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Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater
fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a
Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water
pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of
the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are
analyzed. A dimensionless parameter 𝜃 has been introduced because it significantly affects the phase and the amplitude of excess
pore pressures.The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution
are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio
of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the
thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter
𝜃 and the permeability and compressibility of the double-layered soil system.

1. Introduction

Excess pore water pressures are generated within saturated
clayey soil due to groundwater fluctuations arising from
sources such as river or ocean tides, seasonal or climatic
water table changes, and human factors (e.g., pumping or
recharging of water) [1]. The more common analysis models
for the generation and propagation of excess pore water pres-
sures can be generalized as double clayey soil layers instead
of a single layer of soil with pervious top and impervious
bottom boundary conditions (PTIB) (Figure 1(a)) or with
both pervious top and bottom boundary conditions (PTPB)
(Figure 1(b)) [2]. On account of the marginal difference
between the natural unit weight and the saturated unit weight
of a soil layer with high permeability, the total stress in
the clay soils generally varies slightly and, accordingly, can
be regarded as constant. Therefore, the groundwater table
variation in the top sand layer with high permeability can
reasonably be considered as the excess pore water pres-
sure variation at the upper boundary of clayey soil layers.

In addition, the evolution of excess pore pressures with time
in clayey soil layers generally do not reflect the changes
occurring at the boundary.

Conte and Troncone [1] achieved analytical solutions of
the excess pore pressures in single clayey soil caused by
pore pressure varying at the boundary, which was conducted
based on the calculation procedure for the solution of a
sinusoidal pore pressure variation at the boundary [3, 4].
Many forms of analytical procedures of one-dimensional
consolidation for layered systems have been provided by
other authors. Schiffman and Stein [5] developed a general
solution for the one-dimensional consolidation problem
that considered a variety of boundary conditions, initial
conditions, loading histories, and types of multilayered soil;
however, this solution is quite tedious to use. Lee et al.
[2] derived a general analytical solution for the problem of
layered soils with a time-dependent load, which was more
explicit than the one given by Schiffman and Stein [5].
Luan and Qian [6] developed an analytical solution for the
case of double-layered soil profile with a depth-dependent
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Figure 1:One-dimensional consolidationmodel of two clayey soil layers due to groundwater fluctuations for (a) PTPB and (b) PTIB boundary
conditions.

ramp load. Xie [7] demonstrated a mathematical procedure
for an analytical solution of one-dimensional consolidation
subject to the time-dependent load and depth-dependent
initially nonlinear pore pressure and subsequently developed
a procedure for a multilayered system [8]. Xu et al. [9]
applied the Laplace transform and the Fourier technique to
solve a one-dimensional consolidation problem for layered
soil under arbitrary loading. An analytical study involving
one-dimensional consolidation of double-layered soil with
partially drained boundaries was provided by Xie et al.
[10]. The recent research studies on analytical solutions for
consolidation of porousmedia to predict the variations of the
pore pressures and settlement with time were also proposed
by Ho et al. [11, 12]. Hydrogeologists studied the groundwater
table response to tidal fluctuation in a coastal aquifer [13, 14].
The studies of tide-induced pore pressure were conducted by
van der Kamp and Gale for a homogeneous porous medium
[15] and by Wang and Davis for a multilayer medium [16].

However, no analytical solution was found for one-
dimensional consolidation with such a complex upper
boundary condition that takes the layered characteristics
of soil into account. Analytical solutions are proposed for
one-dimensional consolidation of double-layered saturated
soils subjected to groundwater fluctuations for the simplest
multilayer system: the double-layered system. Both PTIB and
PTPB boundary conditions are taken into consideration in
this paper. Groundwater table variation is assumed to be the
pore water pressure variation at the boundary described by a
general time-dependent function. The solution is derived by
a more complicated mathematical procedure using Duhamel
integration in conjunctionwith a Fourier series.The response
of excess pore pressure to groundwater fluctuation and its
main influencing factors were analyzed using the proposed
solution, which can be significantly different from the solu-
tion of a one-layered system.

2. Solution Method

2.1. Governing Equations. With all the assumptions of Terza-
ghi’s one-dimensional consolidation theory [17], except for
the pore water pressure at the upper boundary, the equation
governing the generation and propagation of excess pore

water pressures in clayey soil layers of this analytical model
(Figure 1(b)) is

𝑐vs𝑖
𝜕
2
𝑢
𝑖

𝜕𝑧2
=
𝜕𝑢
𝑖

𝜕𝑡
(𝑖 = 1, 2) , (1)

where 𝑧 is the spatial coordinate; 𝑡 is time; 𝑢1(𝑧, 𝑡) and 𝑢2(𝑧, 𝑡)
are the excess pore water pressures in the upper layer (at 0 <
𝑧 ≤ 𝐻1) and the lower layer (at 𝐻1 < 𝑧 ≤ 𝐻) of the double-
layered clayey soil system, which depend on both 𝑧 and 𝑡;
𝑐vs1 and 𝑐vs2 are the coefficients of swelling or consolidation
of the upper soil layer and the lower soil layer, respectively,
which are formulated by the expression 𝑐vs𝑖 = 𝑘vs𝑖/(𝛾𝑤𝑚vs𝑖)
(𝑖 = 1, 2); 𝑘vs𝑖 and 𝑚vs𝑖 are the coefficient of permeability in
the vertical direction and the coefficient of volume change of
the soil, respectively. In practice, 𝑐vs𝑖 as well as 𝑘vs𝑖 and 𝑚vs𝑖
are generally accepted to be constant during the process [4].

