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With the advantages such as high security and far responding distance, the passive location has a broad application in military and
civil domains such as radar and aerospace. However, most of the current passive location methods are based on the framework of
the probability theory and cannot be used to deal with fuzzy uncertainty in the passive location systems.Though the fuzzy Kalman
filter can be used in the uncertainty systems, it could not deal with the abrupt change of state like the maneuvering target which will
lead to the filter divergence. Therefore, in order to track the maneuvering target in the fuzzy passive system, we proposed a robust
fuzzy extended Kalman filter based on the orthogonality principle and the fuzzy filter in the paper. Conclusion can be made based
on the simulation result that this new approach is more precise and more robust than the fuzzy filter.

1. Introduction

With the advantages such as passive receiving and far
responding distance, the passive location has been broadly
applied in military and civil domains, including radar and
geophysics [1, 2].The current methods of the passive location
are the unscented Kalman filter [3], the particle filter [4],
and the extended Kalman filter [2]. Extended Kalman filter
(EKF) [2] uses the first-order Taylor series expansion to
linearize the system where measurement noise is assumed
to be Gaussian. The unscented Kalman filter (UKF) [3] has
better tracking precision in the nonlinear model, because it
transforms the analytic integral operator into an approximate
summation operator by a set of deterministic points. But both
of the algorithms are not applicable to solve non-Gaussian
problems. Particle filter [4] has become popular for nonlinear
and/or non-Gaussian filtering and estimation. All of the
above methods are based on the certainty model.

But the statistical parameters of the noise may be uncer-
tain due to sensors drift, environmental changes, information
incompleteness, and so forth. What is more, the low perfor-
mance of the noise statistics estimationmay lead to poor filter
performance or even lead to the divergence of the filter. To
solve the problem listed above, some newmethods [5–12] are
given.

Reference [5] proposes an optimal robust Kalman-type
recursive filter for uncertain systems with autocorrelated and
cross-correlated noises. Reference [7] uses the H-infinity
filter to deal with the uncertain discrete-time systems. Based
on the relevance vector machine and gradient descent algo-
rithm, [8] proposes a fuzzy model identification method and
[9] gives an off-online fuzzy modeling method. Reference
[10] gives a new prediction model for system’s behavior
prediction based on belief rule base.The algorithm could use
not only numerical data, but human judgmental information
with uncertainty as well. Reference [6] proposes a new
fuzzy extended Kalman filters (FEKF) method for mobile
robots location that uses possibility distributions instead of
probability distributions. In the paper, the uncertainty is not
necessary to be symmetric and can be described by qualitative
knowledge.

Among the above algorithms, [6] is more suitable for
passive location and tracking with uncertainty that is based
on quantifying uncertainty by trapezoidal possibility dis-
tributions. Being motivated by [6], [11] and [12] apply the
FEKF in fault prediction and passive location in the nonlinear
system with uncertainty, respectively. However, similar to
the EKF, the FEKF could not estimate the state in the
mismatching model system such as the maneuvering target
tracking. The algorithm has poor robustness and is not
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Figure 1: Possibility distribution.

suitable for maneuvering target tracking. As a result, the
passive location may lose tracking ability when the target
states change abruptly.

In order to overcome the above disadvantages of the
FEKF, combined on the extended orthogonality principle, a
robust passive location method is proposed. The algorithm
can not only deal with the uncertainty, but also can be suitable
for maneuvering target tracking.

We organize this paper as follows. We describe the
problem in Section 2 and present the FEKF algorithm in
Section 3. Combining the principle of the orthogonality,
the robust fuzzy extended Kalman filter (RFEKF) is given
to deal with the maneuvering target tracking in Section 4.
Section 5 demonstrates the effectiveness of the RFEKF. And
we summarize our conclusion in Section 6.

2. The Problem Description

Below is the system equation of the passive location:

x (𝑛 + 1) = f (x (𝑛) , u (𝑛) , 𝑛) + w (𝑛 + 1) , (1)

z (𝑛 + 1) = h (x (𝑛 + 1) , 𝑛 + 1) + k (𝑛 + 1) , (2)

where x(𝑛+1) stands for the state vector covering velocity and
position and so forth, z(𝑛+1) is a measurement vector which
can be the time or frequency of arrival, phase-difference rate
of change, and so on, f(x(𝑛), 𝑛) is the state function, h is the
nonlinear measurement function, u(𝑘) is input vector, and
k(𝑛 + 1) and w(𝑛 + 1) are the measurement noise and the
process noise, respectively.

