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An adaptive global sliding mode control (AGSMC) using RBF neural network (RBFNN) is proposed for the system identification
and tracking control of micro-electro-mechanical system (MEMS) gyroscope. Firstly, a new kind of adaptive identification method
based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of
MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode
control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of slidingmode control can
be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast
to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory
tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

1. Introduction

MEMS gyroscope is a sensor which has many advantages
such as small size, low price, and low energy consumption.
So it has a promising application potential in many fields,
widely used not only in aviation, aerospace, and marine
but also in weapons, cars, robots, and so on owing to its
remarkable features. However, MEMS gyroscope also has
some disadvantages on the other hand. As a matter of fact,
small manufacture error always exists because of the limi-
tations of the design principle and the machining accuracy.
In the recent years, many advanced control approaches have
been proposed to resolve a series of shortcomings and make
MEMS gyroscope have a better performance. For instance,
Batur et al. [1] introduced a sliding mode control with
force balanced and adaptive method for MEMS gyroscope.
Leland [2] proposed a Lyapunov based adaptive control for a
MEMS gyroscope. Fei et al. [3] presented a scheme of using
adaptive sliding mode robust tracking control for triaxial
angular velocity sensors. Sung et al. [4] developed the control
of MEMS gyroscope through phase-domain analysis and
design. John and Vinay [5] proposed a controlled single mass
triaxial angular rate sensor.

Global sliding mode control has been vastly applied into
practice since it can ensure the robustness and speed ability
of the system and eliminate the reaching time of slidingmode
surface. Liu et al. [6] realized application of global sliding
mode control in chaotic systems. Efimov and Fridman [7]
presented a global slidingmode observer for locally Lipschitz
systems with adjusted gains. Chu and Fei [8] proposed a
global slidingmode control ofMEMS gyroscope using neural
network to improve the robustness of the system and reduce
chattering.

Adaptive sliding mode control is an important way since
it has numerous highlighted features like estimation of the
unknown system parameters. On account of uncertainties
and disturbances in reality, some intelligent control methods
such as fuzzy control and neural network have been applied to
various kinds of nonlinear systems more and more. Rastovic
[9] presented some compensators for contractive systems.
Zhang [10] derived a discrete adaptive slidingmode controller
for a class of nonlinear systems by wavelet network. Lin and
Li [11] designed an adaptive dynamic fuzzy sliding mode
CMAC using asymmetric Gaussian function for voice coil
motor. Fei and Ding [12] developed an adaptive sliding
mode control for dynamic system using RBF neural network.
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Rastovic [13] proposed an adaptive recurrent neural networks
synchronization of H-mode and edge localized modes that
is important for obtaining a long-pulse tokamak without
disruption regime. Fei and Zhou [14] introduced an adaptive
fuzzy compensator for MEMS gyroscope. Lin and Chen [15]
employed adaptive hybrid type 2 intelligent sliding mode
control for uncertain nonlinear multivariable dynamical sys-
tems. Oong and Isa [16] proposed an adaptive neural network
which is evolutionary for pattern classification. Zhang andGe
[17] used an adaptive tracking control of MIMO nonlinear
systems based on neural network with unknown control
directions anddead zones. Zhao et al. [18] presented amethod
of consensus control using neural networks for multiple
robotic manipulators. An adaptive neural network control
is designed for small rotary-wing unmanned aircraft by Lei
and Lu [19]. Zou et al. [20] used terminal sliding mode
and Chebyshev neural network finite-time attitude tracking
control for spacecraft. Lou and Cui [21] utilized a robust
adaptive synchronization control based on chaotic neural
networks by slide technique. Chen [22] derived a robust
adaptive control with structure neural-fuzzy network for
robot manipulators.

We develop a scheme of adaptive global sliding mode
control using neural network in this paper. For one thing,
global sliding mode control guarantees the stability and
robustness of the system and has a faster control effect
compared to sliding mode control. Adaptive global sliding
mode control can adjust and estimate the angular velocity and
other parameters online. For another thing, neural network
is good at estimating the upper bound of uncertainties and
disturbances and decreasing chattering for MEMS gyro-
scope. The combination of adaptive global sliding mode and
RBF neural networks for gyroscope plays their advantages
separately to improve the performance of the system. The
proposed strategy has the following advantages.

