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This paper presents parameter estimation of Permanent Magnet Synchronous Motor (PMSM) using a combinatorial algorithm.
Nonlinear fourth-order space state model of PMSM is selected. This model is rewritten to the linear regression form without
linearization. Noise is imposed to the system in order to provide a real condition, and then combinatorial Orthogonal Projection
Algorithm and Recursive Least Squares (OPA&RLS) method is applied in the linear regression form to the system. Results of this
method are compared to the Orthogonal Projection Algorithm (OPA) and Recursive Least Squares (RLS) methods to validate the
feasibility of the proposed method. Simulation results validate the efficacy of the proposed algorithm.

1. Introduction

Permanent Magnet Synchronous Motor (PMSM) is a good
choice to use in robotics industries, electric vehicles, petro-
chemical industries, sea, and so forth due to large torque
to inertia ratio and high power density [1–5] and is a
serious opponent to the induction motor [6, 7]. Regarding
widespread application of such motors, design of high speed
and high accuracy controllers is of great concern for engi-
neers [8]. The selected model and knowing the parameters of
the system are important factors in design of such controllers.
The pertaining model has to be accurate enough to define
the physical process of the system [4]. PMSM is a nonlinear
system. If the linearization in the operating point by choosing
improper nonlinear model does not provide appropriate
dynamics, the speed and response speed of the controller
would be slowed down [9]. Sensitivity of the machine’s
parameter depends on various factors such as high temper-
ature, mechanical vibrations, loading condition, increase in
the service time of the motor, and environmental factors
that would cause parametric uncertainty [3, 8, 10] and has
considerable effect on the static and dynamic performance
of the system [11]. Robustness to parametric uncertainty has

to be imposed by correct estimation of PMSM parameters.
Generally, there are two kinds of estimation to find out
unknown parameters: online and offline estimation. Offline
estimation is carried out whenmachine is not performing but
online estimation is carried out when machine is operating
and in steady-state [12]. Online estimation is a very important
necessity for such systems. Extended Kalman Filter, Model-
Reference method, Recursive Least Squares method, neural
networks, adaptive algorithms, and decoupling control algo-
rithms are of the online methods to estimate the parameters
of PMSM [2, 10, 13–19].

In this paper, we have presented combinatorial estimation
methods, that is, Orthogonal Projection Algorithm (OPA)
and Recursive Least Squares (RLS). OPA is presented well
in [20] to estimate the parameters of PMSM which is very
efficient for noise-free systems.The combinatorial OPA&RLS
method would be a good candidate for systems with high
noise which are more like real systems. This method can
be very helpful for online estimation. In this paper, a
nonlinear fourth-order PMSM model is chosen and load
angle is selected as accessible output, and voltages V𝑑, V𝑞 are
selected as input (framed voltages of Park transformation).
This nonlinear model is rewritten to linear regression form
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without linearization or simplification. Both estimators can
be applied independently but the combinatorial method has
the features of both methods. OPA leaps quickly toward the
aim parameter with each estimation it does and after that RLS
adapts the estimated parameter to the real parameter due to
its robustness toward noise.

Section 2 describes state space model transformation of
PMSM. In Section 3, the proposed estimator is presented.
Simulation results are illustrated in Section 4 and finally the
paper is concluded in Section 5.

2. Transforming the Nonlinear Model to
Linear Regression Form

To achieve high performance for PMSM, the fourth-order
state space model of the system is selected under Park
transformation [21, 22]:

𝑥̇ = 𝐴𝑥+𝐵𝑢+𝑓 (𝑥) ,

𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4]
𝑇
= [

𝛿 𝜔𝑒 𝑖𝑞 𝑖𝑑]
𝑇
,

𝑢 = [𝑢1 𝑢2]
𝑇
= [

V𝑞 V𝑑]
𝑇
,

𝐴 =

[

[

[

[

[

[

[

[

[

[

[

0 1 0 0

0 0
1.5𝑝𝜆𝑓
𝐽

0

0 −

−𝜆𝑓𝑝

𝐿𝑞

−

−𝑅

𝐿𝑞

0

0 0 0 −

𝑅

𝐿𝑑

]