According to the analytical model assumptions, the
excess pore water pressure on the upper boundary of the
double-layered clayey soil system is first assumed to be
harmonic with time, which is expressed as follows:

𝑢1 (0, 𝑡) = 𝐴 cos (𝜔𝑡) + 𝐵 sin (𝜔𝑡) , (2)

where𝐴 and𝐵 determine the excess pore pressure amplitudes
and𝜔 is the angular frequency,whose functional relationwith
the period 𝑇 is 𝜔 = 2𝜋/𝑇.

The bottom boundary of the double-layered clayey soil
system may be fully permeable or impermeable; thus,
𝜕𝑢2 (𝐻, 𝑡)

𝜕𝑧
= 0

(for impervious bottom boundary) ,
(3a)

𝑢2 (𝐻, 𝑡) = 0 (for pervious bottom boundary) , (3b)

where 𝐻 is the total thickness of this double-layered soil
model.

In addition, the seepage and excess pore water pressures
of the double clayey soil layers are continuous:

𝑢1 (𝐻1, 𝑡) = 𝑢2 (𝐻1, 𝑡) ,

𝑘vs1
𝜕𝑢1 (𝐻1, 𝑡)

𝜕𝑧
= 𝑘vs2

𝜕𝑢2 (𝐻1, 𝑡)

𝜕𝑧
,

(4)
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where 𝐻1 is the thickness of the upper layer soil of double-
layered soil model.

Moreover, the initial condition is

𝑢
𝑖 (𝑧, 0) = 0 (𝑖 = 1, 2) . (5)

Overall, the solution of this analytical model is for-
mulated by (1), which should satisfy the above boundary
conditions (2) and (3a) or (3b), (4), and the initial conditions
in (5); the solution follows the analytical procedure of solving
the partial differential equation with complicated inhomoge-
neous boundary conditions.

2.2. Analytical Solution of Harmonic Groundwater Fluctua-
tions. Equation (2) implies that the excess pore water pres-
sure at the upper boundary of the model varies harmonically
with time. Furthermore, the solution procedure described as
Duhamel’s theorem [1, 3, 18, 19] is used to derive (1) with the
boundary and initial conditions given by (2) and (3a) or (3b),
(4), and (5), which is obtained by the following integration:

𝑢
𝑖 (𝑧, 𝑡) = ∫

𝑡

0
𝑢1 (0, 𝜏)

𝜕𝑢
𝑖 (𝑧, 𝑡 − 𝜏)

𝜕𝑡
𝑑𝜏 (𝑖 = 1, 2) , (6)

where 𝑢1(0, 𝜏) is determined by (2) and 𝑢
𝑖
(𝑧, 𝑡) denotes the

solution to (1) and (3a) or (3b), (4), and (5), when the excess
pore water pressure at the upper boundary is kept at unity (as
the value 𝑢1(0, 𝑡) = 1).

First, the excess pore water pressure in double clayey soil
layers with pervious top and impervious bottom boundary
conditions (Figure 1(a)) is systematically obtained in this
section. In particular, 𝑢

𝑖
(𝑧, 𝑡) is reduced to a separable partial

differential equation:

𝑢
𝑖 (𝑧, 𝑡) = 𝑈𝑖 (𝑧, 𝑡) + 𝑌𝑖 (𝑧) (𝑖 = 1, 2) , (7)

where 𝑈 is a function of 𝑧 and 𝑡 and 𝑌 is a function only of
𝑧; 𝑈
1
and 𝑌

1
are for 0 < 𝑧 ≤ 𝐻

1
and 𝑈

2
and 𝑌

2
are for 𝐻

1
<

𝑧 ≤ 𝐻. Subject to all the assumptions identified in a previous
section, 𝑈

𝑖
and 𝑌

𝑖
should satisfy the following equations:

𝑑
2
𝑌
𝑖

𝑑𝑧2
= 0 (𝑖 = 1, 2) , (8)

𝑌1 (0) = 1, (9)

𝜕𝑌2 (𝐻)

𝜕𝑧
= 0, (10)

𝑌1 (𝐻1) = 𝑌2 (𝐻1) , (11)

𝑘vs1
𝜕𝑌1 (𝐻1)

𝜕𝑧
= 𝑘vs2

𝜕𝑌2 (𝐻1)

𝜕𝑧
, (12)

𝑐vs𝑖
𝜕
2
𝑈
𝑖 (𝑧, 𝑡)

𝜕𝑧2
=
𝜕𝑈
𝑖 (𝑧, 𝑡)

𝜕𝑡
(𝑖 = 1, 2) , (13)

𝑈1 (0, 𝑡) = 0, (14)

𝜕𝑈2 (𝐻, 𝑡)

