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This paper discusses the finite-time stability of chaotic systems with time-varying delay and parameter uncertainties. A newmodel
based on Takagi-Sugeno (T-S)model is proposed for representing chaotic systems. By the newmodel, finite-time stability of chaotic
systems can be converted into stabilization of fuzzy T-S systems with parameter uncertainties. A sufficient condition is given in
terms of matrix inequalities, which guarantees the finite-time stability for fuzzy systems can be achieved. Numerical simulations
on the chaotic systems are presented to demonstrate the effectiveness of the theoretical results.

1. Introduction

In the last decades, the study of controlling chaotic systems
has received considerable attention due to its broad appli-
cations in biological systems, information processing, secure
communications, and so forth. In practical physical systems,
the parameters of chaotic systems may not be known exactly.
So, there are many papers concerning uncertain chaotic
systems [1, 2]. For the character of the uncertain chaotic
systems, many significant results have been obtained by using
adaptive control technique, for example, output feedback
control [3], fuzzy adaptive control [4], and optimal control
[5].

In order to simplify the controller design of the chaotic
systems, various schemes have been developed, amongwhich
fuzzy model is one of the successful approaches to obtain
nonlinear chaotic systems. Specifically, a so-called Takagi-
Sugeno (TS) fuzzymodel was proposed in [6], where complex
nonlinear systems are represented by some local linear
subsystems. Based on the T-S fuzzy model, some chaotic
control design methods have been developed [7–12]. In [7],
a fuzzy model is presented to simulate two different chaotic
systems with different numbers of nonlinear terms and a

new adaptive approach is proposed to synchronize these two
different fuzzy chaotic systems. Predictive control for chaotic
systems is based on a T-S fuzzy model in [8]. Wang and Wu
[9] and Zhang et al. [10] investigate the problem of fuzzy
impulsive control to stabilize chaotic systems.

Although there have been many works to discuss the
stabilization of chaotic systems, most of the existing stabi-
lization algorithms are asymptotically convergent algorithms
[13–17], which means that the convergence rate is at best
exponential with infinite settling time. Compared to the
asymptotically convergent algorithms, the finite-time conver-
gence algorithms demonstrate not only faster convergence
rates, but also better disturbance rejection properties and
robustness against uncertainties [18–20]. References [21–24]
discuss finite-time control for chaotic systems. But there are
few works considering finite-time control for chaotic systems
based on the fuzzy models.

Motivated by the aforementioned analysis, the finite-time
stabilization control for chaotic systems based on the T-S
fuzzy models is a significative topic. Our main contribution
in this paper is the introduction of the fuzzy model to discuss
finite-time stabilization of chaotic systems in a generalmodel.
In this model, we not only consider time-varying delay, but
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also study the chaotic system with parameter uncertainties.
Obviously, on the one hand, our results have optimality in
the convergence time of stabilization in [14, 15]; on the other
hand, they are more practically applicable than those in
[22–24]. Based on the Lyapunov stability theory, a feedback
controller is designed to guarantee the stabilization in finite
time.The example is given to illustrate our theoretical results.

The rest of the paper is organized as follows. In Section 2,
some preliminaries are briefly given. Section 3 presents the
main results. In Section 4, simulation results aiming at sub-
stantiating the theoretical analysis are presented. This paper
is concluded in Section 5.

2. Preliminaries and Problem Formulation

In this paper, we want to develop a finite-time control law for
a class of chaotic systems. In system analysis and design, it is
important to select an appropriate model representing a real
system. The T-S fuzzy model can express a highly nonlinear
functional relation with a small number of rules. Many
chaotic systems can be represented by fuzzy linear models,
such as Lorenz, Rössler, Chua, Chen, and Lü systems. This
fuzzy modeling method is simple and natural. So, consider
a class of time-delayed chaotic systems represented by the
following time-delayed T-S fuzzy model.

