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Kernel Locality Preserving Projection (KLPP) algorithm can effectively preserve the neighborhood structure of the database
using the kernel trick. We have known that supervised KLPP (SKLPP) can preserve within-class geometric structures by using
label information. However, the conventional SKLPP algorithm endures the kernel selection which has significant impact on the
performances of SKLPP. In order to overcome this limitation, a method named supervised kernel optimized LPP (SKOLPP) is
proposed in this paper, which can maximize the class separability in kernel learning.The proposed method maps the data from the
original space to a higher dimensional kernel space using a data-dependent kernel. The adaptive parameters of the data-dependent
kernel are automatically calculated through optimizing an objective function. Consequently, the nonlinear features extracted by
SKOLPP have larger discriminative ability compared with SKLPP and are more adaptive to the input data. Experimental results on
ORL, Yale, AR, and Palmprint databases showed the effectiveness of the proposed method.

1. Introduction

In recent years, the kernel methods have been widely studied
for feature extraction and pattern recognition. They map the
input data onto a kernel space and assume the nonlinear
problem can be transferred to linear problem, which can be
conveniently solved by linear algorithms. However, different
kernel geometrical structures give different class discrimi-
nations, and the inappropriate selection of kernel function
will induce disastrous effects, because the kernel matrix
determines the geometrical structure of the mapped data in
the kernel space. Thus it is necessary to use an adaptively
optimized kernel function to improve the classification per-
formance. We know that optimizing kernel parameters can-
not change the geometrical structures of kernel in the feature
space [1, 2], so, Schölkopf et al. [3] proposed an empirical ker-
nelmapwhichmaps original input data onto a subspace of the
empirical feature space, since the training data have the same
geometrical structure in both the empirical feature space and
the kernel space, and the former is easier to access than the
latter. Cristianini et al. [4] andLanckriet et al. [5], respectively,

employed the alignment and margin as the measure of data
separation to evaluate the adaptability of a kernel to input
data. He and Niyogi [6] pointed out that locality preserving
projection (LPP) is capable of discovering nonlinear method
with kernel trick. To utilize themerit of LPP,Wang andLin [7]
proposed supervised kernel LPP (SKLPP) to improve kernel
LPP (KLPP), by using classification information in kernel
feature extraction process. Li et al. [8] extended LPP with
nonparametric similarity measure and then optimized the
kernel withmaximummargin criterion for feature extraction
and recognition. Sun and Zhao [9] proposed a normalized
Laplacian based optimal LPP method. Lu et al. [10] proposed
a regularized generalized discriminant LPP approach. Lu and
Tan [11] proposed a parametric regularized LPP. Pang and
Yuan [12] proposed to substitute L2-norm with L1-norm to
improve the robustness of LPP against outliers. Although
SKLPP showed good performance in [7], the selection of
kernel function has a significant influence on the kernel
feature extraction and the problem was widely studied in
the previous works [7, 13–15]. In [15], we proposed a Kernel
Optimized PCA (KOPCA) with sparse representation-based
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classifier (SRC). Although both KOPCA and SKOLPP aim
to improve the recognition rate through optimizing the ker-
nel function, they employed different feature extraction
methods where KOPCA extracted features by PCA and
SKOLPP extracted features by LPP. In [16], we proposed a
Supervised Gabor-wavelet-based Kernel Locality Preserving
Projections (SGKLPP) method, which integrated the Gabor-
wavelet representation of face images and the SKLPPmethod
to improve the recognition rate. Gabor wavelets extracted
the features brought by illumination and facial expression
changes, and SKLPP solved the nonlinear feature extraction
and classification problem.

In [14], Pan et al. applied the optimizing kernel [17] to ker-
nel discriminant analysis (KDA) called adaptive quasicon-
formal kernel discriminant analysis (AQKDA). Different
from optimizing kernel based on Fisher Criterion [18], the
maximummargin criterion (MMC)was chosen to extract the
feature by maximizing the average margin between different
classes of data in the quasiconformal kernel mapping space.