𝜕𝑧
= 0, (15)

𝑈
𝑖 (𝑧, 0) = −𝑌𝑖 (𝑧) , (16)

𝑈1 (𝐻1, 𝑡) = 𝑈2 (𝐻1, 𝑡) , (17)

𝑘vs1
𝜕𝑈1 (𝐻1, 𝑡)

𝜕𝑧
= 𝑘vs2

𝜕𝑈2 (𝐻1, 𝑡)

𝜕𝑧
. (18)

The function 𝑌
𝑖
(𝑧) is determined by (8), with the bound-

ary conditions in (9)–(12); the result takes the following form:

𝑌1 = 𝑌2 = 1. (19)

A more complex mathematical procedure is used to
derive the solution for (13), with the boundary conditions
in (14), (15), (17), and (18) and the initial conditions in (16),
in which 𝑈

𝑖
(𝑧, 𝑡) can also be reduced to a separable partial

differential equation, expressed as follows:

𝑈
𝑖 (𝑧, 𝑡) = 𝑇 (𝑡) 𝑉𝑖 (𝑧) . (20)

Substituting (20) into differential equation (13) and intro-
ducing a constant 𝜆, which is defined as the eigenvalue, we
have

1
𝑐vs1

1
𝑇

𝜕𝑇

𝜕𝑡
=

1
𝑉1

𝜕
2
𝑉1
𝜕𝑧2

=
𝑐vs2
𝑐vs1

1
𝑉2

𝜕
2
𝑉2
𝜕𝑧2

= −𝜆
2
. (21)

Deriving (21) yields

𝑇 = 𝐶𝑒
−𝜆

2
𝑐vs1𝑡, (22)

𝑉1 = 𝐶1 sin (𝜆𝑧) +𝐷1 cos (𝜆𝑧) , (23a)

𝑉2 = 𝐶2 sin(𝜆√
𝑐vs1
𝑐vs2
𝑧)+𝐷2 cos(𝜆√

𝑐vs1
𝑐vs2
𝑧) , (23b)

where 𝐶, 𝐶
1
, 𝐶
2
,𝐷
1
, and𝐷

2
are undetermined coefficients.

Based on the boundary conditions in (14) and (15),
coefficients𝐷

1
and𝐷

2
are given in the forms

𝐷1 ≡ 0;

𝐷2 = 𝐶2
cos (𝜆√𝑐vs1/𝑐vs2𝐻)

sin (𝜆√𝑐vs1/𝑐vs2𝐻)
.

(24)

Substituting (24) into the boundary conditions in (17) and
(18) yields

𝐶1 sin (𝜆𝐻1) −𝐶2
cos (𝜆√𝑐vs1/𝑐vs2 (𝐻 − 𝐻1))

sin 𝜆√𝑐vs1/𝑐vs2𝐻
= 0,

𝑘vs1𝐶1 cos (𝜆𝐻1)

− 𝑘vs2𝐶2√
𝑐vs1
𝑐vs2

sin (𝜆√𝑐vs1/𝑐vs2 (𝐻 − 𝐻1))

sin (𝜆√𝑐vs1/𝑐vs2𝐻)
= 0.

(25)



4 Mathematical Problems in Engineering

To guarantee nontrivial solutions of𝐶
1
and𝐶

2
, the deter-

minant of the second-order correlation matrix composed of
(25) is identically vanishing. Consequently, the eigenequation
is obtained as follows:

cos (𝜆𝐻1) cos(𝜆√
𝑐vs1
𝑐vs2
𝐻2)

−𝑎 sin (𝜆𝐻1) sin(𝜆√
𝑐vs1
𝑐vs2
𝐻2) = 0

(26)

in which𝐻 =𝐻
1
+𝐻
2
,𝐻
2
is the thickness of the lower layer

soil of double-layered soil model; 𝑎 = √𝑘vs2𝑚vs2/𝑘vs1𝑚vs1
is defined as the interlaminar seepage-compression compre-
hensive parameter ratio [6]. The eigenvalue 𝜆

𝑛
of (26), which

is proved to be infinite, can be derived by an iteration process
in general, except for some special conditions; for example,
when 𝑘vs1 = 𝑘vs2 and 𝑚vs1 = 𝑚vs2, (26) yields 𝜆𝑛 = (2𝑛 −
1)𝜋/2𝐻.

Considering (24) and (25), in conjunction with (22),
(23a), and (23b), the general solution of (20) can also be
expressed in series form

𝑈
𝑖 (𝑧, 𝑡) =

∞

∑

𝑛=1
𝑃
𝑛
𝑈
𝑖𝑛 (𝑧) 𝑒

−𝜆
𝑛

2
𝑐vs1𝑡 (𝑖 = 1, 2) , (27)

where 𝑃
𝑛
is defined as the modal participating factor; the

eigenfunction 𝑈
𝑖𝑛
is represented as follows:

𝑈1𝑛 (𝑧) = sin (𝜆
𝑛
𝑧) , (28a)

𝑈2𝑛 (𝑧) =
sin (𝜆

𝑛
𝐻1) cos (𝜆𝑛√𝑐vs1/𝑐vs2 (𝑧 − 𝐻))

cos (𝜆
𝑛
√𝑐vs1/𝑐vs2𝐻2)