The noise model in most passive location algorithm is
usually the probability distribution. We will further research
the possibility distribution of the noise by using the trape-
zoidal distributions instead of Gaussian distributions in this
paper. The distribution can be asymmetric which is often in
the sensor. In addition, the trapezoid with two cuts can be
changed to triangle with one cut, line with zero cuts, and so
on.The distribution hasmanymerits in the state estimate [6].

Here, 𝑙 is denoted by the fuzzy variable in the universe
of discourse 𝐿 and 𝜋

𝐿
(𝑙) represents a trapezoidal possibility

distribution [6] which is shown in Figure 1:

𝜋
𝐿 (𝑙) = {

1 ∀𝑙 ∈ [𝑙
2
, 𝑙
3
]

0 ∀𝑙 ∉ [𝑙
1
, 𝑙
4
] .

(3)

We define the expectation 𝐸{𝑙}, the center of gravity 𝑙̃,
the area of the distribution 𝜒

𝑙
, and the uncertainty of the

distribution 𝑈{𝑙} as the equations below [6]:

𝐸 {𝑙} ∼ Π (𝑙
1
, 𝑙
2
, 𝑙
3
, 𝑙
4
) , (4)

𝑙̃ = 𝐶 {𝑙} =
∫ 𝑙𝜋
𝐿 (𝑙) 𝑑𝑙

𝜒
𝑙

, (5)

𝜒
𝑙
= ∫𝜋

𝐿 (𝑙) 𝑑𝑙, (6)

𝑈 {𝑙} = 𝐶 {(𝑙 − 𝑙̃)
2

} =
∫ (𝑙 − 𝑙̃)

2

𝜋
𝐿 (𝑙) 𝑑𝑙

𝜒
𝑙

. (7)

Remark 1. In the paper, the noise of the passive location
system is under the trapezoidal distribution. Although the
FEKF can solve the problems of the fuzzy uncertainty, the
algorithm has poor robustness and is not suitable to deal
with the maneuvering target tracking. In order to solve this
problem, we will develop a robust algorithm.

3. The Fuzzy Extended Kalman Filter

Normally, the nonlinear systemwith fuzzy uncertainty can be
described:

x (𝑛 + 1) = f (x (𝑛) , u (𝑛) , 𝑛) + w (𝑛 + 1) ,

z (𝑛 + 1) = h (x (𝑛 + 1) , 𝑛 + 1) + k (𝑛 + 1) ,
(8)

where all of the variables follow the trapezoidal distribution.
Meanwhile, the variables in (1) follow the probability distri-
bution as the Gauss distribution. x̂(𝑛 + 1 | 𝑛) represents the
one-step estimation value; x̂(𝑛 + 1) and ẑ(𝑛 + 1) represent
the estimation values of x(𝑛 + 1) and z(𝑛 + 1). What is more,
x̂(𝑛 + 1 | 𝑛) and w(𝑛 + 1) are independent and w(𝑛 + 1) and
k(𝑛 + 1) are independent too [6, 12]. All of these parameters
obey trapezoidal distribution described as follows:

𝐸 {k (𝑛 + 1)} ∼ Π (k
1 (𝑛 + 1) , k2 (𝑛 + 1) ,

k
3 (𝑛 + 1) , k4 (𝑛 + 1)) ,

𝐶 (k (𝑛 + 1)) = 0,

𝑈 {k (𝑛 + 1)} = R (𝑛 + 1) ,

𝐸 {w (𝑛 + 1)} ∼ Π (w
1 (𝑛 + 1) ,w2 (𝑛 + 1) ,

w
3 (𝑛 + 1) ,w4 (𝑛 + 1)) ,

𝐶 (w (𝑛 + 1)) = 0,

𝑈 {w (𝑛 + 1)} = Q (𝑛 + 1) ,
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𝐸 {x̂ (𝑛 + 1 | 𝑛)} ∼ Π (x̂
1 (𝑛 + 1 | 𝑛) , x̂2 (𝑛 + 1 | 𝑛) ,

