laplace space.
The dimensionless mathematical model in Laplace space

is as follows.

The dimensionless governing equation of fluid flow in a
radial cylindrical system is

𝜕
2𝑝
𝑓𝐷

𝜕𝑟2
𝐷

+
1

𝑟
𝐷

𝜕𝑝
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𝐷
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2
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𝑚𝑓

e−2𝑆 (𝑝
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𝑓𝐷
)
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𝑓
e−2𝑆𝑝
𝑓𝐷
,

(13)

𝜆
𝑚𝑓

e−2𝑆 (𝑝
𝑓𝐷
− 𝑝
𝑚𝐷
) = 𝑢𝜔

𝑚
e−2𝑆𝑝
𝑚𝐷
. (14)

By (14),

𝑝
𝑚𝐷

=
𝜆
𝑚𝑓

𝑢𝜔
𝑚
+ 𝜆
𝑚𝑓

𝑝
𝑓𝐷
. (15)

Substituting (15) into (13),

𝜕2𝑝
𝑓𝐷

𝜕𝑟2
𝐷

+
1

𝑟
𝐷

𝜕𝑝
𝑓𝐷

𝜕𝑟
𝐷

− 𝛽(
𝜕𝑝
𝑓𝐷

𝜕𝑟
𝐷

)

2

− 𝑓 (𝑢) 𝑝
𝑓𝐷
= 0, (16)

𝑓 (𝑢) = (
𝜔
𝑚
𝜆
𝑚𝑓

𝑢𝜔
𝑚
+ 𝜆
𝑚𝑓

+ 𝜔
𝑓
)𝑢e−2𝑆. (17)

If we set 𝜔
𝑓
= 1 and 𝜔

𝑚
= 0, the model is reduced to the

single porositymedium (homogeneous)model, so (17) can be
changed by

𝑓 (𝑢) = 𝑢e−2𝑆. (18)

In other words, under the same conditions of well
production and formation boundary, the difference of dual-
porosity model with homogeneous model in Laplace space
only exhibits the function expression of 𝑓(𝑢), which means
the flow governing equation of homogeneous model in
Laplace space is also (16). Therefore if we obtain the solution
of homogeneous model in Laplace space firstly, we will easily
obtain the solution of dual-porosity model in Laplace space
by changing the function of 𝑓(𝑢).

Because (16) is a nonlinear equation with 𝑝
𝑓𝐷

, the first-
and second-order derivatives of 𝑝

𝑓𝐷
to 𝑟
𝐷
, and the quadratic

power of the first-order derivative in Laplace space, it is hard
to linearize the nonlinear equation.Therefore, we have to seek
the analytical solution of homogeneous model back to real
space firstly.

For homogeneous model, the flow governing equation in
real space can be expressed by

𝜕
2𝑝
𝑓𝐷

𝜕𝑟2
𝐷

+
1

𝑟
𝐷

𝜕𝑝
𝑓𝐷

𝜕𝑟
𝐷

− 𝛽(
𝜕𝑝
𝑓𝐷

𝜕𝑟
𝐷

)

2

= e−2𝑆
𝜕𝑝
𝑓𝐷

𝜕𝑡
𝐷

. (19)

Well production and formation external boundary con-
ditions are the same as (9)–(11).

The following variable modification [11, 16] is introduced
to linearize (19):

𝑝
𝑓𝐷
= −

1

𝛽
ln (𝜒 + 1) . (20)
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Then
𝜕𝑝
𝑓𝐷

𝜕𝑟
𝐷
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𝛽
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𝐷
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1
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−
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𝐷

,
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2

=
1

𝛽2
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(
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𝜕𝑟
𝐷

)

2

,

𝜕𝑝
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𝜕𝑡
𝐷

= −
1

𝛽

1

(𝜒 + 1)

𝜕𝜒

𝜕𝑡
𝐷

.