. (28b)

The above eigenfunctions are proved to be orthogonal to
the coefficient of the volume change of the soil 𝑚vs𝑖 by the
following equation:

𝐷
𝑛𝑚
= ∫

𝐻1

0
𝑚vs1𝑈1𝑛𝑈1𝑚𝑑𝑧 +∫

𝐻

𝐻1

𝑚vs2𝑈2𝑛𝑈2𝑚𝑑𝑧

=
{

{

{

𝐷
𝑛
, 𝑚 = 𝑛

0, 𝑚 ̸= 𝑛,

(29)

where

𝐷
𝑛
=
𝑚vs1𝐻1

2
[
[

[

1

+
𝑚vs2
𝑚vs1

(
sin 𝜆
𝑛
𝐻1

cos 𝜆
𝑛
√(𝑐vs1/𝑐vs2)𝐻2

)

2

𝐻2
𝐻1

]
]

]

(30a)

and𝐷
𝑛
is defined as follows:

𝐷
𝑛

=
1
2
[

[

1+
𝑚vs2
𝑚vs1

(
sin (𝜆

𝑛
𝐻1)

cos (𝜆
𝑛
√𝑐vs1/𝑐vs2𝐻2)

)

2
𝐻2
𝐻1
]

]

.

(30b)

In particular, the orthogonal property demonstrated in
(29) is familiar and useful in dealing with the mathematical
problems of the double-layered system [6, 7, 10].

Moreover, an inspection of the initial condition in (16)
combined with (29) reveals

𝑃
𝑛

=

∫
𝐻1

0 𝑚vs1 [−𝑌1 (𝑧)] 𝑈1𝑛 (𝑧) 𝑑𝑧 + ∫
𝐻

𝐻1
𝑚vs2 [−𝑌2 (𝑧)] 𝑈2𝑛 (𝑧) 𝑑𝑧

𝐷
𝑛

.

(31a)

Substituting (19) and (26) into (31a), after some algebraic
manipulation, renders 𝑃

𝑛
, such that

𝑃
𝑛
= −

1
𝜆
𝑛
𝐻1𝐷𝑛

. (31b)

Consequently, the solution for 𝑈
𝑖
(𝑧, 𝑡) is developed, and

the final form for 𝑢
𝑖
(𝑧, 𝑡) is represented as follows:

𝑢1 (𝑧, 𝑡) = 1+
∞

∑

𝑛=1
𝑃
𝑛
𝑈1𝑛 (𝑧) 𝑒

−𝜆
𝑛

2
𝑐vs1𝑡, (32a)

𝑢2 (𝑧, 𝑡) = 1+
∞

∑

𝑛=1
𝑃
𝑛
𝑈2𝑛 (𝑧) 𝑒

−𝜆
𝑛

2
𝑐vs1𝑡, (32b)

where 𝑈1𝑛, 𝑈2𝑛, and 𝑃𝑛 are determined by (28a), (28b), and
(31b), respectively. Meanwhile, the parametric coefficient 𝜆

𝑛

is determined by (26).
Therefore, substituting 𝜏 for 𝑡 in (2) and 𝑡−𝜏 for 𝑡 in (7), at

the same time performing the partial derivative of 𝑢
𝑖
(𝑧, 𝑡 − 𝜏)

with respect to 𝑡, (6) is developed into the following simplified
calculation formulas:

𝑢1 (𝑧, 𝑡) =
∞

∑

𝑛=1
(−

𝜃𝑁
2

1 + 𝜃2𝑁4)𝑃𝑛𝑋𝑛 sin (𝜆𝑛𝑧) , (33a)

𝑢2 (𝑧, 𝑡) =
∞

∑

𝑛=1
(−

𝜃𝑁
2

1 + 𝜃2𝑁4)
𝑃
𝑛
𝑋
𝑛
sin (𝜆

𝑛
𝐻1)

cos (𝜆
𝑛
√𝑐vs1/𝑐vs2𝐻2)

× cos(𝜆
𝑛√
𝑐vs1
𝑐vs2

(𝑧 −𝐻)) ,

(33b)

where

𝑁 = 𝜆
𝑛
𝐻, (33c)

𝑋
𝑛
= {(𝐴+𝐵𝜃𝑁

2
) sin(

𝑇V

𝜃
)

+ (𝐴𝜃𝑁
2
−𝐵) [cos(

𝑇V

𝜃
)− 𝑒
−𝑁

2
𝑇V]} ,

(33e)

𝜃 =
𝑐vs1
𝜔𝐻2 , (33f)

𝑇V =
𝑐vs1𝑡

𝐻2 , (33g)

and 𝑇V denotes the time factor of Terzaghi’s theory.
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Furthermore, the excess pore water pressures in double
clayey soil layers with both pervious top and bottom bound-
ary conditions (Figure 1(b)) can be obtained using a similar
method, when the corresponding boundary conditions are
described in (2) and (3b). After performing the same steps
previously described, the solution for 𝑌