x̂
3 (𝑛 + 1 | 𝑛) , x̂4 (𝑛 + 1 | 𝑛)) ,

𝑈 {x̂ (𝑛 + 1 | 𝑛)} = P (𝑛 + 1 | 𝑛) ,

𝐸 {x̂ (𝑛)} ∼ Π (x̂
1 (𝑛) , x̂2 (𝑛) , x̂3 (𝑛) , x̂4 (𝑛)) ,

𝑈 {x̂ (𝑛)} = P (𝑛) ,

𝐸 {ẑ (𝑛 + 1)} ∼ Π (ẑ
1 (𝑛 + 1) , ẑ2 (𝑛 + 1) ,

ẑ
3 (𝑛 + 1) , ẑ4 (𝑛 + 1)) ,

𝑈 {ẑ (𝑛 + 1)} = S (𝑛 + 1) ,

(9)
where𝐶,𝐸, and𝑈 in the equation represent the gravity center,
the expectation, and the distribution uncertainty of the fuzzy
variable which are defined in (5), (4), and (7). P(𝑛 + 1) and
P(𝑛 + 1 | 𝑛) are the distribution uncertainties of x(𝑛 + 1) and
x̂(𝑛+1 | 𝑛), respectively.R(𝑘+1), S(𝑛+1), andQ(𝑛+1) are the
distribution uncertainties of w(𝑛 + 1), ẑ(𝑛 + 1), and k(𝑛 + 1),
respectively.

Thekey steps of the algorithmarewritten as follows [6, 11].
(1) Prediction:

x̂
𝑙 (𝑛 + 1 | 𝑛) = f (x̂

𝑙 (𝑛) , 𝑛) ,

ẑ
𝑙 (𝑛 + 1) = h (x̂

𝑙 (𝑛 + 1 | 𝑘) , 𝑛 + 1) ,
(10)

where 𝑙 = 1, 2, 3, 4.
(2) Matchingmeasurement: themeasurement z(𝑛+1) can

be used if
𝜋Ẑ (z (𝑛 + 1)) ≥ 𝜀, (11)

where 𝜀 is a confidence value, given by the actual conditions.
(3) Update:
𝑒
𝑙 (𝑛 + 1) = z

𝑙 (𝑛 + 1) − ẑ
𝑙 (𝑛 + 1) ,

x̂
𝑙 (𝑛 + 1) = x̂

𝑙 (𝑛 + 1 | 𝑛) + K (𝑛 + 1) 𝑒𝑙 (𝑛 + 1) ,

K (𝑛 + 1) = P (𝑛 + 1 | 𝑛)H𝑇 (𝑛 + 1) S−1 (𝑛 + 1) ,

P (𝑛 + 1) = [I − K (𝑛 + 1)H (𝑛 + 1)]P (𝑛 + 1 | 𝑛) ,

(12)

where 𝑒
𝑙
(𝑛 + 1) is estimation error,

P (𝑛 + 1 | 𝑛) = F (𝑛)P (𝑛) F𝑇 (𝑛) +Q (𝑛 + 1) , (13)

S (𝑛 + 1) = H (𝑛 + 1)P (𝑛 + 1 | 𝑛)H𝑇 (𝑛 + 1) + R (𝑛 + 1) ,

(14)

H (𝑛 + 1) =
𝜕h (x (𝑛 + 1) , 𝑛 + 1)

𝜕x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x(𝑛+1)=𝐶{x̂(𝑛+1|𝑛)}
, (15)

F (𝑛) =
𝜕f (x (𝑛) , u(𝑛), 𝑛)

𝜕x

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨x(𝑛)=𝐶{x̂(𝑛)}
, (16)

𝐸 {𝑒 (𝑛 + 1)} ∼ Π (𝑒
1 (𝑛 + 1) , 𝑒2 (𝑛 + 1) ,

𝑒
3 (𝑛 + 1) , 𝑒4 (𝑛 + 1)) .

(17)

Let us summarize the above steps as Algorithm 2.

Algorithm 2 (FEKF algorithm). Consider the following.

Step 1. Give initial values P(0) and x̂(0).

Step 2. Check (11) once we obtain the new measurement
values. Calculate the newprediction values by (10), if satisfied.
Otherwise, go ahead for the next new measurement.