Li et al. proposed class-wise locality preserving projection
(CLPP) which utilized the class information for feature
extraction [19]. In CLPP, a nonparametric similarity measure
of LPP was proposed by Li et al. and then the optimized
kernel with maximum margin criterion was used for feature
extraction. According to the nonparametric similarity mea-
sure, the local structure of the original data was constructed
which took consideration of both the local information and
the class label information. Moreover, Li et al. applied the
kernel trick to CLPP to increase its performance on nonlinear
feature extraction.

In [8], Li et al. proposed the Kernel Self-optimized Local-
ity Preserving Discriminant Analysis (KSLPDA). In the
paper, the authors integrated CLPP [19] and data-dependent
kernel based MMC [14] to form a constraint optimization
equation for KSLPDA.

In [20], Li et al. proposed the Quasiconformal Kernel
Common Locality Discriminant Analysis (QKCLDA). In
QKCLDA, the quasiconformal kernel based on Fisher Crite-
rion is used for breast cancer diagnoses. Li et al. divided the
procedure of QKCLDA into two steps. First, the original data
was mapped to a low-dimensional space via quasiconformal
kernel locality projection. Secondly, the low-dimensional
data was mapped to a common space.

In SKOLPP, we first construct a data-dependent kernel
[18] tomaximize the class separability based Fisher Criterion.
Then, we use gradient descent method to optimize the object
function where the combination coefficients can be obtained.
Last, integrating the supervised kernel locality preserving
projections [21], optimized kernel LPP can be used to extract
features. In this paper, SKOLPP aims to optimize the kernel
function. By retaining the local information and optimizing
the kernel function by maximizing the between-class dis-
tance, SKOLPP surpassed the above methods.

The paper is organized as follows. In Section 2, we
optimize the kernel in the empirical feature space by seeking
the optimal combination of coefficients with data-dependent
kernel based on Fisher Criterion. In Section 3, we employ
the optimized kernel function mentioned above to construct
the supervised kernel optimized LPP (SKOLPP). Finally, in

Section 4, experiments are executed on ORL, Yale, AR, and
Palmprint databases to demonstrate the effectiveness of the
optimized kernel in classification.

2. Kernel Optimization in the Empirical
Feature Space

2.1. Data-Dependent Kernel. The geometrical structure of
the data in the feature space is determined by the ker-
nel functions, which means that choosing different kernels
may induce different class discrimination performance [4].
Because there is no general kernel function that can be
suitable to all databases, it is necessary to choose a data-
dependent kernel to solve this problem. In this paper, a data-
dependent kernel which is similar to that used in [13] is
employed as the objective kernel to be optimized.

Considering a set of training data 𝑥1, . . . , 𝑥𝑁 ∈ R𝑑, we
apply the conformal transformation kernel [13] as our data-
dependent kernel function:

𝑘 (𝑥, 𝑦) = 𝑞 (𝑥) 𝑞 (𝑦) 𝑘0 (𝑥, 𝑦) , (1)

where 𝑥, 𝑦 ∈ 𝑅
𝑑 and 𝑘0(𝑥, 𝑦) is an ordinary kernel function,

called the basic kernel. 𝑞(⋅) is the factor function which is
determinative for the properties of data-dependent kernel:

𝑞 (𝑥) = 𝛼0 +
𝑛

∑

𝑖=1
𝛼
𝑖
𝑘1 (𝑥, 𝑎𝑖) , (2)

where 𝑘1(𝑥, 𝑎𝑖) = exp(−𝛾‖𝑥 − 𝑎
𝑖
‖), 𝑎
𝑖

∈ 𝑅
𝑑, 𝛾 is a free

parameter, and 𝛼
𝑖
{𝑖 = 0, 1, . . . , 𝑛} are the combination

coefficients.The set {𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛} is called the “empirical

cores” which can be chosen from the training data. In [13],
in order to enlarge the spatial resolution around the class
boundary, the support vectors are chosen as the empirical
cores. In this paper, we choose the mean value of each class as
empirical core. Apparently, the data-dependent kernel satis-
fies the Mercer condition [3].