𝑖
(𝑧), 𝑢
𝑖
(𝑧, 𝑡) is

𝑌1 (𝑧) = −
𝑘vs2

𝑘vs1𝐻2 + 𝑘vs2𝐻1
𝑧 + 1, (34a)

𝑌2 (𝑧) =
𝑘vs1

𝑘vs1𝐻2 + 𝑘vs2𝐻1
(𝐻− 𝑧) , (34b)

𝑢1 (𝑧, 𝑡) = 1−
𝑘vs2

𝑘vs1𝐻2 + 𝑘vs2𝐻1
𝑧

+

∞

∑

𝑚=1
𝑃
𝑚
𝑈1𝑚 (𝑧) 𝑒

−𝜆
𝑚

2
𝑐vs1𝑡,

(35a)

𝑢2 (𝑧, 𝑡) =
𝑘vs1

𝑘vs1𝐻2 + 𝑘vs2𝐻1
(𝐻− 𝑧)

+

∞

∑

𝑚=1
𝑃
𝑚
𝑈2𝑚 (𝑧) 𝑒

−𝜆
𝑚

2
𝑐vs1𝑡,

(35b)

where the eigenvalues 𝜆
𝑚
, 𝑈1𝑚(𝑧), 𝑈2𝑚(𝑧), 𝑃𝑚, and 𝐷𝑚 are

determined by the equations

cos (𝜆𝐻1) sin(𝜆√
𝑐vs1
𝑐vs2
𝐻2)

+𝑎 sin (𝜆𝐻1) cos(𝜆√
𝑐vs1
𝑐vs2
𝐻2) = 0,

(35c)

𝑈1𝑚 (𝑧) = sin (𝜆
𝑚
𝑧) , (35d)

𝑈2𝑚 (𝑧) = −
sin (𝜆

𝑚
𝐻1) sin (𝜆𝑚√𝑐vs1/𝑐vs2 (𝑧 − 𝐻))

sin (𝜆
𝑚
√𝑐vs1/𝑐vs2𝐻2)

, (35e)

𝑃
𝑚
= −

1
𝜆
𝑚
𝐻1𝐷𝑚

, (35f)

𝐷
𝑚

=
1
2
[

[

1+
𝑚vs2
𝑚vs1

(
sin (𝜆

𝑛
𝐻1)

sin (𝜆
𝑛
√𝑐vs1/𝑐vs2𝐻2)

)

2
𝐻2
𝐻1
]

]

.

(35g)

Based on (35a) and (35b), the final solutions for (6) in this
case are given by

𝑢1 (𝑧, 𝑡) =
∞

∑

𝑚=1
(−

𝜃𝑀
2

1 + 𝜃2𝑀4)𝑃𝑚𝑋𝑚 sin (𝜆𝑚𝑧) , (36a)

𝑢2 (𝑧, 𝑡) =
∞

∑

𝑚=1
(

𝜃𝑀
2

1 + 𝜃2𝑀4)
𝑃
𝑚
𝑋
𝑚
sin (𝜆

𝑚
𝐻1)

sin (𝜆
𝑚
√𝑐vs1/𝑐vs2𝐻2)

× sin(𝜆
𝑚√

𝑐vs1
𝑐vs2

(𝑧 −𝐻)) ,

(36b)

where

𝑀 = 𝜆
𝑚
𝐻 (36c)

𝑋
𝑚
= {(𝐴+𝐵𝜃𝑀

2
) sin(

𝑇V

𝜃
)

+ (𝐴𝜃𝑀
2
−𝐵) [cos(

𝑇V

𝜃
)− 𝑒
−𝑀

2
𝑇V]}

(36e)

and 𝜃 and 𝑇V are defined by (33f) and (33g), respectively.
Note that (33a) and (33b) or (36a) and (36b) are applicable

only when 0 < 𝑧 ≤ 𝐻; for simplification, (2) is used to
calculate the values of excess pore water pressure at 𝑧 = 0
[1].

2.3. Analytical Solution of General Groundwater Fluctuations.
Based on the derived equations, an analytical solution to
(1) is derived using the Fourier series, when a more general
time-dependent excess pore pressure𝐺(𝑡) due to an arbitrary
groundwater fluctuation is applied to the top surface of
double-layered soil.

First, 𝐺(𝑡) should be expanded in harmonic components
using the Fourier series theorem, as outlined by Xu et al. [9]
and Conte and Troncone [1, 18], such that

𝐺 (𝑡) =
𝐴0
2
+

∞

∑

𝑛=1
[𝐴
𝑘
cos (𝜔

𝑘
𝑡) + 𝐵

𝑘
sin (𝜔

𝑘
𝑡)] (37)

in which the series amplitudes 𝐴
𝑘
and 𝐵

𝑘
associated with the

frequency 𝜔
𝑘
= 2𝑘𝜋/𝑇 (with 𝑘 = 1, 2, . . ., and 𝑇 is the period

of 𝐺(𝑡)) are represented as follows, respectively:

𝐴
𝑘
=

2
𝑇
∫

𝑇

0
𝐺 (𝑡) cos (𝜔𝑘𝑡) 𝑑𝑡 (38)