Plant Rule is as follows.
If 𝜃1(𝑡) is𝑀𝑖1, . . ., and 𝜃𝑝(𝑡) is𝑀𝑖𝑝, then

�̇� (𝑡) = 𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡))
𝑇
∈ 𝑅
𝑛 is the state variable; the

premise variables 𝜃1(𝑡), . . . , 𝜃𝑝(𝑡) are proper state variables;
𝑁 is the number of the fuzzy rules; 𝑀

𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑝)

are fuzzy sets; 𝐴
𝑖
and 𝐵

𝑖
are known constant matrices with

appropriate dimensions; 𝜏(𝑡) is the transmission delay.
In practice, however, some parameters of chaotic systems

cannot be exactly known a priori. If the information of
uncertain matrices is considered, the results will be less con-
servative than those results that do not utilize the elemental
uncertain information.Thus, it is very interesting to study the
design of the fuzzy systems with parameter perturbations.

Plant Rule is as follows.
If 𝜃1(𝑡) is𝑀𝑖1, . . ., and 𝜃𝑝(𝑡) is𝑀𝑖𝑝, then

�̇� (𝑡) = (𝐴 𝑖 +∇𝐴 𝑖) 𝑥 (𝑡) + (𝐵𝑖 +∇𝐵𝑖) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁.
(2)

The parameter uncertainties are classically written as [10]
∇𝐴
𝑖
= 𝐷
𝐴

𝑖
𝐹
𝐴

𝑖
𝐸
𝐴

𝑖
and ∇𝐵

𝑖
= 𝐷
𝐵

𝑖
𝐹
𝐵

𝑖
𝐸
𝐵

𝑖
where 𝐷𝐴

𝑖
, 𝐷𝐵
𝑖
, 𝐸𝐴
𝑖
, 𝐸𝐵
𝑖

are known real matrices of appropriate dimension and𝐹𝐴
𝑖
,𝐹𝐵
𝑖

are the unknownmatrix functionswith Lebesgue-measurable
elements and satisfy the conditions 𝐹𝐴

𝑖

𝑇

𝐹
𝐴

𝑖
≤ 𝐼, 𝐹𝐵

𝑖

𝑇

𝐹
𝐵

𝑖
≤ 𝐼,

where 𝐼 is the identity matrix of appropriate dimension.

The overall fuzzy system with control is inferred as
follows:

�̇� (𝑡) =

𝑁

∑

𝑖=1
ℎ
𝑖 (𝜃 (𝑡)) [(𝐴 𝑖 +∇𝐴 𝑖) 𝑥 (𝑡)

+ (𝐵
𝑖
+∇𝐵
𝑖
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑢 (𝑡)] ,

(3)

where 𝑢(𝑡) denotes the feedback control, ℎ
𝑖
(𝜃(𝑡)) = 𝜔

𝑖
(𝜃(𝑡))/

∑
𝑁

𝑖=1 𝜔𝑖(𝜃(𝑡)), 𝜔𝑖(𝜃(𝑡)) = ∏
𝑝

𝑗=1𝑀𝑖𝑗(𝜃𝑗(𝑡)), and 𝜔𝑖(𝜃(𝑡)) ≥ 0,
∑
𝑁

𝑖=1 𝜔𝑖(𝜃(𝑡)) ≥ 0; thus ℎ
𝑖
(𝜃(𝑡)) ≥ 0, ∑𝑁

𝑖=1 ℎ𝑖(𝜃(𝑡)) = 1.
Assume 𝐶([−𝜏, 0], 𝑅𝑛) is a Banach space of continuous

functions mapping the interval [−𝜏, 0] into 𝑅
𝑛 with the

norm ‖𝜙‖ = sup
−𝜏≤𝜃≤0‖𝜙(𝜃)‖. For the functional differential

equation (3), its initial conditions are given by 𝑥
𝑖
(𝑡) =

𝜙
𝑖
(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅𝑛).We always assume that (3) has a unique

solution with respect to initial conditions.
For starting simplification, one has the following funda-

mental assumption.

Assumption 1. Consider 0 ≤ ̇𝜏(𝑡) ≤ ℎ < 1,whereℎ is constant.

To end this section, we introduce the following lemmas
which are useful in deriving sufficient conditions of finite-
time stability.

Lemma 2 (see [25]). Consider system �̇� = 𝑓(𝑥), 𝑓(0) = 0,
𝑥 ∈ 𝑅

𝑛, where 𝑓(⋅) : 𝑅𝑛 → 𝑅
𝑛 is a continuous vector function.