(1) The transient characteristics and robustness of the
sliding mode control system can be improved by selecting
suitable sliding coefficient. And it also makes the closed-
loop control system have a global robustness with resolv-
ing the contradiction between transient performance and
robustness. An RBF neural network is used to adaptively
approximate the unknown upper bound of disturbance to
eliminate the chattering effectively.

(2) The global sliding mode control, adaptive control,
and the nonlinear approximation of neural network control
are successfully integrated to control the MEMS gyroscope.
Compared with global sliding mode control, adaptive global
sliding mode control based on neural network can not only
make the system reach the sliding surface more quickly but
also eliminate the chattering that exists during the sliding
control.

This paper can be arranged as follows. We establish
mathematical model of gyroscope in Section 2. In Section 3,
an adaptive global sliding mode control approach is pre-
sented to estimate the unknown parameters of the system.
Furthermore, adaptive global sliding mode control using
neural networks is utilized to approach the upper bound of
system uncertainties and disturbances in Section 4. At the
same time the chattering of the control input can also be
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Figure 1: Structure of 𝑧-axis MEMS gyroscope.

reduced. Section 5 shows the satisfactory simulation results.
Conclusions are given in the last section.

2. Mathematical Model of MEMS Gyroscope

This part introduces the mathematical model of microvibra-
tion gyroscope. The simplified model of MEMS gyroscope
is shown in Figure 1. It is a mass-spring-damper system.
Gyroscope can be simplified to a damped oscillation system
composed of a mass and spring. We decompose the move-
ment into two directions and ignore the linear acceleration of
the framework of gyroscope. Then we can get the vibratory
equation as follows:

𝑚�̈� + 𝑑
𝑥𝑥
�̇� + 𝑑
𝑥𝑦

̇𝑦 + 𝑘
𝑥𝑥
𝑥 + 𝑘
𝑥𝑦
𝑦 = 𝑢

𝑥
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𝑧
�̇�,

(1)

where themass of themass block is𝑚; the damping constants
are 𝑑
𝑥𝑥
, 𝑑
𝑦𝑦

and spring constants are 𝑘
𝑥𝑥
, 𝑘
𝑦𝑦
; coupling elastic

coefficient and damping coefficient caused by the manufac-
turing error are 𝑑

𝑥𝑦
, 𝑘
𝑥𝑦
; control inputs of the axles are 𝑢

𝑥
, 𝑢
𝑦
;

the mechanical noise and disturbances in the environment
are 𝑑
𝑥
, 𝑑
𝑦
.Ω
𝑧
is angular velocity in the 𝑧 direction.

Nondimensional trajectory 𝑞
∗ can be replaced by 𝑞

∗

=

𝑞/𝑞
0
and nondimensional time 𝑡

∗ can also be replaced by
𝑡
∗

= 𝜔
0
𝑡. (1) can be divided by the square of the resonant

frequency, themass, and the reference length at the same time
on both sides. We get dimensionless vector form of dynamic
equation of MEMS gyroscope as follows:
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+ 𝐾
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where
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=
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(3)

We replace 𝑞∗ with 𝑞, 𝑡
∗ with 𝑡, 𝐷

∗ with𝐷,𝐾
∗ with𝐾, 𝑢

∗ with
𝑢,Ω
∗ withΩ, so the final form of the dimensionless equation

may be described as

̈𝑞 + 𝐷 ̇𝑞 + 𝐾𝑞 = 𝑢 − 2Ω ̇𝑞, (4)

where 𝑞 is trajectory of MEMS gyroscope and 𝑢 is control
input.

3. Adaptive Global Sliding Mode Control

In this section, when the external disturbances and parameter
uncertainties are taken into account, we proposed an adaptive
global sliding mode control method to estimate the angular
velocity and other parameters of MEMS gyroscopes.