𝐵
𝑘
=

2
𝑇
∫

𝑇

0
𝐺 (𝑡) sin (𝜔𝑘𝑡) 𝑑𝑡 (39)

and 𝐴
0
can be obtained from (10) by setting 𝜔 = 0; thus,

𝐴0 =
2
𝑇
∫

𝑇

0
𝐺 (𝑡) 𝑑𝑡. (40)

Second, the corresponding excess pore water pressure
for each of the harmonic components in (37) is calculated
by (33a) and (33b) or (36a) and (36b) in which 𝑢

𝑖
(𝑧, 𝑡) is

indicated as 𝑢
𝑖𝑘
(𝑧, 𝑡), 𝐴 and 𝐵 are substituted by 𝐴

𝑘
and 𝐵

𝑘
,

respectively, and𝜔 is replaced by 𝜔
𝑘
. Finally, the actual excess

pore water pressure at any time and depth is formulated by
using the principle of superposing all the components of the
determined 𝑢

𝑖𝑘
(𝑧, 𝑡):

𝑢
𝑖 (𝑧, 𝑡) =

𝐴0
2
𝑢
𝑖 (𝑧, 𝑡) +

∞

∑

𝑘=1
𝑢
𝑖𝑘 (𝑧, 𝑡)

(𝑖 = 1, 2; 𝑘 = 1, 2, . . .)

(41)

in which 𝐴0 is represented by (40) and 𝑢𝑖(𝑧, 𝑡) is represented
by (32a) and (32b) or (35a) and (35b).

The analytical solutions are so far available for any
arbitrary groundwater fluctuation of double-layered system.
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3. Discussion of the Analytical Solutions

3.1. Comparison with Existing Analytical Solutions. The solu-
tions by Conte and Troncone [1] and Ying et al. [19] assumed
that there is only a single clayey soil layer. In this section,
these solutions are demonstrated to be special cases of the
solution presented in this paper. Taking as an example the
PTIB boundary condition, if there is a single clayey soil layer
(𝑘vs1 = 𝑘vs2, 𝑚vs1 = 𝑚vs2), from (26), the expression for 𝜆

𝑛

becomes

𝜆
𝑛
=
(2𝑛 − 1) 𝜋

2𝐻
. (42)

Substituting (42) back in to (31b) yields

lim
𝐻1→𝐻,
𝐻2→ 0

𝑃
𝑛
= lim
𝐻2→𝐻,
𝐻1→ 0

𝑃
𝑛
= −

2
𝜆
𝑛
𝐻
. (43)

The combination of (33a), (33b), (42), and (43) directly
leads to

𝑢 (𝑧, 𝑡) = lim
𝐻1→𝐻,
𝐻2→ 0

𝑢1 (𝑧, 𝑡) = lim
𝐻2→𝐻,
𝐻1→ 0

𝑢2 (𝑧, 𝑡)

= 2
∞

∑

𝑛=1

𝜃𝑁

1 + 𝜃2𝑁4𝑋𝑛 sin (𝜆𝑛𝑧)
(44)

which is essentially the same as the equation derived byConte
and Troncone [1] and Ying et al. [19].The same procedure can
be conducted for the case with PTPB boundary condition; the
resulting equation takes the form

𝑢 (𝑧, 𝑡) = lim
𝐻1→𝐻,
𝐻2→ 0

𝑢1 (𝑧, 𝑡) = lim
𝐻2→𝐻,
𝐻1→ 0

𝑢2 (𝑧, 𝑡)

= 2
∞

∑

𝑚=1

𝜃𝑀

1 + 𝜃2𝑀4𝑋𝑚 sin (𝜆𝑚𝑧) ,
(45)

where

𝜆
𝑚
=
𝑚𝜋

𝐻
,

lim
𝐻1→𝐻,
𝐻2→ 0

𝑃
𝑚
= lim
𝐻2→𝐻,
𝐻1→ 0

𝑃
𝑚
= −

2
𝜆
𝑚
𝐻
.

(46)

It may be meaningful to distinguish the difference
between the behavior of the single system and the layered
system. In comparison with the expressions for the single
system, the ones of the double-layered system are obviously
much more complicated. Equations (44) and (45) indicate
that the dimensionless parameter 𝜃 may be the primary
influencing factor of excess pore pressure distribution in
single clayey soil layer, which has been verified by Ying et al.
[19]. The expressions of excess pore pressures in (33a)–(33g)
and (36a)–(36e) indicate that four important parameters, the
dimensionless parameter 𝜃, the permeability ratio of the soil,
the compressibility ratio of the soil, and the thickness ratio of
the soil layers, are involved in the model. Those parameters
may have a significant influence on the excess pore pressure
distribution of the double clayey soil layers. The discussion
above can be the basis of the following further discussion.

3.2. Influence of Various Parameters on Excess Pore Water
Pressures. In this section, we pay principal attention to the
influence of various parameters on the distribution of excess
pore water pressure subject to groundwater fluctuation, for
the purpose of understanding the behavior of the layered
system and being aware of the potential complications.