Suppose there exist a 𝐶1 positive definite and proper function
𝑉 : 𝑅
𝑛
→ 𝑅 and real numbers 𝜇 > 0 and 𝜂 ∈ (0, 1) such that

�̇� + 𝜇𝑉
𝜂 is negative semidefinite. Then the origin is a globally

finite-time stable equilibrium of system �̇� = 𝑓(𝑥). Moreover,
the settling time 𝑇 ≤ 𝑉

1−𝜂
(0)/(1 − 𝜂)𝜇.

Lemma 3 (see [26]). Given any real matrices 𝐴, 𝐵, Σ of
appropriate dimensions and a scalar 𝑠 > 0, such that 0 < Σ =

Σ
𝑇, then the following inequality holds:

𝐴
𝑇
𝐵+𝐵
𝑇
𝐴 ≤ 𝑠𝐴

𝑇
Σ𝐴+ 𝑠

−1
𝐵
𝑇
Σ
−1
𝐵. (4)

Lemma 4 (see [27]). Let 𝐴, 𝐷, 𝐸, and 𝐹 be real matrices of
appropriate dimensions, with 𝐹 satisfying ‖𝐹‖ ≤ 1. Then one
has the following.

(a) For any scalar 𝜆 > 0,

𝐷𝐹𝐸+𝐸
𝑇
𝐹
𝑇
𝐷
𝑇
≤ 𝜆
−1
𝐷𝐷
𝑇
+𝜆𝐸𝐸

𝑇
. (5)

(b) For any matrix 𝑃 > 0 and scalar 𝜉 > 0 such that 𝜉𝐼 −
𝐸
𝑇
𝑃𝐸 > 0,

(𝐴 +𝐷𝐹𝐸)
𝑇
𝑃 (𝐴+𝐷𝐹𝐸)

≤ 𝐴
𝑇
𝑃𝐴+𝐴

𝑇
𝑃𝐸 (𝜉𝐼 −𝐸

𝑇
𝑃𝐸)
−1
𝐸
𝑇
𝑃𝐴+ 𝜉

−1
𝐷
𝑇
𝐷.

(6)

Lemma 5 ((Schur complement) [28]). For a given matrix

𝑆 = [
𝑆11 𝑆12

𝑆
𝑇

12 𝑆22
] < 0, (7)

where 𝑆11 = 𝑆
𝑇

11 and 𝑆22 = 𝑆
𝑇

22 are equivalent to any one of the
following conditions:
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(a) 𝑆22 < 0, 𝑆11 − 𝑆12𝑆−122 𝑆
𝑇

12 < 0;
(b) 𝑆11 < 0, 𝑆22 − 𝑆𝑇12𝑆

−1
11 𝑆12 < 0.

3. Finite-Time Stabilization

First, we present our main result on the finite-time stabiliza-
tion of system (3).

Theorem 6. Suppose the positive constants 𝜆
𝑖
, 𝑖 = 1, 2, 3, 𝑘1,

𝑘2, and positive definite matrix 𝑃, such that
(1)

(

𝐴
𝑇

𝑖
𝑃 + 𝑃𝐴

𝑖
+ (𝜆2 + 𝑘2 − 𝑘1) 𝑃 𝐸

𝐴

𝑖
𝑃𝐷
𝐴

𝑖

𝐸
𝐴

𝑖

𝑇

−𝜆1𝐼 0

𝐷
𝐴

𝑖

𝑇

𝑃 0 −𝜆
−1
1 𝐼

)

≤ 0, 𝑖 = 1, . . . , 𝑁,

(8)

(2)

(

𝐵
𝑇

𝑖
𝑃𝐵
𝑖
− 𝑘2𝜆2 (1 − ℎ) 𝑃 𝐷

𝐵

𝑖
𝐸
𝐵

𝑖

𝑇

𝑃𝐵
𝑖

𝐷
𝐵

𝑖

𝑇

−𝜆
−1
3 𝐼 0

𝐵
𝑇

𝑖
𝑃𝐸
𝐵

𝑖
0 − (𝜆3𝐼 − 𝐸

𝐵

𝑖

𝑇

𝑃𝐸
𝐵

𝑖
)

)

≤ 0, 𝑖 = 1, . . . , 𝑁.