]

]

]

]

]

]

]

]

]

]

,

𝐵 =

[

[

[

[

[

[

[

[

[

0 0
0 0
1
𝐿𝑞

0

0 1
𝐿𝑑

]

]

]

]

]

]

]

]

]

,

𝑓 =

[

[

[

[

[

[

[

[

[

[

[

[

0

1.5𝑝 (𝐿𝑑 − 𝐿𝑞) 𝑖𝑞𝑖𝑑
𝐽

−

𝐿𝑑𝑝𝜔𝑒𝑖𝑑

𝐿𝑞

𝐿𝑞𝑝𝜔𝑒𝑖𝑞

𝐿𝑑

]

]

]

]

]

]

]

]

]

]

]

]

.

(1)

System inputs are V𝑑, V𝑞 Park transformation voltages, 𝑖𝑞, 𝑖𝑑,
𝜔𝑒, and 𝛿 state variables of the systemwhich are rotor angular
position, rotor angular speed, and Park transformation cur-
rents, respectively.

Physical parameters of the system are 𝑅 stator resistance,
𝑝 pole-pairs, 𝜆𝑓 magnet flux linkage, 𝐽 inertia coefficient,
and 𝐿𝑑, 𝐿𝑞 direct and quadrature inductances of Park
transformation, respectively.

The aim of this section is to transform the nonlinear
state space model of PMSM to the linear regression form

without linearization or simplification techniques. As the
linear regression form is expressed in terms of an output, the
pertaining output is rewritten in terms of state variables. The
selected output is power angle (𝛿 = 𝑥1).

Equation (3) is obtained by considering 𝑖𝑑, 𝑖𝑞 according to
(2) [23] and discretization based on (𝑥̇ = [𝑥(𝑡+𝑇𝑠)−𝑥(𝑡)]/𝑇𝑠)
in which 𝑇𝑠 is the sampling time. Consider

𝑖𝑑 = 𝑖𝑚 cos (𝛿) = 𝑖𝑚 cos (𝑥1) ,

𝑖𝑞 = 𝑖𝑚 sin (𝛿) = 𝑖𝑚 sin (𝑥1) ,
(2)

𝑥1 [𝑘 +𝑇𝑠] = 𝑥1 [𝑘] +𝑇𝑠𝑥2 [𝑘] ,

𝑥2 [𝑘 +𝑇𝑠] = 𝑥2 [𝑘] +𝑇𝑠 (
1.5𝑃𝜆𝑓
𝐽

)𝑥3 [𝑘]

+𝑇𝑠(

1.5 (𝐿𝑑 − 𝐿𝑞)
𝐽

)𝑥3 [𝑘] 𝑥4 [𝑘] ,

𝑥3 [𝑘 +𝑇𝑠] = 𝑇𝑠 (
−𝜆𝑓𝑃

𝐿𝑞

)𝑥2 [𝑘]

+𝑇𝑠 (

−𝑅

𝐿𝑞

) 𝑖𝑚sin (𝑥1 [𝑘]) +
𝑇𝑠

𝐿𝑞

𝑢1 [𝑘]

+𝑇𝑠 (−𝑝

𝐿𝑑

𝐿𝑞

) 𝑖𝑚cos (𝑥1 [𝑘]) 𝑥2 [𝑘]

+ 𝑖𝑚sin (𝑥1 [𝑘]) ,

𝑥4 [𝑘 +𝑇𝑠] = 𝑖𝑚cos (𝑥1 [𝑘]) +𝑇𝑠 (
−𝑅

𝐿𝑑

) 𝑖𝑚cos (𝑥1 [𝑘])

+

𝑇𝑠

𝐿𝑑

𝑢2

+𝑇𝑠 (𝑃

𝐿𝑞

𝐿𝑑

) 𝑖𝑚sin (𝑥1 [𝑘]) 𝑥2 [𝑘] .