For simplicity, let 𝐵 = 0 in (2), with the assumption
that the groundwater fluctuation is a cosinusoidal wave, and
define the following dimensionless parameters:

𝛼 =
𝑘vs2
𝑘vs1

,

𝛽 =
𝑚vs2
𝑚vs1

,

𝜌 =
𝐻2
𝐻1
.

(47)

Typical values of those four important parameters (𝜃,
𝛼, 𝛽, and 𝜌) were selected to study their influence on the
distribution of excess pore water pressures. In addition, a
computation program was developed, and the main results
are shown in Figures 2 to 6. The distributions of excess
pore water pressure with the PTIB boundary condition and
with the PTPB boundary condition are obviously different.
However, the influence laws of these important parameters on
the cases with PTIB and PTPB boundary conditions are alike.
For the sake of simplicity, only the cases with PTIB boundary
condition are analyzed in Figures 3 to 6.

Figure 2 shows the variation of the excess pore water
pressure with dimensionless parameter 𝜃 for both PTPB and
PTIB boundary conditions in clayey soil layers at 𝑡 = 𝑇 when
other dimensionless parameters 𝛼, 𝛽, and 𝜌 remain constant
(i.e., 𝛼 = 𝑘vs2/𝑘vs1 = 0.1, 𝛽 = 𝑚vs2/𝑚vs1 = 0.1, and
𝜌 = 𝐻2/𝐻1 = 1). As can be observed from Figure 2, the
greater the dimensionless parameter 𝜃, the greater the excess
pore water pressures and the propagation depth of the excess
pore water pressures. When the value of 𝜃 is comparatively
low, the excess pore water pressures attenuate rapidly with
depth, the propagation depth of excess pore water pressures
is relatively small, and the hysteresis of the propagation
of excess pore water pressures exists in the deeper depth.
When the dimensionless parameter 𝜃 increases and becomes
greater than a certain value (say 𝜃 = 10 in this case), the
distribution of excess pore water pressures better fits the
linear distribution. Obviously, the propagation of excess pore
water pressures is related to the dimensionless parameter 𝜃,
which is similar to the characteristics of the propagation of
excess porewater pressures in single clayey soil [19]. However,
there exist the inflection points of the isochrones of the excess
pore water pressures in a double-layered system other than a
single-layered system.

Figures 3 and 4 show the influence of the permeability and
the compressibility, respectively, of soil on the propagation
of excess pore water pressures for PTIB boundary condition
in clayey soil layers at 𝑡 = 𝑇 when other dimensionless
parameters 𝜃, 𝜌 are fixed (i.e., 𝜃 = 0.2 and 𝜌 = 𝐻2/𝐻1 = 1).
As shown in Figure 3, the influence of the dimensionless
ratio 𝛼 on the excess pore water pressures in the upper and
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Figure 2: Influence of the dimensionless parameter 𝜃 on the excess pore water pressures.
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Figure 3: Influence of the permeability on the excess pore water
pressures (PTIB).

the lower layers is opposite when the compressibility of two
layers is the same. The greater the ratio 𝛼, the smaller the
excess pore water pressure in upper layer; in contrast, the
behavior is opposite for the lower layer. The inflection points
of the excess pore water pressure distribution curves exist
in the interface between two clayey soil layers transparently,
except for 𝛼 = 1, which implies that the permeability of the
two layers is the same. Figure 4 indicates that the inflection
points of the excess pore water pressures distribution curves
disappear if the permeability of two layers is the same.
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Figure 4: Influence of the compressibility on the excess pore water
pressures (PTIB).

As expected, the excess pore water pressure isochrone moves
gradually to the left, indicating that higher values of the
dimensionless parameter 𝛽 results in higher attenuation of
the excess pore water pressures. The data in Figures 3 and 4
implies that the hysteresis of the propagation of excess pore
water pressures exists when the second clayey soil layer is with
lower permeability or higher compressibility.

Figure 5 shows the influence of the dimensionless param-
eter 𝜌 on the propagation of the excess pore water pressures
for the PTIB boundary condition in clayey soil layers at 𝑡 = 𝑇.
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Figure 5: Influence of the dimensionless parameter 𝜌 on the excess pore water pressures (PTIB).

Obviously, for the case where the permeability in the lower
layer is higher than the permeability in the upper layer (e.g.,
𝛼 = 5 in Figure 5(a)), the thickness of the lower layer with
higher permeability is inversely correlated to the excess pore
water pressure attenuation in the lower layer and directly
correlated to the excess pore water pressure attenuation in
the upper layer. When the permeability ratio of the double-
layered system is less than 1 (e.g., 𝛼 = 1/5 in Figure 5(c)), the
thickness of the lower layerwith lower permeability is directly
correlated to the excess pore water pressure attenuation in
the lower layer and inversely correlated to the excess pore
water pressure attenuation in the upper layer.When the lower
layer has higher compressibility (e.g., 𝛽 = 5 in Figure 5(c)),

the thickness of the lower layer is directly correlated to the
excess pore water pressure attenuation, while the opposite
results occur for the cases of the lower layer with a lower
compressibility (e.g., 𝛽 = 1/5 in Figure 5(d)). The results
in Figure 5 reveal that the thickness of the lower layer with
greater permeability or smaller compressibility is directly
correlated to the easy of the excess pore pressure propagation
in the double-layered system.