Rewriting (4) in state-space equation, we obtain
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(6)

Because the ideal dynamic characteristic ofMEMS gyroscope
is a kind of no energy loss and there is no unstable sinusoidal

oscillation which is dynamic coupling between the two axes,
it can be described as 𝑥

𝑚
= 𝐴
1
sin(𝜔
1
𝑡), 𝑦
𝑚

= 𝐴
2
sin(𝜔
2
𝑡).

We define the reference model a: ̈𝑞
𝑚
+ 𝐾
𝑚
𝑞
𝑚
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𝐾
𝑚

= diag{𝜔2
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2

2
}.

The state-space expression is
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𝑚
, (7)

where
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[
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[
[
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]
]
]
]
]

]

, 𝜔
1
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2
. (8)

Considering the system with parameter uncertainties and
external disturbances, we convert (5) into

�̇� (𝑡) = 𝐴𝑋 (𝑡) + 𝐵𝑢 + 𝑓
𝑚
(𝑡) , (9)

where 𝑓
𝑚
(𝑡) is lumped parameter uncertainties and external

disturbances.
We make the following assumptions.

Assumption 1. There exists known positive constant 𝜕
𝑚

to
make the lumped parameter uncertainties and external dis-
turbances meet the upper bound condition:





𝑓
𝑚
(𝑡)





≤ 𝜕
𝑚
. (10)

Assumption 2. There always exists 𝐾
∗ which is a constant

matrix to satisfy the equation 𝐴 + 𝐵𝐾
∗𝑇

= 𝐴
𝑚
.

Then we can get

𝐾
∗𝑇

= (𝐵
𝑇

𝐵)

−1

𝐵
𝑇

(𝐴
𝑚
− 𝐴) . (11)

Define the tracking error:

𝑒 (𝑡) = 𝑋 (𝑡) − 𝑋
𝑚
(𝑡) . (12)

And its derivative is

̇𝑒 = 𝐴
𝑚
𝑒 + (𝐴 − 𝐴

𝑚
)𝑋 + 𝐵𝑢 + 𝑓

𝑚
. (13)

Define global sliding surface as

𝑠 = ̇𝑒 + 𝐶𝑒 − 𝑓 (𝑡) , (14)

where 𝐶 is sliding coefficient and 𝑓(𝑡) is a function that
is specially designed for reaching the global sliding surface,
satisfying the following three conditions:

(1) 𝑓(0) = ̇𝑒
0
+ 𝐶𝑒
0
;

(2) if 𝑡 → ∞,𝑓(𝑡) → 0;
(3) 𝑓(𝑡) has a first derivative.

where 𝑒
0
is an initial value of the tracking error.

Therefore we can design 𝑓(𝑡) as 𝑓(𝑡) = 𝑓(0)𝑒
−𝑘𝑡, where 𝑘

is a constant.
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Figure 2: Block diagram of AGSMC using RBFNN for the MEMS gyroscope.

We define ̇𝑒 − 𝑓(𝑡) = 𝑓
𝑒
(𝑡); then (14) becomes 𝑠 = 𝐶𝑒 +

𝑓
𝑒
(𝑡).
The derivative of 𝑠 is

̇𝑠 = 𝐶 ̇𝑒 +
̇

𝑓
𝑒
(𝑡)

= 𝐶 [𝐴
𝑚
𝑒 + (𝐴 − 𝐴

𝑚
)𝑋 + 𝐵𝑢 + 𝑓

𝑚
] +

̇
𝑓
𝑒
(𝑡)

= 𝐶 [𝐴
𝑚
𝑒 − 𝐵𝐾

∗𝑇

𝑋 + 𝐵𝑢 + 𝑓
𝑚
] +

̇
𝑓
𝑒
(𝑡)

= 𝐶𝐴
𝑚
𝑒 − 𝐶𝐵𝐾

∗𝑇

𝑋 + 𝐶𝐵𝑢 + 𝐶𝑓
𝑚
+

̇
𝑓
𝑒
(𝑡) .