Supposing that 𝑄 = diag(𝑞(𝑥1), 𝑞(𝑥2), . . . , 𝑞(𝑥𝑁)), then
we have

𝐾 = 𝑄𝐾0𝑄, (3)

where 𝐾
0
= [𝑘
0
(𝑥
𝑖
, 𝑥
𝑗
)]
𝑁×𝑁

is the basic kernel and 𝐾 is the
data-dependent kernel. Letting 𝛼 = [𝛼0, 𝛼1, . . . , 𝛼𝑛]

𝑇, then we
have

𝑄1
𝑛
= 𝐸𝛼, (4)

where 𝐸 = [1 𝑘1(𝑥𝑖, 𝑎1) ⋅ ⋅ ⋅ 𝑘1(𝑥𝑖, 𝑎𝑛)]𝑁×(𝑛+1).

2.2. Fisher Criterion Based Kernel Optimization. In [18], we
note that the geometrical structure of data in the kernel fea-
ture space and empirical feature space is the same.That is, the
optimized kernel parameters cannot change the geometrical
structures of kernel in the feature space. It is better tomeasure
class separability in the empirical feature space, because it is
easier to access the empirical feature space than the kernel
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feature space. Specifically, we use the Fisher Criteria formeas-
uring the class separability:

𝐽 =

tr 𝑆
𝑏

tr 𝑆
𝑤

, (5)

where 𝐽 is the well-known Fisher scalar, tr denotes the trace
of given matrix, 𝑆

𝑏
is the between-class scatter matrix, and

𝑆
𝑤
is the within-class scatter matrix. 𝐽 measures the class

separability in the feature space rather than in the projection
subspace. 𝐽 is a good choice for the task of kernel optimization
as it is independent of the projections. So optimizing the data-
dependent kernel means maximizing Fisher scalar 𝐽.

We can call the matrices 𝐵 and 𝑊 between-class and
within-class kernel scatter matrices, respectively. Then, they
can be written as

𝐵 = diag( 1
𝑁1

𝐾11, . . . ,
1
𝑁
𝐶

𝐾
𝐶𝐶

)−

1
𝑁

𝐾, (6)

𝑊 = diag (𝑘11, 𝑘22, . . . , 𝑘𝑁𝑁)

− diag( 1
𝑁1

𝐾11, . . . ,
1
𝑁
𝐶

𝐾
𝐶𝐶

) ,

(7)

where 𝐾 is the data-dependent kernel and 𝐾
𝑖𝑗
denotes the

submatrix of the kernelmatrix𝐾. Apparently,𝐾
𝑖𝑖
is the kernel

matrix corresponding to the samples in class 𝑖.
For the basic kernel𝐾0, thematrices𝐵0 and𝑊0 are similar

to formulae (6) and (7). Now, the relationship between Fisher
scalar 𝐽 and the kernel scatter matrices can be established:

𝐽 (𝛼) =

q𝑇𝐵0q
q𝑇𝑊0q

. (8)

The proof is given in the Appendix.
We use the standard gradient approach to maximize 𝐽(𝛼)

and let 𝐽1 = q𝑇𝐵0q = 𝛼
𝑇
𝐸
𝑇
𝐵0𝐸𝛼 and 𝐽2 = q𝑇𝑊0q =

𝛼
𝑇
𝐸
𝑇
𝑊0𝐸𝛼. Then, we have 𝜕𝐽1/𝜕𝛼 = 2𝐾𝑇1 𝐵0𝐾1𝛼 and

𝜕𝐽2/𝜕𝛼 = 2𝐾𝑇1 𝑊0𝐾1𝛼.
Thus, the iteration algorithm is as follows:

𝜕𝐽

𝜕𝛼

=

2
𝐽2

(𝐸
𝑇
𝐵0𝐸−𝐸

𝑇
𝑊0𝐸𝐽)𝛼. (9)

In order to maximize 𝐽, we let 𝜕𝐽/𝜕𝛼 = 0, and then
𝐸
𝑇
𝐵0𝐸𝛼 = 𝐸

𝑇
𝑊0𝐸𝐽𝛼.