(21)

Substitute (20)-(21) into (19), (9)–(11):

𝜕2𝜒

𝜕𝑟2
𝐷

+
1

𝑟
𝐷

𝜕𝜒

𝜕𝑟
𝐷

= e−2𝑆
𝜕𝜒

𝜕𝑡
𝐷

,

𝜒
𝑡
𝐷
=0
= 0,

(
𝜕𝜒

𝜕𝑟
𝐷

− 𝐶
𝐷

𝜕𝜒

𝜕𝑡
𝐷

− 𝛽𝜒)
𝑟
𝐷
=1

= 𝛽,

lim
𝑟
𝐷
→∞

𝜒 = 0 (infinite) ,

𝜒
𝑟
𝐷
=𝑟e𝐷

= 0 (constant pressure) ,

𝜕𝜒

𝜕𝑟
𝐷

𝑟
𝐷
=𝑟e𝐷

= 0 (closed) .

(22)

The homogeneous model in Laplace space via Laplace
transform can be written by

𝜕2𝜒

𝜕𝑟2
𝐷

+
1

𝑟
𝐷

𝜕𝜒

𝜕𝑟
𝐷

= 𝑓 (𝑢) 𝜒, 𝑓 (𝑢) = 𝑢e−2𝑆, (23)

d𝜒
d𝑟
𝐷

𝑟
𝐷
=1

− (𝑢𝐶
𝐷
− 𝛽) 𝜒

𝑤
=
𝛽

𝑢
, (24)

lim
𝑟
𝐷
→∞

𝜒 = 0 (infinite) , (25)

𝜒
𝑟
𝐷
=𝑟e𝐷

= 0 (constant pressure) , (26)

𝜕𝜒

𝜕𝑟
𝐷

𝑟
𝐷
=𝑟e𝐷

= 0 (closed) , (27)

where 𝜒 is substitution variable of dimensionless fracture
pressure in Laplace space and 𝜒

𝑤
is the value at the wall of

wellbore (𝑟
𝐷
= 1).

According to the previous derivation, we can obtain
the following governing equation of dual-porosity model by
changing 𝑓(𝑢) from (18) to (17) for (23):

𝜕
2𝜒

𝜕𝑟2
𝐷

+
1

𝑟
𝐷

𝜕𝜒

𝜕𝑟
𝐷

= 𝑓 (𝑢) 𝜒,

𝑓 (𝑢) = (
𝜔
𝑚
𝜆
𝑚𝑓

𝑢𝜔
𝑚
+ 𝜆
𝑚𝑓

+ 𝜔
𝑓
)𝑢e−2𝑆.

(28)

The general solution of (28) is

𝜒 = 𝐴𝐼
0
(𝑟
𝐷
√𝑓 (𝑢)) + 𝐵𝐾0 (𝑟𝐷√𝑓 (𝑢)) . (29)

Substitute (29) into (28) and (24):

𝐼
0
(√𝑓 (𝑢)) ⋅ 𝐴 + 𝐾0 (√𝑓 (𝑢)) ⋅ 𝐵 − 𝜒𝑤 = 0,

√𝑓 (𝑢)𝐼1 (√𝑓 (𝑢)) ⋅ 𝐴 − √𝑓 (𝑢)𝐾1 (√𝑓 (𝑢))

⋅ 𝐵 − (𝐶
𝐷
𝑢 + 𝛽) 𝜒

𝑤
=
𝛽

𝑢
.

(30)

Substitute (29) into (25)–(27):

lim
𝑟e𝐷→∞

𝐼
0
(𝑟e𝐷√𝑓 (𝑢)) ⋅ 𝐴 + lim

𝑟e𝐷→∞
𝐾
0
(𝑟e𝐷√𝑓 (𝑢)) ⋅ 𝐵 = 0,

𝐼
0
(𝑟e𝐷√𝑓 (𝑢)) ⋅ 𝐴 + 𝐾0 (𝑟e𝐷√𝑓 (𝑢)) ⋅ 𝐵 = 0,

𝐼
1
(𝑟e𝐷√𝑓 (𝑢)) ⋅ 𝐴 − 𝐾1 (𝑟e𝐷√𝑓 (𝑢)) ⋅ 𝐵 = 0,

(31)

where 𝐴 and 𝐵 are undetermined coefficients; 𝐼
0
( ) is mod-

ified Bessel function of the first kind, zero order; 𝐼
1
( ) is

modified Bessel function of the first kind, first order; 𝐾
0
( ) is

modified Bessel function of the second kind, zero order;𝐾
1
( )

is modified Bessel function of the second kind, first order.
In (30)-(31), there are three unknown numbers (𝐴, 𝐵, 𝜒

𝑤
)

and three equations, and solutions to the model in Laplace
space can be easily obtained by using linear algebra, such as a
Gauss-Jordan reduction.