(15)

Set ̇𝑠 = 0 to solve the equivalent control as

𝑢eq = 𝐾
∗𝑇

𝑋 − (𝐶𝐵)
−1

𝐶𝐴
𝑚
𝑒 − (𝐶𝐵)

−1

𝐶𝑓
𝑚
− (𝐶𝐵)

−1 ̇
𝑓
𝑒
(𝑡) .

(16)

On account of unknown parameters of𝐴, so𝐾
∗ is unknown.

Therefore, we can replace 𝐾
∗ by its estimate value 𝐾. The

system may be adjusted adaptively to identify the unknown
parameters.

Design the following adaptive control law:

𝑢 = 𝐾
𝑇

𝑋 − (𝐶𝐵)
−1

𝐶𝐴
𝑚
𝑒 − 𝜌 (𝐶𝐵)

−1
𝑠

‖𝑠‖

− (𝐶𝐵)
−1 ̇

𝑓
𝑒
(𝑡) ,

(17)

where 𝐾 is the estimate value of 𝐾∗and switching gain 𝜌 is
used to compensate for uncertain items 𝑓

𝑚
to ensure that the

sliding mode existence conditions are met.
Hence, (15) can be transformed into

̇𝑠 = 𝐶𝐵�̃�
𝑇

𝑋 + 𝐶𝑓
𝑚
− 𝜌

𝑠

‖𝑠‖

, (18)

where �̃� = 𝐾 − 𝐾
∗ is the estimation error.

Define a Lyapunov function candidate:

𝑉
1
=

1

2

𝑠
𝑇

𝑠 +

1

2

tr [�̃�𝑀
−1

�̃�
𝑇

] , (19)

where 𝑀 = 𝑀
𝑇

> 0, 𝑀 is a positive definite matrix, and
tr[𝑀] is the trace of𝑀.

Then the derivative of (19) becomes

�̇�
1
= 𝑠
𝑇

̇𝑠 + tr [�̃�𝑀
−1 ̇
�̃�

𝑇

]

= 𝑠
𝑇

[𝐶𝐵�̃�
𝑇

𝑋 + 𝐶𝑓
𝑚
− 𝜌

𝑠

‖𝑠‖

] + tr [�̃�𝑀
−1 ̇
�̃�

𝑇

]

= 𝑠
𝑇

𝐶𝐵�̃�
𝑇

𝑋 + 𝑠
𝑇

𝐶𝑓
𝑚
− 𝑠
𝑇

𝜌

𝑠

‖𝑠‖

+ tr [�̃�𝑀
−1 ̇
�̃�

𝑇

]

= tr [�̃�𝐵
𝑇

𝐶
𝑇

𝑠𝑋
𝑇

] + tr [�̃�𝑀
−1 ̇
�̃�

𝑇

] + 𝑠
𝑇

𝐶𝑓
𝑚
− 𝜌 ‖𝑠‖ .

(20)

The sum of the first two items in (20) should be equal to zero
to meet �̇�

1
≤ 0. As a result, we choose the following adaptive

law:

̇
�̃�

𝑇

(𝑡) = �̇�
𝑇

(𝑡) = −𝑀𝐵
𝑇

𝐶
𝑇

𝑠𝑋
𝑇

.
(21)

Substituting ̇
�̃�

𝑇

(𝑡) in (21) into (20), we obtain

�̇�
1
= 𝑠
𝑇

𝐶𝑓
𝑚
− 𝜌 ‖𝑠‖ ≤ ‖𝑠‖ ‖𝐶‖





𝑓
𝑚





− 𝜌 ‖𝑠‖

≤ ‖𝑠‖ ‖𝐶‖ 𝜕
𝑚
− 𝜌 ‖𝑠‖ = − ‖𝑠‖ (𝜌 − ‖𝐶‖ 𝜕

𝑚
) ≤ 0,

(22)

where 𝜌 ≥ ‖𝐶‖𝜕
𝑚
+ 𝜂
1
and 𝜂
1
is a positive constant.

Because 𝑓
𝑚
is unknown, 𝜌 is difficult to be confirmed.