However, the number of training samples is not enough
in real-world applications.Thus, it is hard to get the invertible
matrix of 𝑊0. Additionally, we use the general gradient
descentmethod to get𝛼which is an approximate value.Then,
the updating equation for maximizing the class separability 𝐽
is given by

𝛼
(𝑛+1)

= 𝛼
(𝑛)

+ 𝜂(

1

𝐽
2

𝐸
𝑇
𝐵
0
𝐸−

𝐽

𝐽
2

𝐸
𝑇
𝑊
0
𝐸)𝛼
(𝑛)

, (10)

where 𝜂 is the learning rate and 𝜂(𝑛) = 𝜂
0
(1 − 𝑛/𝑁), where

𝑁 is the number of iterations, 𝑛 denotes the current iteration
number, and 𝜂0 is the initial learning rate.

When we get 𝛼,𝑄 can be calculated by𝑄1
𝑛
= 𝐸𝛼 and the

data-dependent kernel𝐾 is easy to achieve.

3. Locality Preserving Projections and
Supervised Kernel Optimized LPP

In this section, first, LPP algorithm is reviewed briefly, and
then we use the optimized kernel function mentioned above
to construct the supervised optimizing kernel LPP.

3.1. Locality Preserving Projections. Locality Preserving Pro-
jections (LPP) [6] is a linear manifold learning method
which seeks an embedding that retains local information and
obtains a face subspace that best perceives the crucial face
manifold structure [22].

Given a matrix 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁]
𝑇

∈ 𝑅
𝑛×𝑁 with each

point 𝑥
𝑖
∈ 𝑅
𝑛×1. Similar to other subspace learning algo-

rithms, LPP uses the obtained transformation matrix 𝑊 =

[𝑤1, 𝑤2, . . . , 𝑤𝑟] ∈ 𝑅
𝑛×𝑟 with the basis vector𝑤

𝑖
∈ 𝑅
𝑛×1 tomap

the high-dimensional points 𝑥 ∈ 𝑅
𝑛×1 to low-dimensional

points 𝑦 ∈ 𝑅
𝑟×1: 𝑦 = 𝑊

𝑇
𝑥. The objective function of LPP

is defined as follows to compute the optimal basis vector
𝑤 ∈ 𝑅

𝑛×1:

min∑

𝑖𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤
𝑇
𝑥
𝑖
−𝑤
𝑇
𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2
𝑆
𝑖𝑗
, (11)

where 𝑆
𝑖𝑗
measures the similarity of 𝑥

𝑖
and 𝑥

𝑗
. Heat kernel is

frequently used to define 𝑆
𝑖𝑗
:

𝑆
𝑖𝑗
= exp(−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑡

) , (12)

where parameter 𝑡 ∈ 𝑅 is predefined. In (12) the similarity
𝑆
𝑖𝑗
monotonously increases with the decrease of the distance

between 𝑥
𝑖
and 𝑥

𝑗
. It is worth noting that if 𝑥

𝑖
and 𝑥

𝑗
do not

belong to the same class, the value of 𝑆
𝑖𝑗
will be zero.

The minimization problem of (11) can be reduced to the
eigendecomposition problem [6]:

𝑋𝐿𝑋
𝑇
𝑤 = 𝜆𝑋𝐷𝑋

𝑇
𝑤, (13)

where 𝐷 is a diagonal matrix, 𝐷
𝑖𝑖
= ∑𝑆

𝑖𝑗
, and 𝐿 = 𝐷 − 𝑆 is

the Laplacian matrix [23]. There is a constraint as follows:

𝑤
𝑇
𝑋𝐷𝑋
𝑇
𝑤 = 1. (14)

3.2. Supervised Kernel Optimized Locality Preserving Projec-
tions. We utilize the nonlinear projectionΦ to map the input
data 𝑅

𝑛 onto a Hilbert space; that is, 𝑥 → Φ. We expanded
LPP into a new space Φ(𝑥) = [Φ(𝑥1), Φ(𝑥2), . . . , Φ(𝑥

𝑛
)]. The

objective function is

min
𝑛

∑

𝑖,𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
Φ

𝑖
−𝑦
Φ

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2
𝑆
Φ

𝑖𝑗
, (15)

where 𝑦
Φ

𝑖
= (𝑤
Φ
)Φ(𝑥
𝑖
). The optimal transformation matrix

𝑊
Φ

= [𝑤
Φ

1 , 𝑤
Φ

2 , . . . , 𝑤
Φ

𝑟
] can be obtained through (13). The

eigenvector can be expressed as follows:

𝑤
Φ
= ∑

𝑝=1
𝛿
𝑝
Φ(𝑥
𝑝
) = 𝑄𝛿, (16)
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where 𝑄 = [Φ(𝑥1), Φ(𝑥2), . . . , Φ(𝑥
𝑛
)], 𝛿 = [𝛿1, 𝛿2, . . . 𝛿𝑛]

𝑇,
and 𝑆

Φ is the similarity matrix in the Hilbert space. Then,
SLPP is generalized to the nonlinear case with kernel func-
tion. The basic kernel in (1) is 𝑘0 = 𝑄

𝑇
𝑄. Gaussian kernel

𝑘(𝑥
𝑖
, 𝑥
𝑗
) = exp(−‖𝑥

𝑖
− 𝑥
𝑗
‖
2
/2𝜎2

) and polynomial kernel
𝑘(𝑥
𝑖
, 𝑥
𝑗
) = [⟨𝑥

𝑖
, 𝑥
𝑗
⟩+𝜃]
𝑑, 𝑑 ∈ 𝑁, are the most popular kernel

functions in kernel trick.
We can simplify the objective function (15) as

1
2

𝑛

∑

𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝑦
Φ

𝑖
−𝑦
Φ

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑆
Φ

𝑖𝑗
= 𝛿
𝑇
𝐾(𝐷
Φ
− 𝑆
Φ
)𝐾𝛿, (17)

where 𝐾 is the data-dependent kernel matrix defined in (3)
and 𝐷

Φ is a diagonal matrix where 𝐷
Φ

𝑖𝑖
= ∑
𝑗
𝑆
Φ

𝑖𝑗
. The local

structure information of data in the original space can be
presented by matrix𝐷

Φ. That is, if 𝑦Φ
𝑖
is more important, the

value of𝐷
𝑖𝑖
is bigger. Consider the constraint (𝑌Φ)𝑇𝐷Φ𝑌Φ =

1; that is, 𝛿𝑇𝐾𝐷
Φ
𝐾𝛿 = 1.Thenminimization problem can be

transformed as

min
𝛼

𝛿
𝑇
𝐾𝐿
Φ
𝐾𝛿,

s.t. 𝛿
𝑇
𝐾𝐷
Φ
𝐾𝛿 = 1.

(18)

We can obtain the optimal 𝛿 by solving (18). Therefore,
the essence of SKOLPP is clear. That is, we first use Fisher
Criterion to maximize the class separability and a data-
dependent kernel can be obtained.Then, we seek the optimal
projectionmatrix of kernel optimized SLPP to extract feature.
Last, a classifier can be adopted for classification. In this
paper, we use nearest neighbor classifier for recognition.

More information about LPP can be obtained from [6, 19,
21].

4. Experimental Results

In this section, we first verify the assumption that the clas-
sification performance is probably worse in the feature space
than without using kernel tricks in some cases. And we dem-
onstrate that our proposed kernel optimization algorithm can
obtain a better performance of classification.Then we test the
proposed SKOLPP and other methods on the ORL, Yale, AR,
and Palmprint database.

4.1. Kernel Optimization on Synthetic Gaussian Distributed
Database. In this part, we generated two simple datasets with
Gaussian distribution by computer. Figure 1(a) shows a two-
dimensional dataset with 600 samples and the coordinates
are uncorrelated. The samples are separated into two classes.
Each class has 300 samples withGaussian distributions where
𝜇
𝑥
= −2, 𝜇

𝑦
= 0, 𝜎

𝑥
= 4, and 𝜎

𝑦
= 4 and 𝜇

𝑥
= 2, 𝜇

𝑦
= 0,

𝜎
𝑥
= 1, and 𝜎

𝑦
= 1, respectively.