(3)

Rewriting (3) to the linear regression form is needed in a
way that 𝑥1 is written in terms of all state variables. After
applying estimator on linear regression form and estimation
of the parameters, complicated nonlinear equations have to
be solved to obtain physical parameters (𝑅, 𝑝, 𝜆𝑓, 𝐽, 𝐿𝑞, and
𝐿𝑑). To solve this problem, two linear regression forms are
required by a heuristic method and defining new variables in
(3) and (2).Therefore, physical parameters can be solved from
linear regression without solving nonlinear equation.

2.1. Model Number 1. The second state variable of (3) can be
rewritten by using (2) as below:

𝑥2 [𝑘 +𝑇𝑠]

= 𝑥2 [𝑘] +𝑇𝑠 (
1.5𝑃𝜆𝑓
𝐽

)𝑥3 [𝑘]

+𝑇𝑠(

1.5 (𝐿𝑑 − 𝐿𝑞)
𝐽

)

𝑖

2
𝑚

2
sin 2 (𝑥1 [𝑘]) .

(4)
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By shifting forward in (4) and putting 𝑥3[𝑘 + 1] in it from (3)
and substituting 𝑇𝑠 = 1,

𝑥2 [𝑘 + 2]

= 𝑥2 [𝑘 + 1]

+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖
2
𝑚

2𝐽
) sin 2 (𝑥1 [𝑘 + 1])

+(

1.5𝑃𝜆𝑓
𝐽

)(

−𝜆𝑓𝑃

𝐿𝑞

)𝑥2 [𝑘]

+(

1.5𝑃𝜆𝑓
𝐽

)(

−𝑅

𝐿𝑞

) sin (𝑥1 [𝑘])

+(

1.5𝑃𝜆𝑓
𝐿𝑞𝐽

) 𝑢1 [𝑘]

+(

1.5𝑃𝜆𝑓
𝐽

)(−𝑝

𝐿𝑑

𝐿𝑞

) cos (𝑥1 [𝑘]) 𝑥2 [𝑘]

+(

1.5𝑃𝜆𝑓𝑖𝑚
𝐽

) sin (𝑥1 [𝑡]) .

(5)

Equation (5) is rewritten in terms of load angle by using the
relation between the first and second state variables:

𝑥1 [𝑘 + 3] − 𝑥1 [𝑘 + 2] = 𝑥1 [𝑘 + 2] − 𝑥1 [𝑘 + 1]

+(

1.5𝑃𝜆𝑓
𝐽

)(

−𝜆𝑓𝑃

𝐿𝑞

) (𝑥1 [𝑘 + 1] − 𝑥1 [𝑘])

+(

1.5𝑃𝜆𝑓
𝐽

)(

−𝑅

𝐿𝑞

) sin (𝑥1 [𝑘]) +(
1.5𝑃𝜆𝑓
𝐿𝑞𝐽

)

⋅ 𝑢1 [𝑘] +(
1.5𝑃𝜆𝑓
𝐽

)(−𝑝

𝐿𝑑

𝐿𝑞

) cos (𝑥1 [𝑘])

⋅ (𝑥1 [𝑘 + 1] − 𝑥1 [𝑘]) +(
1.5𝑃𝜆𝑓𝑖𝑚

𝐽

) sin (𝑥1 [𝑡])

+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖
2
𝑚

2𝐽
) sin 2 (𝑥1 [𝑘 + 1]) .