It may not be enough to eliminate the influence of the
uncertainties and cause instability of the system if 𝜌 is too
small. It may also cause large chattering if 𝜌 is too large. In
order to solve such problem, adaptive global sliding mode
control using neural network is proposed further based on
parameter identification. Switching gain in the switch item of
slidingmode control is estimated continuously and effectively
to reduce the chattering.

4. Adaptive Global Sliding Mode Control
Using Neural Network

We adopt adaptive neural system to approach the switching
gain as shown in Figure 2. We suppose that the upper bound
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Figure 3: The structure of RBF neural network.

of lumped system uncertainties and external disturbances
is 𝜌. We should make use of RBF neural network to study
the upper bound 𝜌 adaptively owing to the unknown 𝜌. The
estimate value of 𝜌 is ̂

𝜌(𝑥, 𝜔) = �̂�
𝑇

𝜙(𝑥). The structure of
RBF neural network is shown in Figure 3, where 𝑋 and 𝑦

are the input and output of neural network, respectively;
the estimated weights vector is �̂�; the weights vectors are
𝜔 = [𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
]
𝑇. 𝜙(𝑥) = [𝜙

1
(𝑥), 𝜙
2
(𝑥), . . . , 𝜙

𝑛
(𝑥)]
𝑇 are

Gaussian functions.
We make the following assumptions.

Assumption 3. The weights of neural network satisfy

𝜔
∗𝑇

𝜙 − 𝜌 = 𝜉,




𝜉




< 𝜉
1
. (23)

Assumption 4. The upper bound 𝜌meets

𝜌 − ‖𝐶‖




𝑓
𝑚





> 𝜉
0
> 𝜉
1
. (24)

Design the adaptive controller with RBF neural network as

𝑢 = 𝐾
𝑇

𝑋 − (𝐶𝐵)
−1

𝐶𝐴
𝑚
𝑒 −

̂
𝜌 (𝐶𝐵)

−1
𝑠

‖𝑠‖

− (𝐶𝐵)
−1 ̇

𝑓
𝑒
(𝑡) .

(25)

Then the dynamics of sliding surface become

̇𝑠 = 𝐶𝐵�̃�
𝑇

𝑋 + 𝐶𝑓
𝑚
−
̂
𝜌

𝑠

‖𝑠‖

. (26)

Define a Lyapunov function candidate:

𝑉 =

1

2

𝑠
𝑇

𝑠 +

1

2

tr [�̃�𝑀
−1

�̃�
𝑇

] +

1

2𝜂

�̃�
𝑇

�̃�, (27)

where �̃� = 𝜔
∗

− �̂�, 𝜂 = 𝜉
0
− 𝜉
1
> 0, 𝑀 = 𝑀

𝑇

> 0, 𝑀 is a
positive definite matrix, and tr[𝑀] is the trace of𝑀.

The derivative of (27) is

�̇� = 𝑠
𝑇

̇𝑠 + tr [�̃�𝑀
−1 ̇
�̃�

𝑇

] +

1

𝜂

�̃�
𝑇 ̇
�̃�

= 𝑠
𝑇

[𝐶𝐵�̃�
𝑇

𝑋 + 𝐶𝑓
𝑚
−
̂
𝜌

𝑠

‖𝑠‖

] + tr [�̃�𝑀
−1 ̇
�̃�

𝑇

] +

1

𝜂

�̃�
𝑇 ̇
�̃�

= tr [�̃�𝐵
𝑇

𝐶
𝑇

𝑠𝑋
𝑇

] + tr [�̃�𝑀
−1 ̇
�̃�

𝑇

] + 𝑠
𝑇

𝐶𝑓
𝑚

−
̂
𝜌𝑠
𝑇

𝑠

‖𝑠‖

+

1

𝜂

�̃�
𝑇 ̇
�̃�.