From this figure, we can see that some samples of the two
classes are overlapped. We use polynomial kernel function
𝑘0(𝑥, 𝑦) = [⟨𝑥, 𝑦⟩+𝜃]

𝑑where𝑑 = 3 to project the data into the
empirical feature space and Figure 1(b) shows the projection
of the data in the empirical feature space onto the first three

significant dimensions corresponding to the first three largest
eigenvalues of 𝐾. From Figure 1(b), we observe that the class
separability is worse in the feature space than that in the input
space. Figure 1(c) shows the corresponding results when we
use Gaussian kernel function 𝑘0(𝑥, 𝑦) = exp(−(1/𝜎)‖𝑥 −𝑦‖

2
)

with𝜎 = 1.0×105 to project the data into the empirical feature
space. Similarly, the class separability cannot be endured. As a
consequence, the kernel optimization algorithm is necessary
to overcome this trouble. In order to show the effective-
ness of the optimization algorithm, we carried out another
experiment. In this experiment, we use the polynomial kernel
𝑘0(𝑥, 𝑦) = (𝑥, 𝑦)

3 and Gaussian kernel 𝑘0(𝑥, 𝑦) = exp(−1.0 ×

10−5‖𝑥 − 𝑦‖
2
) as basic kernels. We select one-third of the

samples randomly to form the empirical core set {𝑎
𝑖
}.

In the polynomial kernel and Gaussian kernel, the initial
learning rate 𝜂0 of the algorithm is 0.1 while the number
of iterations is 200. Figure 2(a) shows the projections of
the data in the empirical feature space when the third-
order polynomial kernel is used as the basic kernel. The
corresponding results, when the Gaussian kernel is used, are
shown in Figure 2(b). From Figure 2, we can see that the class
separability of the data in the feature space is improved
significantly while our kernel optimization algorithm is used.

4.2. SKOLPP on ORL and Yale Databases. This experiment is
conducted on thewell-known face image databases (ORL and
Yale).

The ORL database contains 40 individuals. Each of them
includes 10 different images, which show variations in facial
expressions (smiling or not smiling), facial details (glasses or
no glasses), and poses. Yale database is more challenging than
ORL, which contains 165 grayscale images of 15 individuals.
The images demonstrate variations in lighting condition (left-
light, center-light, and right-light), facial expression (normal,
happy, sad, sleepy, and surprised), and facial details (glasses
or no glasses). Some sample images from the same individual
on ORL and Yale dataset are shown in Figures 3 and 4.

Experiment 1. In this part, we compare the proposed method
with PCA, KPCA, KOPCA, KFD, SVM, KMSVM, SLPP, and
SKLPP onORL and Yale databases. Gaussian function is used
with 𝜎

2
= 10
6 for SVM, SKLPP, and KFD, whereas 𝜎2 = 10

4

for KPCA and 𝜎
2
= 10
8 for KOPCA, KMSVM, and SKOLPP.

The dimension of eigenvectors is 60 here.
In the experiment, 𝑙 images (𝑙 = 2, 3, 4, 5) are randomly

selected from the image gallery of each individual to form the
training sample set 𝐺

𝑚
, respectively, and the corresponding

remaining images are taken to form the testing set 𝑃
𝑛
. The

results are averaged by 5 random replicates. Table 1 presents
the top recognition accuracy of PCA, KPCA, KOPCA, KFD,
SVM, KMSVM, SLPP, SKLPP, and SKOLPP along different
number of training samples on ORL database.

Table 1 shows the top recognition rate of all the methods
on ORL database. It is clear to see that SKOLPP performs the
best.Moreover, SKOLPP still performswell when the number
of training samples is small. It is worth noting that SKOLPP
works better than KOPCA and KMSVM while all of them
used optimizing kernel. One of the reasons is that SKOLPP
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Figure 1: 2D database and its projections in the feature space onto the first three significant dimensions. (a) Two classes of data samples with
two Gaussian distributions. (b) 3D projection in the feature space for polynomial kernel with 𝑑 = 3. (c) 3D projection in the empirical feature
space for Gaussian kernel with 𝜎 = 1.0 × 105.

Table 1: Algorithms comparison using ORL (mean ± std-dev%).