(6)

The above equation is rewritten to the below form by defining
new variables:

𝑦1 [𝑘] = 𝐴1𝑦11 +𝐴2𝑦12 +𝐴3𝑦13 +𝐴4𝑦14 +𝐴5𝑦15 (7)

𝐴1 = (
1.5𝑃𝜆𝑓
𝐽

)(

−𝜆𝑓𝑃

𝐿𝑞

) ,

𝐴2 = (
1.5𝑃𝜆𝑓
𝐽

)(

−𝑅

𝐿𝑞

)+(

1.5𝑃𝜆𝑓𝑖𝑚
𝐽

) ,

𝐴3 = (
1.5𝑃𝜆𝑓
𝐿𝑞𝐽

) ,

𝐴4 = (
1.5𝑃𝜆𝑓
𝐽

)(−𝑝

𝐿𝑑

𝐿𝑞

) ,

𝐴5 = (
1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖

2
𝑚

2𝐽
) ,

𝑦11 = (𝑥1 [𝑘 + 1] − 𝑥1 [𝑘]) ,

𝑦12 = sin (𝑥1 [𝑘]) ,

𝑦13 = 𝑢1 [𝑘] ,

𝑦14 = cos (𝑥1 [𝑘]) (𝑥1 [𝑘 + 1] − 𝑥1 [𝑘]) ,

𝑦15 = sin 2 (𝑥1 [𝑘 + 1]) ,

𝑦1 [𝑘] = 𝑥1 [𝑘 + 3] − 2𝑥1 [𝑘 + 2] + 𝑥1 [𝑘 + 1] .
(8)

Finally a nonlinear model of PMSM is written to common
linear regression form considering (7) without any lineariza-
tion in which 𝐴1, . . . , 𝐴7 are factors that are obtained from
multiplying physical parameters of the system and 𝑦11, . . .,𝑦15
are variables that are composed of nonlinear functions, input,
and output.

Equation (7) can be written to the linear regression
matrix.

In the following equation, 𝜙1 is estimator vector for the
first regression form and 𝜃1 parameter vector related to this
form:

𝑦1 [𝑘] = 𝜙1
𝑇
𝜃1, (9)

𝜙1 = [𝑦11 𝑦12 𝑦13 𝑦14 𝑦15]
𝑇
,

𝜃1 = [𝐴1 𝐴2 𝐴3 𝐴4 𝐴5] .
(10)

2.2. Model Number 2. The second state variable of (3) can be
rewritten by using (2) as below:

𝑥2 [𝑘 +𝑇𝑠]

= 𝑥2 [𝑘] +𝑇𝑠 (
1.5𝑃𝜆𝑓𝑖𝑚

𝐽

) sin (𝑥1 [𝑡])

+𝑇𝑠(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖𝑚
𝐽

) sin (𝑥1 [𝑘]) 𝑥4 [𝑡] .

(11)

By shifting forward in (11) and putting 𝑥3[𝑘 + 1] in it from (3)
and substituting 𝑇𝑠 = 1,

𝑥2 [𝑘 + 2] = 𝑥2 [𝑘 + 1] +(
1.5𝑃𝜆𝑓𝑖𝑚

𝐽

) sin (𝑥1 [𝑘 + 1])

+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖
2
𝑚

𝐽

) sin (𝑥1 [𝑘 + 1])

⋅ cos (𝑥1 [𝑡]) +(
1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖𝑚

𝐿𝑑𝐽

)𝑢2
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+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖
2
𝑚

𝐽

)(

−𝑅

𝐿𝑑

)

⋅ sin (𝑥1 [𝑘 + 1]) cos (𝑥1 [𝑡])

+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖
2
𝑚

𝐽

)(𝑃

𝐿𝑞

𝐿𝑑

)

⋅ sin (𝑥1 [𝑘 + 1]) sin (𝑥1 [𝑘]) 𝑥2 [𝑘] .
(12)

Equation (12) is rewritten in terms of load angle by using the
relation between the first and second state variables:

𝑥1 [𝑘 + 3] − 𝑥1 [𝑘 + 2] = 𝑥1 [𝑘 + 2] − 𝑥1 [𝑘 + 1]

+(

1.5𝑃𝜆𝑓𝑖𝑚
𝐽

) sin (𝑥1 [𝑘 + 1])