Obviously, permeability, which is the property of the
medium, significantly affects the diffusion of the excess pore
water pressure in two clayey soils. As can be inferred from
the results of Figures 2–5, the slope breaks exist only when
the permeability of the two clayey layers are different.
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Figure 6: Variation of the excess pore pressure versus time for different 𝜃 (PTIB).

Figure 6 shows that the amplitude and phase of excess
pore water pressures change with the dimensionless param-
eter 𝜃 for four different depths when other dimensionless
parameters 𝛼, 𝛽, and 𝜌 remain constant (i.e., 𝛼 = 𝑘vs2/𝑘vs1 =
0.1, 𝛽 = 𝑚vs2/𝑚vs1 = 0.1, and 𝜌 = 𝐻2/𝐻1 = 1). As can
be inferred from the results of Figure 6, the dimensionless
parameter 𝜃 is inversely proportional to the phase shift and
the amplitude attenuation of the excess pore pressures, which
verifies the results of Figure 2 from a different perspective.
Note that from 𝜃 = 𝑐vs1/(𝜔𝐻

2
) and from Figures 2 and 6 the

phase lag and amplitude attenuation of excess pore pressures
not only are the consequence of the consolidation properties
and the total thickness of double-layered clay but also are
influenced by the frequency of the groundwater fluctuation.

For a fixed double-layered system, a very high frequency 𝜔
will cause significant amplitude damping and phase lagging
of the excess pore pressures.

4. Conclusions

Analytical solutions for propagation of groundwater fluctua-
tions induced excess pore pressures in two clayey soil layers
were derived for both PTPB and PTIB boundary conditions.
The solution procedure makes use of Duhamel’s theorem in
conjunction with the Fourier series.

The proposed solutions are used to analyze the response
of excess pore pressures to groundwater fluctuations when
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setting 𝐵 = 0 in (2). The results of the analyses show that
the influencing factors for excess pore pressure distribution
include the dimensionless parameter 𝜃, the permeability and
the compressibility of soil, and the thickness of soil layer.
The dimensionless parameter 𝜃 has a significant influence
on the excess pore pressures distribution, and the excess
pore water pressure and the influencing depth of excess pore
water pressures are inversely correlated to the phase shift
and the amplitude attenuation. Other than in single layer
soil, the influence of the coefficients of permeability and
compressibility of soil on excess pore pressure distribution is
different and cannot be incorporated into the coefficient of
consolidation of the soil in double-layered soil. The relative
permeability ratio of the two clayey soils makes the excess
pore pressure/depth curves of double-layered systems funda-
mentally different from those of uniform soil. Furthermore,
the effects of the thickness of soil layer on excess pore pressure
distribution depend on the dimensionless parameter 𝜃 and
the coefficients of permeability and compressibility of the
double-layered soil system.

Notation

𝐴
𝑘
: Fourier cosine series amplitude associated with

the frequency 𝜔
𝑘

𝐴
0
: Fourier cosine series amplitude when 𝜔

𝑘
= 0

𝐴, 𝐵: Amplitudes of the excess pore pressure when it
varies harmonically with time

𝐵
𝑘
: Fourier sine series amplitude associated with

the frequency 𝜔
𝑘

𝑐vs: Coefficient of swelling/consolidation of the soil
𝐺(𝑡): Time-dependent function describing the pore

pressure variations at the boundary
𝐻: Soil layer thickness
𝑘vs1: Coefficient of permeability in the vertical

direction of the upper layer soil
𝑘vs2: Coefficient of permeability in the vertical

direction of the lower layer soil
𝑚vs1: Coefficient of volume change of the upper layer

soil
𝑚vs2: Coefficient of volume change of the lower layer

soil
𝑇: Period of the time-dependent function

describing the pore pressure variations at the
boundary

𝑇V: Time factor
𝑡: Time
𝑢: Excess pore water pressure
𝑢
1
(𝑧, 𝑡): Excess pore water pressure at depth 𝑧 and time

𝑡 in the upper layer soil
𝑢
2
(𝑧, 𝑡): Excess pore water pressure at depth 𝑧 and time

𝑡 in the lower layer soil
𝑢1(𝑧, 𝑡): Excess pore water pressure at depth 𝑧 and time

𝑡 when the excess pore water pressure at
boundary is kept at unity in the upper layer soil

𝑢
2
(𝑧, 𝑡): Excess pore water pressure at depth 𝑧 and time

𝑡 when the excess pore water pressure at
boundary is kept at unity in the lower layer soil

𝑢1𝑘(𝑧, 𝑡): 𝑘th harmonic component of the excess pore
water pressure of the upper layer soil

𝑢2𝑘(𝑧, 𝑡): 𝑘th harmonic component of the excess pore
water pressure of the lower layer soil

𝑧: Spatial coordinate
𝛾
𝑤
: Unit weight of water

𝜔: Circular frequency
𝜔
𝑘
: Circular frequency of the 𝑘th harmonic

component of Fourier series
𝜆
𝑚
, 𝜆
𝑛
: Eigenvalue.
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