(9)

Then, stabilization of system (3) under Assumption 1 can be
achieved in finite time, if the control law 𝑢 is designed as

𝑢 = −
𝑘1
2
𝑥 (𝑡) −

𝜇

2
𝜆
(𝜂+1)/2
max (𝑃)

𝜆min (𝑃)
sign (𝑥 (𝑡)) |𝑥 (𝑡)|𝜂

−
𝜇

2𝜆min (𝑃)
(𝑘2 ∫

𝑡

𝑡−𝜏

𝑥
𝑇
(𝑠) 𝑃𝑥 (𝑠) d𝑠)

(1+𝜂)/2

⋅
𝑥 (𝑡)

‖𝑥 (𝑡)‖
2 ,

(10)

where 𝜇 is an arbitrary positive constant.

Proof. Construct a Lyapunov function:

𝑉 (𝑡) = 𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 𝑘2 ∫

𝑡

𝑡−𝜏

𝑥
𝑇
(𝑠) 𝑃𝑥 (𝑠) d𝑠, (11)

so, we get

�̇� (𝑡)
(3)

=

𝑁

∑

𝑖=1
ℎ
𝑖 (𝜃 (𝑡)) {𝑥

𝑇
(𝑡)

⋅ (𝐴
𝑇

𝑖
𝑃+𝑃𝐴

𝑖
+𝐸
𝐴

𝑖

𝑇

𝐹
𝐴

𝑖

𝑇

𝐷
𝐴

𝑖

𝑇

𝑃+𝑃𝐷
𝐴

𝑖
𝐹
𝐴

𝑖
𝐸
𝐴

𝑖
) 𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏) (𝐵

𝑇

𝑖
+𝐸
𝐵

𝑖

𝑇

𝐹
𝐵

𝑖

𝑇

𝐷
𝐵

𝑖

𝑇

)𝑃𝑥 (𝑡) + 𝑥
𝑇
(𝑡)

⋅ 𝑃 (𝐵
𝑖
+𝐷
𝐴

𝑖
𝐹
𝐴

𝑖
𝐸
𝐴

𝑖
) 𝑥 (𝑡 − 𝜏) + 2𝑥𝑇 (𝑡) 𝑃𝑢 (𝑡)}

+ 𝑘2𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) − 𝑘2𝑥

𝑇
(𝑡 − 𝜏) 𝑃𝑥 (𝑡 − 𝜏) (1− ̇𝜏 (𝑡)) .

(12)

Using Lemma 4(a), we have

𝐸
𝐴

𝑖

𝑇

𝐹
𝐴

𝑖

𝑇

𝐷
𝐴

𝑖

𝑇

𝑃+𝑃𝐷
𝐴

𝑖
𝐹
𝐴

𝑖
𝐸
𝐴

𝑖

≤ 𝜆
−1
1 𝑃𝐷
𝐴

𝑖
𝐷
𝐴

𝑖

𝑇

𝑃+𝜆1𝐸
𝐴

𝑖
𝐸
𝐴

𝑖

𝑇

.

(13)

Applying Lemmas 3 and 4(b), we get

𝑥
𝑇
(𝑡 − 𝜏) (𝐵

𝑇

𝑖
+𝐸
𝐵

𝑖

𝑇

𝐹
𝐵

𝑖

𝑇

𝐷
𝐵

𝑖

𝑇

)𝑃𝑥 (𝑡) + 𝑥
𝑇
(𝑡) 𝑃 (𝐵𝑖

+𝐷
𝐵

𝑖
𝐹
𝐵

𝑖
𝐸
𝐵

𝑖
) 𝑥 (𝑡 − 𝜏) ≤ 𝜆

−1
2 𝑥
𝑇
(𝑡 − 𝜏) (𝐵

𝑇

𝑖

+𝐸
𝐵

𝑖

𝑇

𝐹
𝐵

𝑖

𝑇

𝐷
𝐵

𝑖

𝑇

)𝑃 (𝐵
𝑖
+𝐷
𝐵

𝑖
𝐹
𝐵

𝑖
𝐸
𝐵

𝑖
) 𝑥 (𝑡 − 𝜏)

+ 𝜆2𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) ≤ 𝜆

−1
2 𝑥
𝑇
(𝑡 − 𝜏) (𝐵

𝑇

𝑖
𝑃𝐵
𝑖

+𝐵
𝑇

𝑖
𝑃𝐸
𝐵

𝑖
(𝜆3𝐼 −𝐸

𝐵

𝑖

𝑇

𝑃𝐸
𝐵

𝑖
)

−1
𝐸
𝐵

𝑖

𝑇

𝑃𝐵
𝑖

+𝜆
−1
3 𝐷
𝐵

𝑖

𝑇

𝐷
𝐵

𝑖
)𝑥 (𝑡 − 𝜏) + 𝜆2𝑥

𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

(14)

where 𝜆
𝑖
, 𝑖 = 1, 2, 3, are positive constants.