+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖
2
𝑚

𝐽

) sin (𝑥1 [𝑘 + 1]) cos (𝑥1 [𝑘])

+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖𝑚
𝐿𝑑𝐽

) sin (𝑥1 [𝑘 + 1]) 𝑢2

+(

1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖
2
𝑚

𝐽

)(

−𝑅

𝐿𝑑

) sin (𝑥1 [𝑘 + 1])

⋅ cos (𝑥1 [𝑘]) +(
1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖

2
𝑚

𝐽

)(𝑃

𝐿𝑞

𝐿𝑑

)

⋅ sin (𝑥1 [𝑘 + 1]) sin (𝑥1 [𝑘]) (𝑥1 [𝑘 + 1] − 𝑥1 [𝑘]) .

(13)

The above equation is rewritten to the below form by defining
new variables:

𝑦2 [𝑘] = 𝐵1𝑦21 +𝐵2𝑦22 +𝐵3𝑦23 +𝐵4𝑦24, (14)

𝐵1 = (
1.5𝑃𝜆𝑓𝑖𝑚

𝐽

) ,

𝐵2 = (
1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖

2
𝑚

𝐽

)(1+(−𝑅
𝐿𝑑

)) ,

𝐵3 = (
1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖𝑚

𝐿𝑑𝐽

) ,

𝐵4 = (
1.5 (𝐿𝑑 − 𝐿𝑞) 𝑖

2
𝑚

𝐽

)(𝑃

𝐿𝑞

𝐿𝑑

) ,

𝑦2 [𝑘] = 𝑥1 [𝑘 + 3] − 2𝑥1 [𝑘 + 2] + 𝑥1 [𝑘 + 1] ,

𝑦21 = sin (𝑥1 [𝑘 + 1]) ,

𝑦22 = sin (𝑥1 [𝑘 + 1]) cos (𝑥1 [𝑘]) ,

𝑦23 = sin (𝑥1 [𝑘 + 1]) 𝑢2 [𝑘] ,

𝑦24

= sin (𝑥1 [𝑘 + 1]) sin (𝑥1 [𝑘]) (𝑥1 [𝑘 + 1] − 𝑥1 [𝑘]) .
(15)

Finally a nonlinearmodel of PMSM iswritten to common lin-
ear regression form like form number 1 considering equation
(14) without any linearization in which 𝐵1, . . . , 𝐵7 are factors
that are embedded in the physical parameters of the system
and 𝑦21, . . . , 𝑦24 are variables that are composed of nonlinear
functions, input, and output.

Equation (14) can be written to the linear regression
matrix like form number 1:

𝑦2 [𝑘] = 𝜙2
𝑇
𝜃2, (16)

𝜙2 = [𝑦21 𝑦22 𝑦23 𝑦24]
𝑇
,

𝜃2 = [𝐵1 𝐵2 𝐵3 𝐵4] .
(17)

In (13), 𝜙2 is estimator vector and 𝜃2 parameter vector related
to form number 2.

3. OPA and RLS Estimator

RLS is a powerful tool in system identification which is
robust against noise, while OPA is an interesting method
with high convergence speed with poor performance in noisy
environment [24, 25]. Both advantages of these two methods
can be used simultaneously if they are combined. Reference
[26] is a good reference to understand the efficacy of the
combinatorial method which was applied on synchronous
generator and good results were obtained. The aim of this
paper is to estimate the physical parameter of the PMSM
usingOPA&RLSmethod in noisy environmentwith arbitrary
initial values of physical parameters. It is noted that nonlinear
PMSM system is extremely sensitive to physical parameters
variations; hence estimation of parameters of such systems is
very important by this algorithm.