Step 3. Use (13) to (17) to get the updated values.

Step 4. Let 𝑛 = 𝑛 + 1; return to Step 2.

Remark 3. Although the FEKF can be suitable for fuzzy
system, it has poor robustness and is not suitable for maneu-
vering target tracking.

4. The Fuzzy Passive Location Algorithm

4.1. The Orthogonality Principle under the Fuzzy System. We
can have the equation below by applying the orthogonality
principle [13, 14]:

𝐸 {[x̂ (𝑛 + 1) − x (𝑛 + 1)] [x̂ (𝑛 + 1) − x (𝑛 + 1)]
𝑇
} = min,

(18)

𝐸 {𝑒 (𝑛 + 1 + 𝑖) 𝑒
𝑇
(𝑛 + 1)} = 0, (19)

where 𝑖 = 1, 2, . . ..
For the problemof fuzzy passive location given previously

by (1), the above equations can be written as [11]

𝐶 {[x̂ (𝑛 + 1) − x (𝑛 + 1)] [x̂ (𝑛 + 1) − x (𝑛 + 1)]
𝑇
} = min,

Dep {𝑒 (𝑛 + 1 + 𝑖) 𝑒
𝑇
(𝑛 + 1)} = 0,

(20)

where Deprepresents the dependency of the two variables in
the fuzzy system [6].

Combining the equation below,

𝐸 {𝑒 (𝑛)} ∼ Π (𝑒
1 (𝑛) , 𝑒2 (𝑛) , 𝑒3 (𝑛) , 𝑒4 (𝑛)) . (21)

We can have the equations below:

𝐶 {𝑒 (𝑛)} = 0, 𝑛 = 1, 2, . . . , (22)

Dep {𝑒 (𝑛 + 1 + 𝑖) 𝑒
𝑇
(𝑛 + 1)}

= 𝐶 {[𝑒 (𝑛 + 1 + 𝑖) − 𝐶 {𝑒 (𝑛 + 1 + 𝑖)}]

×[𝑒 (𝑛 + 1) − 𝐶 {𝑒 (𝑛 + 1)}]
𝑇
}

= 𝐶 {𝑒 (𝑛 + 1 + 𝑖) 𝑒
𝑇
(𝑛 + 1)} = 0.

(23)

Furthermore, we can obtain

𝐶 {𝑒 (𝑛 + 1 + 𝑖) 𝑒
𝑇
(𝑛 + 1)} = 0. (24)

From the above equations, it can be known that once there
is mismatch in the model, there will be online adjustment for
the gainmatrixK(𝑛+1) to satisfy (19). Beingmotivated by the
principle highlighted above, we will propose a robust fuzzy
passive location method to track the maneuvering target.



4 Mathematical Problems in Engineering

4.2. A Robust Passive Location Method for the Maneuvering
Target. According to the theorymentioned in Section 4.1, the
maneuvering target in the fuzzy passive system can be tracked
by online adjustment for K(𝑛 + 1). As a result, (19) will be
satisfied. The following equation can be obtained:

P (𝑛 + 1 | 𝑛) = 𝜆 (𝑛 + 1) F (𝑛)P (𝑛 | 𝑛) F𝑇 (𝑛) +Q (𝑛 + 1) ,

K (𝑛 + 1)

= P (𝑛 + 1 | 𝑛)H𝑇 (𝑛 + 1)

× [H (𝑛 + 1)P (𝑛 + 1 | 𝑛)H𝑇 (𝑛 + 1) + R (𝑛 + 1)]
−1

,

(25)

where

𝜆 (𝑛 + 1) =
tr [N (𝑛 + 1)]

tr [M (𝑛 + 1)]
,

N (𝑛 + 1) = 𝜓 (𝑛 + 1) − R (𝑛 + 1)

−H (𝑛 + 1)Q (𝑛 + 1)H𝑇 (𝑛 + 1) ,

M (𝑛 + 1) = H (𝑛 + 1) F (𝑛)P (𝑛) F𝑇 (𝑛)H𝑇 (𝑛 + 1) ,

𝜓 (𝑛 + 1)

=

{{

{{

{

𝐶{𝑒 (1) 𝑒
𝑇
(1)} , 𝑛 = 0

𝜛𝜓 (𝑛) + 𝐶 {𝑒 (𝑛 + 1) 𝑒
𝑇
(𝑛 + 1)}

1 + 𝜛
, 𝑛 ≥ 1,

(26)

where 𝜆(𝑛 + 1) and tr denote the fading factor and the matrix
trace, respectively, and𝜛 is the forgetting factor which should
satisfy 0 ≤ 𝜛 ≤ 1. Generally, 𝜛 = 0.95 [10, 13].