Substituting (13)-(14) into (12) and using Assumption 1,
we have

�̇� (𝑡) ≤

𝑁

∑

𝑖=1
ℎ
𝑖 (𝜃 (𝑡)) {𝑥

𝑇
(𝑡) (𝐴

𝑇

𝑖
𝑃+𝑃𝐴

𝑖

+𝜆
−1
1 𝑃𝐷
𝐴

𝑖
𝐷
𝐴

𝑖

𝑇

𝑃+𝜆1𝐸
𝐴

𝑖
𝐸
𝐴

𝑖

𝑇

+𝜆2𝑃+ 𝑘2𝑃)𝑥 (𝑡)

+ 2𝑥𝑇 (𝑡) 𝑃𝑢 (𝑡) + 𝑥𝑇 (𝑡 − 𝜏) [𝜆−12 (𝐵
𝑇

𝑖
𝑃𝐵
𝑖

+𝐵
𝑇

𝑖
𝑃𝐸
𝐵

𝑖
(𝜆3𝐼 − 𝐸

𝐵

𝑖

𝑇

𝑃𝐸
𝐵

𝑖
)

−1
𝐸
𝐵

𝑖

𝑇

𝑃𝐵
𝑖

+𝜆
−1
3 𝐷
𝐵

𝑖

𝑇

𝐷
𝐵

𝑖
)− 𝑘2𝑃 (1− ℎ)] 𝑥 (𝑡 − 𝜏)} .

(15)

Applying Schur criterion on conditions (1) and (2) yields

𝐴
𝑇

𝑖
𝑃+𝑃𝐴

𝑖
+𝜆
−1
1 𝑃𝐷
𝐴

𝑖
𝐷
𝐴

𝑖

𝑇

𝑃+𝜆1𝐸
𝐴

𝑖
𝐸
𝐴

𝑖

𝑇

+𝜆2𝑃

+ 𝑘2𝑃 ≤ 𝑘1𝑃,

𝐵
𝑇

𝑖
𝑃𝐵
𝑖
+𝐵
𝑇

𝑖
𝑃𝐸
𝐵

𝑖
(𝜆3𝐼 −𝐸

𝐵

𝑖

𝑇

𝑃𝐸
𝐵

𝑖
)

−1
𝐸
𝐵

𝑖

𝑇

𝑃𝐵
𝑖

+𝜆
−1
3 𝐷
𝐵

𝑖

𝑇

𝐷
𝐵

𝑖
≤ 𝑘2𝜆2 (1− ℎ) 𝑃.

(16)
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Substituting (16) into (15) and using control inputs in (10),
one obtains

�̇� (𝑡) ≤ − 𝜇
𝜆
(1+𝜂)/2
max (𝑃)

𝜆min (𝑃)
𝑥
𝑇
(𝑡) 𝑃 sign (𝑥 (𝑡)) |𝑥 (𝑡)|𝜂

−
𝜇

𝜆min (𝑃)
(𝑘2 ∫

𝑡

𝑡−𝜏

𝑥
𝑇
(𝑠) 𝑃𝑥 (𝑠) d𝑠)

(1+𝜂)/2

⋅
𝑥 (𝑡)
𝑇
𝑃𝑥 (𝑡)

‖𝑥 (𝑡)‖
2

≤ −𝜇[𝜆
(1+𝜂)/2
max (𝑃) (𝑥

𝑇
(𝑡) 𝑥 (𝑡))

(1+𝜂)/2

+(𝑘2 ∫
𝑡

𝑡−𝜏

𝑥
𝑇
(𝑠) 𝑃𝑥 (𝑠) d𝑠)

(1+𝜂)/2
]

≤ −𝜇 (𝑉 (𝑡))
(1+𝜂)/2

.