In real space, 𝜒
𝑤
and the derivative (d𝜒

𝑤
/d𝑇
𝐷
) can be

obtained using a Stehfest numerical inversion [21] to convert
𝜒
𝑤
back to 𝜒

𝑤
, and then dimensionless wellbore pressure

(𝑝
𝑤𝐷
) and the derivative (d𝑝

𝑤𝐷
/d𝑡
𝐷
) can be obtained by

substituting 𝜒
𝑤
into (20). The standard log-log type curves

of well-test analysis of 𝑝
𝑤𝐷

and (𝑝
𝑤𝐷

⋅ 𝑡
𝐷
/𝐶
𝐷
) versus 𝑡

𝐷
/𝐶
𝐷

can then be obtained.
The difference of the nonlinear model with the con-

ventional linear model is that the nonlinear model con-
tains the quadratic gradient term; therefore the solutions
of the linear and nonlinear models are different and the
effect of the quadratic gradient term exhibits the difference
of solutions in pressure transients and pressure derivative
transients controlled by 𝛽. In the following, qualitative and
quantitative analyses will be implemented to compare the
solutions between the linear and nonlinear models.

4. Analysis of Nonlinear Flow Characteristics

4.1. Analysis of Nonlinear Flow Processes. Type curves reflect
properties of underground formations. Type curves graph-
ically show the process and characteristics of fluid flow in
formations. Figures 1–4 show the type curves of pressure
transients for well production in an underground dual-
porosity media formation.
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Figure 1: Type curves of pressure transients controlled by varying
nonlinear coefficient (𝛽).
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Figure 2: Type curves of pressure transients controlled by varying
interporosity flow factor (𝜆
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) for 𝛽 = 0.01.

10
2

10
1

10
0

10
−1

10
−2

10
−2

10
0

10
2

10
4

10
6

10
8

tD/CD

p
D
,
p
 D
·
t
D

S = 0, CD = 10, 𝜔f = 0.1, 𝜔m = 0.9, 𝛽 = 0.05

𝜆mf = 1 × 10
−6

𝜆mf = 1 × 10
−7

①

②

① ②

①

②

Figure 3: Type curves of pressure transients controlled by varying
interporosity flow factor (𝜆
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) for 𝛽 = 0.05.
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Figure 4: Type curves of pressure transients controlled by varying
fluid capacitance coefficient (𝜔
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𝑓
) for 𝛽 = 0.01.

Figure 1 shows the type curves of the nonlinear dual-
porosity flow model with an infinite formation boundary.
The pressure transients were simulated using a set of fixed
parameters (𝑆 = 0, 𝐶

𝐷
= 10, 𝜔

𝑓
= 0.1, 𝜔

𝑚
= 0.9, 𝜆

𝑚𝑓
=

1 × 10−7) and a group of varying nonlinear term coefficients
(𝛽). The type curves were obviously controlled by 𝛽. Pressure
transients were simulated by setting 𝛽 as a limit of 0, 0.01, and
0.05. The curves of “lim𝛽 → 0” are the curves associated
with the conventional linear flow model (see the derivative
curveA in Figure 1).The nonlinearity of fluid flow influenced
the pressure transients positively. Different formation has
different value of 𝛽. We can calculate the value of 𝛽 according
to the definition of𝛽 = 1.842×10−3𝑞𝐵𝜇𝐶

𝜌
/(𝑘
𝑓
ℎ), and usually

the value of𝛽 varies from0 to 0.05; thereforewe simulated the
type curves using 0.01 and 0.05 in the context.

Five main flow regimes can be observed.
(i) Regime I, pure wellbore storage regime: there are no

differences in type curves between the linear and nonlinear
models because fluid in formation does not start to flow and
the influence of the nonlinear quadratic pressure gradient
term is only produced for the flow in formation. Wellbore
pressure transients are not affected by the nonlinearity of fluid
flow in this regime.