We can summarize the above procedures into Algo-
rithm 4 named the robust fuzzy extended Kalman filter
(RFEKF).

Algorithm 4 (RFEKF algorithm). Consider the following.

Step 1. Give initial values P(0) and x̂(0).

Step 2. Check (11) once we obtain the new measurement
values. Calculate the newprediction values by (10), if satisfied.
Otherwise, go ahead for the next new measurement.

Step 3. Obtain the gain matrix by using (25)-(26).

Step 4. Obtain the updated value by using (13)-(14).

Step 5. Let 𝑛 = 𝑛 + 1; return to Step 2.

In the RFEKF, gainmatrixK(𝑛+1) is calibrated appropri-
ately by 𝜆(𝑛 + 1) when the stable states change abruptly. That
is, the tracking performance of RFEKF is more robust and
suitable for the maneuvering target tracking than the FEKF.

Remark 5. In the RFEKF, introducing the orthogonality
principle, the gain matrix K(𝑛 + 1) could be adjusted online,
if the model has mismatch. As a result, the RFEKF could not

only be applied for the fuzzy uncertainty, but also has stronger
robustness than that of the FEKF. In a word, the RFEKF can
deal with themaneuvering target tracking of the fuzzy passive
location system.

Moreover, with the above RFEKF, we can obtain a robust
fuzzy passive location algorithm for maneuvering target in
the passive location system given by (1) and (2). The robust
algorithm is armed with the advantages of the RFEKF and
is more robust. Thus, the algorithm is applicable for maneu-
vering target tracking. In the following simulation studies,
we will compare the RFEKF with the FEKF in the fuzzy
passive location systems to demonstrate the effectiveness of
this algorithm.

Based on [11], the criterions are given.

Criterion 1. The true values should be in the zone of the
trapezoidal distribution zone. Moreover, the smaller the
trapezoidal zone is, the more effective the algorithm is.

Criterion 2. The algorithm is more effective if the error is
smaller.

5. Simulation

In order to demonstrate the effectiveness of the proposed
algorithm, we give a passive location model. The measure-
ments in themodel are composed of frequency rate of change
̇𝑓
𝑑
, phase-difference rate of change 𝜑̇, and phase-difference 𝜑

[15]. In the simulation, the observer is located at the origin
and the target keeps moving in a constant speed.

We can use the equations below as the passive location
model:

x (𝑛 + 1) = [
I
2
I
2
𝑇
𝑠

0 I
2

] x (𝑛) + w (𝑛 + 1) ,

z (𝑛 + 1) = [

[

𝜑 (𝑛 + 1)

𝜑̇ (𝑛 + 1)
̇𝑓
𝑑 (𝑛 + 1)

]

]

+ k (𝑛 + 1) ,

(27)

where I
2
is the identitymatrix of second order, x = [𝑥, 𝑥̇, 𝑦, ̇𝑦]

is the target state, 𝑥, 𝑥̇, 𝑦, and ̇𝑦 represent horizontal position,
horizontal velocity, vertical position, and vertical velocity, 𝑓

0
,

respectively, denote the frequency, 𝑘
0
is the phase-difference

coefficient, and

𝜑 (𝑛) = 𝑘
0
𝑓
0

𝑥 (𝑛)

√𝑥2 (𝑛) + 𝑦2 (𝑛)

,

𝜑̇ (𝑛) = −𝑘
0
𝑓
0
𝑦 (𝑛)

−𝑥̇ (𝑛) 𝑦 (𝑛) + ̇𝑦 (𝑛) 𝑥 (𝑛)

[𝑥2 (𝑛) + 𝑦2 (𝑛)]
3/2

,
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Figure 2: Using the 100-time Monte-Carlo simulation method to compare the estimation value of the target applying the FEKF and the
RFEKF. (a) Estimation values of the horizontal position, (b) estimation values of the horizontal velocity, (c) estimation values of the vertical
position, (d) estimation values of the vertical velocity. The actual values of the target are represented by the dotted and dashed line; the value
of the FEKF is represented by the red solid line and that of the RFEKF is represented by the blue dashed line.