(17)

Therefore, by Lemma 2 the synchronization error system
(3) is globally finite-time stable and the finite time is estimated
by

𝑇 = 𝑡0 +
𝑉

1−(1+𝜂)/2
(𝑡0)

𝜇 (1 − (1 + 𝜂) /2)
. (18)

This completes the proof of the theorem.

Remark 7. In [10, 14, 15], the authors investigated the sta-
bilization of chaotic systems via fuzzy models. But these
results were all based on the stability time in large enough.
In Theorem 6, we introduce the feedback control method to
guarantee finite-time stability.

Remark 8. Theorem 6 provides a sufficient condition of
finite-time stabilization of chaotic systems. In [22–24], the
authors also study the finite-time control for chaotic systems,
but the delay is a constant or there is no delay; moreover the
parameters of chaotic systems are known exactly. Obviously,
the results of this section extend and improve existing results.

Remark 9. The magnitude of 𝑥(𝑡)/‖𝑥(𝑡)‖2 in the controller
𝑢(𝑡) will turn to infinity as 𝑥(𝑡) → 0; in order to avoid the
occurrence of this phenomenon, we can add a sufficient small
positive constant 𝜀 to its denominator in practice [2, 29].

Similar to Huang et al. [30] and Khoo et al. [31], the
candidate Lyapunov function 𝑉(𝑡) can be chosen as 𝑉(𝑡) =
𝑥
𝑇
(𝑡)𝑥(𝑡). A summary is shown in the next corollary.

Corollary 10. Suppose the positive constants 𝜆
𝑖
, 𝑖 = 1, 2, 3,

𝑘1, 𝑘2, and positive constant 𝑝, such that

(1)

𝐴
𝑇

𝑖
𝑝+𝑝𝐴

𝑖
+𝜆
−1
1 𝑝

2
𝐷
𝐴

𝑖
𝐷
𝐴

𝑖

𝑇

+𝜆1𝐸
𝐴

𝑖
𝐸
𝐴

𝑖

𝑇

+ (𝜆2 + 𝑘2 − 𝑘1) 𝑝𝐼 ≤ 0, 𝑖 = 1, . . . , 𝑁,
(19)

(2)

𝜆
−1
2 (𝑝𝐵

𝑇

𝑖
𝐵
𝑖
+𝑝

2
𝐵
𝑇

𝑖
𝐸
𝐵

𝑖
(𝜆3𝐼 − 𝑝𝐸

𝐵

𝑖

𝑇

𝐸
𝐵

𝑖
)

−1
𝐸
𝐵

𝑖

𝑇

𝐵
𝑖

+𝜆
−1
3 𝐷
𝐵

𝑖

𝑇

𝐷
𝐵

𝑖
)− 𝑘2 (1− ℎ) 𝑝𝐼 ≤ 0, 𝑖 = 1, . . . , 𝑁.

(20)

Then, stabilization of system (3) under Assumption 1 can be
achieved in finite time, if the control law 𝑢 is designed as

𝑢 = −
𝑘1
2
𝑥 (𝑡) −

𝜇

2
𝑝
(𝜂−1)/2 sign (𝑥 (𝑡)) |𝑥 (𝑡)|𝜂 −

𝜇

2

⋅ 𝑝
(𝜂−1)/2

(𝑘2 ∫
𝑡

𝑡−𝜏

𝑥
𝑇
(𝑠) 𝑥 (𝑠) d𝑠)

(1+𝜂)/2

⋅
𝑥 (𝑡)

‖𝑥 (𝑡)‖
2 ,

(21)

where 𝜇 is an arbitrary positive constant.

Proof. Letting 𝑃 = 𝑝𝐼, we can obtain Corollary 10 directly
fromTheorem 6.

4. Numerical Example

In this section, simulation example is presented to illustrate
the utility of theoretical analysis in this paper.