(ii) Regime I, skin effect regime: there are little differences
in type curves between the linear and nonlinear models. The
curves of the nonlinearmodel gradually deviate from those of
the linearmodel with time elapsing.The deviation of pressure
derivative curve is more obvious than that of pressure curve
for the same 𝛽. A larger 𝛽 means a stronger nonlinearity on
the type curves.

(iii) Regime III, early fracture radial regime: fluid in the
fracture system of formation radially flows into the wellbore
and the fluid in the matrix system of formation does not start
to flow. The differences in type curves associated with the
linear and nonlinear models are more obvious than those of
regime II. A larger 𝛽 results in a lager curve deviation of the
nonlinear model from the linear model.
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fluid capacitance coefficient (𝜔
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) for 𝛽 = 0.05.

(iv) Regime IV, interporosity flow regime of matrix
system to fracture system: the pressure derivative curve is V-
shaped, which is the reflection of the interporosity flow of
matrix to fracture. The differences in type curves associated
with the linear and nonlinear models are more obvious than
those of regimes II and III. The 𝛽 influences the location of
type curves more heavily.

(v) Regime V, whole radial flow stage of fracture and
matrix systems: the interporosity flow regime had ended.
The differences in type curves associated with the linear and
nonlinear models are the most obvious among the five flow
regimes. The differences increase with the increase of 𝛽. For
conventional linear dual-porosity model, the slope of the
pressure derivative curve in both regime III and regime V
is zero; however, the pressure derivative curves of nonlinear
dual-porosity model in regimes III and V are inclined instead
of horizontal (see the derivative curvesB andC in Figure 1).
As time elapsed, the pressure derivative curves of nonlinear
model gradually deviate from the pressure derivative curve of
linear model.

For constant pressure and closed boundaries, the type
curves are similar to the nonlinear homogenous model of
Guo and Nie [17] and are omitted here.

Except for nonlinear term coefficient (𝛽), type curves are
sensitive to the other model parameters.

Figures 2 and 3 reflect the shape characteristics of type
curves affected by interporosity flow factor of fluid from
matrix system to fracture system (𝜆

𝑚𝑓
). The pressure tran-

sients were simulated using a set of fixed parameters (𝑆 =

0, 𝐶
𝐷
= 10, 𝜔

𝑓
= 0.1, 𝜔

𝑚
= 0.9) and changing 𝜆

𝑚𝑓
from

1 × 10−6 to 1 × 10−7, respectively, for 𝛽 = 0.01 and 𝛽 = 0.05.
Because 𝜆

𝑚𝑓
represents the starting time of interporosity flow

of matrix system to fracture system, therefore the bigger the
𝜆
𝑚𝑓

is, the earlier the time of interporosity is, and as the value
of 𝜆
𝑚𝑓

decreases, the V-shaped derivative curve moves right
(see the derivative curvesA andB in Figures 2 and 3).

Figures 4 and 5 reflect the shape characteristics of type
curves affected by interporosity flow factor of fluid capaci-
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Figure 6: Type curves of pressure transients controlled by varying
skin factor (𝑆) for 𝛽 = 0.01.

10
2

10
1

10
0

10
−1

10
−2

10
−2

10
0

10
2

10
4

10
6

10
8

tD/CD

p
D
,
p
 D
·
t
D

CD = 10, 𝜔f = 0.1, 𝜔m = 0.9, 𝜆mf = 1 × 10
−7
, 𝛽 = 0.05

S = 3

S = 0

①

②

①

②

①

②

①

②

Figure 7: Type curves of pressure transients controlled by varying
skin factor (𝑆) for 𝛽 = 0.05.

tance coefficients of fracture andmatrix systems (𝜔
𝑓
and𝜔

𝑚
).