Estimation process is started with orthogonal projection
and orthogonal base vectors of estimator that are in the same
dimension with the number of parameters (subspace of OPA
estimation method) which are produced [20, 24, 25]. After
producing estimation subspace, RLS is used and last estima-
tion of parameters in OPA method is applied to it which is a
good initial estimation for RLS to increase the convergence
speed. Then, RLS continues the estimation process with a
good accuracy to achieve physical parameters. Stages of the
combinatorial algorithm are given in the following:

Stage zero: OPA is started with 𝑡 = 0 and 𝜀 = 0 and
selection of initial parameters 𝜃0 and 𝑃0 covariance
identity matrix.
Stage one: a step is added to 𝑡 (𝑡 = 𝑡+1) and estimator
vector 𝜙𝑡−1 is calculated.
Stage two: if the estimator vector of this stage is not
linearly dependent on the estimator vector of the
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Table 1: Parameters of the understudy system [27].

𝑅 𝐿

𝑞
𝐿

𝑑
𝜆

𝑓
𝑗 𝑝

2.87Ω 9mH 7mH 0.175mWb 8 gm2 4

previous stage (𝜙𝑡−1
𝑇
𝑝𝑡−1𝜙𝑡−1 ̸= 0), we return to stage

three; otherwise previous values of parameters are
substituted (𝑝𝑡 = 𝑝𝑡−1, ̂𝜃𝑡 = ̂

𝜃𝑡−1) and we go to stage
one.
Stage three: 𝜃𝑡 and 𝑝𝑡 are obtained after recursive
equation of (18).
Stage four: if the rank of estimator matrix is equal
to the number of parameters (Rank(Φ) = dim(𝜃)),
then OPA is finished in 𝑡OPA and we go to stage five;
otherwise we return to stage one.
Stage five: to start the estimation with RLS method,
𝜀 = 1 and 𝜃𝑡OPA are considered as initial estimation.
Stage six: a step is added to 𝑡 (𝑡 = 𝑡 + 1) and estimator
vector 𝜙𝑡−1 is calculated.
Stage seven: 𝜃𝑡 and 𝑝𝑡 are updated using (18).
Stage eight: if the stop condition is not met, we return
to stage six. Consider the following:

̂

𝜃𝑡 =
̂

𝜃𝑡−1 +
𝑃𝑡−1 ⋅ 𝜙𝑡−1

𝜀 + 𝜙𝑡−1
𝑇
⋅ 𝑃𝑡−1 ⋅ 𝜙𝑡−1

⋅ [𝑦 [𝑡] −

̂

𝜃𝑡−1
𝑇

⋅ 𝜙𝑡−1] ,

𝑃𝑡 = 𝑃𝑡−1 +
𝑃𝑡−1 ⋅ 𝜙𝑡−1 ⋅ 𝜙𝑡−1

𝑇
⋅ 𝑃𝑡−1

𝜀 + 𝜙𝑡−1
𝑇
⋅ 𝑃𝑡−1 ⋅ 𝜙𝑡−1

.

(18)

4. Simulation

To validate the efficiency and accuracy of the combinatorial
OPA&RLSmethod, the proposed method is implemented on
a PMSM with specifications of Table 1 [27].

The signal (PRBS) is applied to the input of system for
data production to identify and excite the dynamics and a
noise with SNR = 15 is added to simulate a real condition
for output of the system (load angle) which is shown in
Figure 2 (amplitude and output). Simulation is performed in
MATLAB software.

To show the superiority of the proposed method, it is
compared to OPA and RLS estimator. The criteria for evalua-
tion are the speed and accuracy estimator in converging to the
real parameters in a way that the second norm of parameter
estimation error vector (𝐿2) is minimized:

𝐿2 =
󵄩

󵄩

󵄩

󵄩

󵄩

𝜃 −

̂

𝜃

󵄩

󵄩

󵄩

󵄩

󵄩2 . (19)

These criteria are evaluated and compared for the three
methods, that is, OPA, RLS, andOPA&RLSmethods, for both
linear regression forms from the second part with the same
initial estimation and stop condition.