̇𝑓
𝑑 (𝑛) = −

[−𝑥̇ (𝑛) 𝑦 (𝑛) + ̇𝑦 (𝑛) 𝑥 (𝑛)]
2

𝜆[𝑥2 (𝑛) + 𝑦2 (𝑛)]
3/2

,

𝐸 {w} ∼ Π (−0.004, −0.002, 0.002, 0.004) ,

𝐸 {k} ∼ Π (−0.001, −0.0005, 0.0005, 0.001) .

(28)

In this simulation, the initial state is 𝑥̇ = 300m/s and
̇𝑦 = 0m/s. When 𝑡 = 501, the target states change abruptly.

We suppose that 𝑥̇(501) = 310m/s and ̇𝑦(501) = 10m/s. We
use the 100-timeMonte-Carlo simulation for the experiments

below. Figure 2 exhibits the estimation of the state x between
the FEKF and RFEKF. In Figure 2, you can see the actual
values in the dotted and dashed line. The estimation value of
the RFEKF is the blue dashed line and the value of the FEKF is
the red solid line. Figures 3 and 4 exhibit the estimation error
of the state between the RFEKF and the FEKF, respectively.

In Figure 2, when 𝑡 ∈ [0 500], the true state values of
the target are all in the trapezoidal distribution zones of the
FEKF and RFEKF. By Criterion 1, it is shown that both of the
algorithms can track the nonmaneuvering target. But after the
states of the target change abruptly (𝑡 = 501), the actual state
values are out of the trapezoidal zones of the FEKF but in
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Figure 3: Using the 100-time Monte-Carlo simulation method to get the error of the FEKF. (a) Error of the horizontal position, (b) error of
the horizontal velocity, (c) error of the vertical position, and (d) error of the vertical velocity.

that of the RFEKF. Thus, by Criterion 1, it is shown that the
RFEKF is suitable for the maneuvering target tracking, while
the FEKF is not.

In Figure 3, the FEKF is convergent when 𝑡 ∈ [0 500],
while the algorithm is divergent after the states of the target
change abruptly (𝑡 = 501). In Figure 4, the RFEKF is
convergent when 𝑡 ∈ [0 500], and the error values are
huge in the beginning after the states of the target change
abruptly (𝑡 = 501). However, it will be back to convergent
after some steps. Compare Figure 3 with Figure 4; we can
draw the conclusion that when the target is nonmaneuvering,
both of the algorithms are convergent, and when the target
is maneuvering, the FEKF is divergent and the RFEKF is
convergent after some steps. By Criterion 2, it is shown that
the RFEKF ismore effective and suitable for themaneuvering
target tracking.

In a word, simulations show that the RFEKF has stronger
robustness and is more suitable to track the maneuvering
target.

6. Conclusions

In order to track the maneuvering target in the uncertain
passive location system, the robust passive location algorithm
is proposed based on the orthogonality principle and the
fuzzy extendedKalman filter. It is different fromother passive
location methods as the noise is described by the trapezoidal
possibility distributions in this paper instead of the Gaussian
probability distributions. In the algorithm, the uncertainty
can be built by qualitative knowledge and is not necessary to
be symmetric.

The simulation results demonstrate that both of the FEKF
and the RFEKF can track the nonmaneuvering target. But
the RFEKF can track the maneuvering target while the FEKF
cannot. In a word, the RFEKF could not only deal with the
fuzzy passive system, but also have stronger robustness and
is more suitable for the maneuvering target tracking than the
FEKF.
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Figure 4: Using the 100-timeMonte-Carlo simulation method to get the error of the RFEKF. (a) Error of the horizontal position, (b) error of
the horizontal velocity, (c) error of the vertical position, and (d) error of the vertical velocity. The error values at the abrupt change time are
huge. In order to see the effect of the convergence, the vertical limit of this figure was set as 100 artificially.

Fuzzy extended Kalman filter in different environments
such as high nonlinear, data loss will be topics of further
study. Meanwhile, it will be meaningful to further study the
convergence property of the fuzzy filter.
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