The pressure transients were simulated using a set of fixed
parameters (𝑆 = 0, 𝐶

𝐷
= 10, 𝜆

𝑚𝑓
= 1 × 10−7) and changing

𝜔
𝑓
from 0.1 to 0.01 and 𝜔

𝑚
from 0.9 to 0.99, respectively,

for 𝛽 = 0.01 and 𝛽 = 0.05. Fluid capacitance coefficient
of fracture system (𝜔

𝑓
) is coupled with fluid capacitance

coefficient of fracture system (𝜔
𝑚
), and they represent the

relative fluid storage capacitance for fracture and matrix
systems, respectively. A greater𝜔

𝑓
is the response of relatively

more reserves in fracture system. As 𝜔
𝑓
decreases, the V-

shaped derivative curve becomes deeper and wider (see the
derivative curvesA andB in Figures 4 and 5).

Figures 6 and 7 reflect the shape characteristics of type
curves affected by skin factor of well (𝑆). The pressure
transients were simulated using a set of fixed parameters
(𝐶
𝐷
= 10, 𝜔

𝑓
= 0.1, 𝜔

𝑚
= 0.9, 𝜆

𝑚𝑓
= 1 × 10−7) and changing

𝑆 from 3 to 0, respectively, for 𝛽 = 0.01 and 𝛽 = 0.05. Greater
𝑆 leads to higher location of dimensionless pressure curve.
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Table 1: Theoretical offset of type curves between the linear and nonlinear models (𝛽 = 0.01).

𝑡
𝐷
/𝐶
𝐷

𝑝
𝑤𝐷 DV RDV (%) 𝑝

𝑤𝐷
⋅ (𝑡
𝐷
/𝐶
𝐷
) DV RDV (%)

Linear Nonlinear Linear Nonlinear
10−1 0.0445 0.0445 0 0 0.0436 0.0436 0 0
101 1.9772 1.9397 0.0375 1.90 0.9454 0.9003 0.0451 4.77
103 4.9392 4.6066 0.3326 6.73 0.5076 0.4395 0.0681 13.42
105 7.0647 6.3938 0.6709 9.50 0.3588 0.2924 0.0664 18.51
107 8.9812 7.9242 1.0570 11.77 0.4995 0.3887 0.1108 22.18
Explanations: 𝛽 = dimensionless coefficient of nonlinear term; 𝑡𝐷 = dimensionless time;𝐶𝐷 = dimensionless wellbore storage coefficient; 𝑝𝑤𝐷 = dimensionless
pressure; 𝑝

𝑤𝐷
= dimensionless pressure derivative; DV = differential value; RDV = relative differential value. Quantitative analysis of the nonlinear influence

is made by setting 𝛽 as 0.01, and the corresponding type curves (curvesB) are shown in Figure 1.

Table 2: Theoretical offset of type curves between the linear and nonlinear models (𝛽 = 0.05).

𝑡
𝐷
/𝐶
𝐷

𝑝
𝑤𝐷 DV RDV (%) 𝑝

𝑤𝐷
⋅ (𝑡
𝐷
/𝐶
𝐷
) DV RDV (%)

Linear Nonlinear Linear Nonlinear
10−1 0.0445 0.0445 0 0 0.0436 0.0435 0.0001 0.23
101 1.9772 1.7977 0.1795 9.08 0.9454 0.7385 0.2069 21.88
103 4.9392 3.6310 1.3082 26.49 0.5076 0.2695 0.2381 46.91
105 7.0647 4.6454 2.4193 34.24 0.3588 0.1528 0.2060 57.41
107 8.9812 5.4067 3.5745 39.80 0.4995 0.1814 0.3181 63.68
Explanations: 𝛽 = dimensionless coefficient of nonlinear term; 𝑡𝐷 = dimensionless time;𝐶𝐷 = dimensionless wellbore storage coefficient; 𝑝𝑤𝐷 = dimensionless
pressure; 𝑝

𝑤𝐷
= dimensionless pressure derivative; DV = differential value; RDV = relative differential value. Quantitative analysis of the nonlinear influence

is made by setting 𝛽 as 0.01, and the corresponding type curves (curvesB) are shown in Figure 1.

4.2. Quantitative Analysis of Nonlinear Influence. “DV” and
“RDV” are employed to show the quantitative differences
between type curves [17, 19]:

DV = |value of linear model − value of nonlinear model| ,

RDV =
DV

value of linear model
× 100%,

(32)

where DV is the differential value between linear and nonlin-
ear models and RDV is the relative differential value between
linear and nonlinear models.