This criterion is shown in Figure 1 for RLS andOPA&RLS
methods. It is shown that this criterion is first decreased
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Figure 1: Second norm of parameters estimation error in OPA.
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Figure 2: The figure shows output of real condition and estimated
model and their difference. As shown, estimated and real output.

for OPA method with respect to speed which shows quick
convergence toward objective parameters but after that this
trend is not preserved and system would oscillate and
diverges due to noise. It is shown from Figure 1 that the
secondnormof factors estimation error for RLS is descending
but its slope is slight (low) which requires too many samples
for parameters convergence. However, it is prominent that, in
OPA&RLSmethod, parameters would leap greatly toward the
objective parameters with a quick decrease in initial samples
and after that it has a proper trend until the convergence
to real parameters and appropriate estimation which is very
proper for noisy condition. This is because both features of
RLS and OPA are used in a single algorithm.

As discussed in Section 2, to avoid nonlinear compli-
cated calculation for estimating physical parameters, two
regression forms are defined according to (9) and (13). Now,
the values of physical parameters are calculated with simple
mathematics and given in Table 2.
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Table 2: Comparison between the convergence ofOPA andRLS and
OPA&RLS methods with the same condition.

𝑅 𝐿𝑞 𝐿𝑑 𝜆𝑓 𝑗 𝑝 Time
Real 2.875 9 7 0.175 8 4 —
OPA −0.264 −0.331 8.1717 0.1547 −0.495 −0.180 20
RLS 1.4925 7.1954 7.7590 0.1911 7.8661 3.2461 20
OPA&RLS 2.897 9.0650 6.9981 0.1744 8.006 4.012 20

Table 3: Investigation of normalized residue in three algorithms.

The normalized residual
OPA method 12.023 (dB)
RLS method 3.023 (dB)
OPA&RLS method −37.56 (dB)

Figure 2 shows output of real condition and estimated
model and their difference. As shown, estimated and real
output are alike with agreeable accuracy.

One of the criteria for evaluating the error of estimation
is the normalized residue criterion according to (20) [28, 29].
Here, this criterion is calculated and is given in Table 3. It is
observed that the proposed method is superior with respect
to other methods. Consider the following:

𝐽dB = 10 log(
∑

𝑁

1 (𝑦 (𝑡) − 𝑦̂ (𝑡))
2

∑

𝑁

1 𝑦 (𝑡)
2 ) . (20)

5. Conclusion

In this paper a new combinatorialmethod ofOrthogonal Pro-
jection Algorithm and Recursive Least Squares (OPA&RLS)
for parameter estimation of PMSM in noise-covered environ-
ment is proposed. To avoid solving complicated nonlinear
equation, two linear regression forms of fourth-order state
space PMSM were rewritten and OPA&RLS estimator was
compared to OPA and RLS estimators. Speed and accuracy of
convergence were investigated in three algorithms and it was
shown that OPA&RLS method has better results with respect
to the two single methods. The proposed algorithm can be
applied to any linear or nonlinear system where state space
model of the system is rewritten to linear regression form. It
is also verified that this method is very appropriate for online
estimation.

Nomenclature

Constant

𝑅: Stator resistance
𝑝: Pole-pairs
𝜆𝑓: Magnet flux linkage
𝐽: Inertia coefficient
𝐿𝑑: Direct and quadrature inductances of Park

transformation

𝐿𝑞: Direct and quadrature inductances of Park
transformation

𝜃1: Parameter vector form 1
𝜃2: Parameter vector form 2.

Variables

𝑖𝑞: Park transformation currents
𝑖𝑑: Park transformation currents
𝜔𝑒: Rotor angular speed
𝛿: Rotor angular position
𝑖𝑚: Nominal current
𝜙1: Estimator vector form 1
𝜙2: Estimator vector form 2
𝑦1: Output form 1
𝑦2: Output form 2
𝑝: Covariance matrix
𝐿2: Second norm of parameter estimation error vector
𝐽: Normalized residue.

Indices

𝑘: Step sample time in discrete time
𝑡: Time (sec).
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