(28)

Substituting the parameter adaptive laws (21) into (28) yields

�̇� = 𝑠
𝑇

𝐶𝑓
𝑚
−
̂
𝜌 ‖𝑠‖ +

1

𝜂

𝜇�̃�
𝑇 ̇
�̃� ≤ ‖𝑠‖ (‖𝐶‖





𝑓
𝑚





−
̂
𝜌) +

1

𝜂

�̃�
𝑇 ̇
�̃�

= ‖𝑠‖ (‖𝐶‖




𝑓
𝑚





+ 𝜌 − 𝜌 −

̂
𝜌) +

1

𝜂

�̃�
𝑇 ̇
�̃�

= − ‖𝑠‖ (𝜌 − ‖𝐶‖




𝑓
𝑚





) + ‖𝑠‖ (𝜌 − 𝜌) +

1

𝜂

�̃�
𝑇 ̇
�̃�

= − ‖𝑠‖ (𝜌 − ‖𝐶‖




𝑓
𝑚





) + ‖𝑠‖ (𝜔

∗𝑇

𝜙 − 𝜉 − �̂�
𝑇

𝜙) +

1

𝜂

�̃�
𝑇 ̇
�̃�

= − ‖𝑠‖ (𝜌 − ‖𝐶‖




𝑓
𝑚





) − ‖𝑠‖ 𝜉 + [‖𝑠‖ �̃�

𝑇

𝜙 +

1

𝜂

�̃�
𝑇 ̇
�̃�] .

(29)

To make �̇� ≤ 0, we choose the adaptive law as

̇
�̂� = −

̇
�̃� = 𝜂 ‖𝑠‖ 𝜙 (𝑥) . (30)

Then (29) becomes

�̇� = − ‖𝑠‖ (𝜌 − ‖𝐶‖




𝑓
𝑚





) − ‖𝑠‖ 𝜉

≤ − ‖𝑠‖ 𝜉
0
+ ‖𝑠‖ 𝜉 ≤ − ‖𝑠‖ 𝜉

0
+ ‖𝑠‖ 𝜉

1

= − ‖𝑠‖ (𝜉
0
− 𝜉
1
) = −𝜂 ‖𝑠‖ ≤ 0.

(31)

�̇� is negative and semidefinite ensuring that 𝑉, 𝑠, and �̃�

are all bounded. ̇𝑠 is also bounded. Inequality (31) implies
that 𝑠 is integrable as ∫

𝑡

0

‖𝑠‖𝑑𝑡 ≤ (1/𝜂)[𝑉(0) − 𝑉(𝑡)]; it
can be concluded that lim

𝑡→∞
∫

𝑡

0

‖𝑠‖𝑑𝑡 is bounded. Since
lim
𝑡→∞

∫

𝑡

0

‖𝑠‖𝑑𝑡 is bounded and ̇𝑠 is also bounded, according
to Barbalat lemma, 𝑠(𝑡) will asymptotically converge to
zero and lim

𝑡→∞
𝑠(𝑡) = 0, 𝑒(𝑡) also converges to zero

asymptotically.
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Figure 4: Position tracking using adaptive global sliding neural
control.

5. Simulation Study

To prove the effectiveness of adaptive global sliding mode
control using neural network, simulation study is imple-
mented and demonstrated. The following parameters are
selected:

𝑚 = 1.8 × 10
−7 kg, 𝑘

𝑥𝑥
= 63.955N/m,

𝑘
𝑦𝑦

= 95.92N/m, 𝑘
𝑥𝑦

= 12.779N/m,

𝑑
𝑥𝑥

= 1.8 × 10
−6Ns/m, 𝑑

𝑦𝑦
= 1.8 × 10

−6Ns/m,

𝑑
𝑥𝑦

= 3.6 × 10
−7Ns/m,

𝑞
0
= 1 𝜇m, 𝜔

0
= 1000Hz.

(32)

Suppose the angular velocity is Ω
𝑧

= 100 rad/s; we get the
following parameters after dimensionless procedure:

𝜔
2

𝑥
= 355.3, 𝜔

2

𝑦
= 532.9, 𝜔

𝑥𝑦
= 70.99,

𝑑
𝑥𝑥

= 0.01, 𝑑
𝑦𝑦

= 0.01,

𝑑
𝑥𝑦

= 0.002, Ω
𝑧
= 0.1.