Tables 1 and 2 show the quantitative differences of
nonlinear influence on type curves for “𝛽 = 0.01” and
“𝛽 = 0.05,” respectively. Dimensionless pressure values and
dimensionless pressure derivative values in Tables 1 and 2
were calculated by fixing a group of parameters (𝑆 = 0, 𝐶

𝐷
=

10, 𝜔
𝑓
= 0.1, 𝜔

𝑚
= 0.9, 𝜆

𝑚𝑓
= 1 × 10−7), and the correspond-

ing type curves (curvesB andC) are shown in Figure 1. The
tables show that dimensionless pressure and its derivative are
different between linear and nonlinear models.

The following quantitative differences can be seen.
For “𝛽 = 0.01” (see Table 1): when “𝑡

𝐷
= 10−1” (regime I

in Figure 1), DV and RDVof pressure are 0, andDV and RDV
of pressure derivative are also 0; when “𝑡

𝐷
= 101” (regime II

in Figure 1), DV of pressure is 0.0375 and RDV of pressure
is 1.90%, and DV of pressure derivative is 0.0451 and RDV of
pressure derivative is 4.77%; when “𝑡

𝐷
= 103” (regime III in

Figure 1), DV of pressure is 0.3326 and RDV of pressure is
6.73%, and DV of pressure derivative is 0.0681 and RDV of
pressure derivative is 13.42%; when “𝑡

𝐷
= 105” (regime IV

in Figure 1), DV of pressure is 0.6709 and RDV of pressure
is 9.50%, and DV of pressure derivative is 0.0664 and RDV
of pressure derivative is 18.51%; when “𝑡

𝐷
= 107” (regime V

in Figure 1), DV of pressure is 1.0570 and RDV of pressure is
11.77%, and DV of pressure derivative is 0.1108 and RDV of
pressure derivative is 22.18%.

For “𝛽 = 0.05” (see Table 2): when “𝑡
𝐷
= 10−1” (regime

I in Figure 1), DV and RDV of pressure are 0, and DV of
pressure derivative is 0.0001 and RDV of pressure derivative
is 0.23%; when “𝑡

𝐷
= 101” (regime II in Figure 1), DV of

pressure is 0.1795 and RDV of pressure is 9.08%, and DV of
pressure derivative is 0.2069 and RDV of pressure derivative
is 21.88%; when “𝑡

𝐷
= 103” (regime III in Figure 1), DV of

pressure is 1.3082 and RDV of pressure is 26.49%, and DV of
pressure derivative is 0.2381 and RDV of pressure derivative
is 46.91%; when “𝑡

𝐷
= 105” (regime IV in Figure 1), DV of

pressure is 2.4193 and RDV of pressure is 34.24%, and DV of
pressure derivative is 0.2060 and RDV of pressure derivative
is 57.41%; when “𝑡

𝐷
= 107” (regime V in Figure 1), DV of

pressure is 3.5745 and RDV of pressure is 39.80%, and DV of
pressure derivative is 0.3181 and RDV of pressure derivative is
63.68%.

As shown in the tables, DV and RDV increase with an
increase in elapsed time. The RDV of pressure derivative is
larger than that of pressure at a fixed time, such as the fact
that when “𝑡

𝐷
/𝐶
𝐷
= 103” for “𝛽 = 0.01” in Table 1, RDV

of pressure derivative is 13.42%, which is greater than that of
pressure (6.73%). It can be observed from the tables that DV
and RDV increase with an increase in 𝛽, such as the fact that
when “𝑡

𝐷
/𝐶
𝐷
= 103” RDV of pressure for “𝛽 = 0.01” is 6.73%

and RDV of pressure for “𝛽 = 0.05” is 26.49%.
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In general, qualitative and quantitative analyses show that
the nonlinearity caused by the quadratic pressure gradient
term influences the pressure transients positively.

5. Conclusions

A nonlinear flow model for well production in an under-
ground dual-porosity media formation was derived. The
transient flow behavior caused by well production was mod-
eled. The type curves of pressure transients simulated using
different values of model parameters showed the nonlinear
dual-porosity processes and reflected the differences between
nonlinear and linear models. The nonlinear term in the flow
equation is suggested to be retained.
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