Example 1. We consider the following time-delayed Lorenz
system [32]:

�̇�1 (𝑡) = − 10𝑥1 (𝑡) + 10𝑥2 (𝑡 − 𝜏) ,

�̇�2 (𝑡) = 28𝑥1 (𝑡) − 𝑥2 (𝑡) − 𝑥1 (𝑡) 𝑥3 (𝑡) ,

�̇�3 (𝑡) = 𝑥1 (𝑡) 𝑥2 (𝑡) −
8

3𝑥3 (𝑡 − 𝜏)
,

(22)

where 𝜏 = 1/6. Figure 1 is the state trajectory of system (22).

Then we have the following fuzzy control model with
parameter uncertainties.

Plant Rule is as follows. If 𝑥1(𝑡) is𝑀𝑖, then

�̇� (𝑡) = (𝐴 𝑖 +∇𝐴 𝑖) 𝑥 (𝑡) + (𝐵𝑖 +∇𝐵𝑖) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑢 (𝑡) , 𝑖 = 1, 2,
(23)
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Figure 1: The state trajectory of system (22).

where 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))
𝑇,𝑀1 = (1/2)(1 + 𝑥1(𝑡)/30),

𝑀2 = (1/2)(1 − 𝑥1(𝑡)/30),

𝐴1 = (

−10 0 0
28 −1 −30
0 30 0

),

𝐴2 = (

−10 0 0
28 −1 30
0 −30 0

),

𝐵1 = 𝐵2 = (

0 10 0
0 0 0

0 0 −
8
3

).

(24)

The elements of∇𝐴
𝑖
and∇𝐵

𝑖
are randomly chosen within

20% of their nominal values corresponding to 𝐴
𝑖
and 𝐵

𝑖
,

respectively. Based on assumption of uncertainty, we define
𝐹
𝐴

𝑖
and 𝐹𝐵

𝑖
to be random matrices and satisfy the conditions

𝐹
𝐴

𝑖

𝑇

𝐹
𝐴

𝑖
≤ 𝐼, 𝐹𝐵

𝑖

𝑇

𝐹
𝐵

𝑖
≤ 𝐼,

𝐷
𝐴

𝑖
= 𝐷
𝐵

𝑖
= diag (0.2, 0.2, 0.2) ,

𝐸
𝐴

𝑖
= (

−10 0 0
28 −1 0
0 0 0

),

𝐸
𝐵

𝑖
= 𝐵
𝑖
,

𝑖 = 1, 2.

(25)

Select 𝜆1 = 𝜆2 = 1, 𝜆3 = 15, 𝑘1 = 100, 𝑘2 = 20, and
𝜂 = 0.25. By the simulation of the Matlab LMI Toolbox, 𝑃 =

[0.1345, −0.2493, 0.0000; −0.2493, 10.2021, −0.0000; 0.0000,
−0.0000, 1.3286]. The trajectory of system states 𝑥

𝑖
(𝑡) under

finite-time control is shown in Figure 2. Then the simulation
results show the correctness of Theorem 6.
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Figure 2: The trajectory of system states 𝑥
𝑖
(𝑡) with finite-time

control.
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Figure 3: The trajectory of system (22) with 𝜏(𝑡) = 𝑒
𝑡
/(1 + 𝑒𝑡) via

finite-time control.

More generally, we can choose a time-varying delay to
verify the correctness of the theory. We choose the delay
as 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
) in system (22). Obviously, 0 <

̇𝜏(𝑡) < 1/2 < 1. By the simulation of the Matlab LMI
Toolbox, 𝑃 = [0.1439, −0.3021, 0.0004; −0.3021, 7.8229,
0.0856; 0.0004, 0.0856, 1.7595].The trajectory of system states
𝑥
𝑖
(𝑡) under finite-time control is shown in Figure 3.

Remark 11. When 𝜏 is a time-varying delay, system (22) may
not be a chaotic system. In [33], when the systems have no
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chaotic phenomenon, the method is not feasible. However,
our results do not need this restriction.

5. Conclusions

This paper presents finite-time stability of chaotic systems
with time-varying delay by fuzzy-model-based controllers.
In order to obtain better robustness results, we discuss the
fuzzy system with parameter uncertainties. Various sufficient
conditions for finite-time control are derived by Lyapunov
methods and linear matrix inequalities (LMI) techniques.
These results are novel; some numerical examples are given to
verify our theoretical results. Next, wewill continue the finite-
time control problem for coupled chaotic systems based on
the T-S fuzzy models.
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