(33)

The ideal trajectories of two axes are 𝑞
𝑑𝑥

= sin(6.17𝑡), 𝑞
𝑑𝑦

=

sin(5.11𝑡).
The uncertainty and disturbance can be adopted as

[rand𝑛(1, 1); rand𝑛(1, 1)].
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Figure 5: Comparison of tracking error between adaptive global
sliding mode control using neural network and adaptive sliding
mode control using neural network.

Choosing𝑓(𝑡) = 𝑠(0)𝑒
−50𝑡,𝑥(0) = [0, 0, 0, 0]

𝑇, and𝐾(0) =

0.95𝐾
∗, truth values of𝐾 are

𝐾
∗𝑇

= [

𝑘
∗

11
𝑘
∗

21
𝑘
∗

31
𝑘
∗

41

𝑘
∗

12
𝑘
∗

22
𝑘
∗

32
𝑘
∗

42

]

= [

317.2311 0.0100 70.9900 −0.1980

70.9900 0.2020 506.7879 0.0100

] .

(34)

Sliding mode parameter 𝐶 is 𝐶 = [
5 1 0 0

0 0 5 1
], the adaptive gain

𝑀 is 𝑀 = diag [30 30], and the fixed gain 𝜌 in traditional
sliding mode control is 𝜌 = diag [100 100].

The position tracking of two axes using adaptive global
sliding neural control is shown in Figure 4. We can find
that the real trajectory can track the reference trajectory
well in the presence of lumped parameter uncertainties
and external disturbances. Moreover, the actual trajectory
coincides exactly with the desired one in about 3 minutes,
illustrating that the tracking performance is at a preferable
state of the AGSMCNN system.

Figure 5 compares tracking errors between adaptive
global sliding mode control using neural network and adap-
tive sliding mode control using neural network.The tracking
errors converge to zero more quickly and smoothly using
adaptive global sliding mode control, which proves that the
former method can achieve better tracking results. From it,
we can conclude that global sliding mode control is prior to
slidingmode control which should be seen via its good points
such as fast speed and strong global robustness.
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Figure 9: Control input adaptive global sliding neural control.

The dynamic global sliding mode surface is shown in
Figure 6 which demonstrates that the sliding surfaces reach
to zero asymptotically fast. It indicates that in such a short
period of time the system gets to the switch surface and
slides along the sliding surface, proving its effectiveness again.
Figure 7 shows how the adaptive parameter 𝐾 changes with
time 𝑡. It converges to its true value in a certain period of
time to recognize the unknown parameters according to the
simulation results. Figure 8 plots the angular velocityΩ

𝑧
. We

can also observe that it converges to its assumed value after
the calculation of dimensionless value eventually. Therefore,
it verifies that adaptive global sliding mode control is able to
estimate the parameters quite accurately.

Figures 9 and 10 compare the control inputs between
adaptive global sliding mode control using neural network
and conventional fixed gain sliding control, respectively,
where the estimate of the upper bound of lumped uncer-
tainties and disturbances is obtained by adaptive global
sliding mode control with neural network in Figure 9. The
chattering in Figure 9 is obvious while it almost disappears
in Figure 10. Chattering in adaptive global sliding mode
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Figure 10: Control input under fixed sliding gain using global
sliding mode control.

control using neural network is cut down largely since by
the switch item in the sliding controller it is approached
by the compensation function of neural network for the
uncertainties and disturbances.

6. Conclusion

The global sliding mode control, adaptive control, and neu-
ral network control are combined to control the MEMS
gyroscope. The adaptive global sliding mode algorithm is
designed to guarantee the stability of the system and to
make the real trajectory track the ideal trajectory rapidly. For
unknown parameters in the system, we can take advantage
of the adaptive estimator to identify the true value of the
angular velocity and other parameters of MEMS gyroscope.
The chattering can be alleviated greatly through the upper
bound estimation of the lumped uncertainties and external
disturbances by neural network. Simulation is implemented
to verify that the proposed adaptive global sliding neural
control method has satisfactory performance.
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