Method 𝐺2/𝑃8 𝐺3/𝑃7 𝐺4/𝑃6 𝐺5/𝑃5
PCA 67.5 ± 3.4 74.3 ± 2.3 78.3 ± 2.2 82.0 ± 2.4

KPCA 69.4 ± 3.2 76.1 ± 2.1 81.7 ± 2.1 86.5 ± 2.2

KOPCA 69.3 ± 3.1 80.5 ± 2.0 89.7 ± 2.2 91.0 ± 1.5

KFD 71.3 ± 3.5 77.9 ± 2.2 86.3 ± 2.1 86.0 ± 1.7

SVM 67.7 ± 3.2 78.2 ± 2.1 86.7 ± 2.4 88.3 ± 2.0

KMSVM 70.1 ± 3.4 81.7 ± 2.3 89.2 ± 2.0 90.0 ± 1.9

SLPP 62.8 ± 3.2 75.42 ± 2.3 87.51 ± 1.7 89.0 ± 1.6

SKLPP 69.4 ± 3.0 82.1 ± 2.1 89.6 ± 2.0 90.5 ± 1.7

SKOLPP 69.8 ± 3.1 83.9 ± 2.2 92.5 ± 1.3 93.8 ± 1.5

retains the local information and obtains a face subspace that
best perceives the crucial face manifold structure.

Table 2 shows the results of all the algorithms on Yale
database. Obviously, SKOLPP performs always better than
other methods along different number of training samples.

Experiment 2. We design this experiment in order to test the
performance of all the algorithms under different value of 𝜎2
in Gaussian kernel function. The value of 𝜎2 ranges from 104
to 108. Similarly, we select five images of each class as training
samples and the results are shown in Figures 5 and 6.

From Figure 5, we can see that SKOLPP performs best
compared with other methods when the value of 𝜎

2 is 7
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Figure 2: Improvement of class separability via kernel optimization algorithm. (a) 3D projection in the empirical feature space for polynomial
basic kernel 𝑑 = 3. (b) 3D projection in the empirical feature space for Gaussian basic kernel with 𝜎 = 1.0 × 105.

Figure 3: Ten sample images from Yale database.

Figure 4: Twenty sample images from ORL database.

Table 2: Algorithms comparison using Yale (mean ± std-dev%).

Method 𝐺2/𝑃9 𝐺3/𝑃8 𝐺4/𝑃7 𝐺5/𝑃6
PCA 63.4 ± 3.7 70.5 ± 3.9 79.3 ± 4.1 79.5 ± 4.1

KPCA 64.4 ± 3.7 72.1 ± 4.1 79.5 ± 4.1 80.3 ± 3.9

KOPCA 65.0 ± 3.2 78.7 ± 3.5 82.3 ± 3.7 84.5 ± 3.2

KFD 62.9 ± 3.9 67.5 ± 3.7 75.2 ± 3.7 77.6 ± 3.4

SVM 63.5 ± 3.8 74.3 ± 3.5 81.7 ± 3.8 81.2 ± 3.7

KMSVM 65.4 ± 4.0 78.9 ± 3.7 82.6 ± 3.8 83.3 ± 3.9

SLPP 60.8 ± 4.1 64.1 ± 4.1 70.4 ± 3.9 76.8 ± 3.7

SKLPP 57.0 ± 4.3 66.8 ± 3.9 72.3 ± 3.5 85.7 ± 3.9

SKOLPP 65.1 ± 4.1 80.9 ± 3.5 86.5 ± 3.9 89.6 ± 3.3

whereas the result is not perfect when 𝜎
2 = 104 ∼105. The

small value of 𝜎2 is more suitable for KPCA and KFD on
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Figure 5: Optimal average recognition accuracy (%) among differ-
ent parameters of Gaussian kernel function on ORL database.

ORLdatabase. It is worthwhile to note that SKOLPPperforms
always better than other methods including KMSVM on
ORL database (Figure 5). Figure 6 shows the corresponding
results on Yale database. Although, in the case where the
values of 𝜎2 are small in Figure 6, the SKOLPPmethod works
slightly worse than KMSVM, when the value of 𝜎2 becomes
larger, SKOLPP surpasses KMSVM and achieves the highest
recognition result. The recognition rate of SKOLPP reaches
95.5% and 92.9% on ORL and Yale databases, respectively.

Experiment 3. The polynomial function is used in this part
to test the performance of the proposed method.Three kinds
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Figure 6: Optimal average recognition accuracy (%) among differ-
ent parameters of Gaussian kernel function on Yale database.

Table 3: Optimal average recognition accuracy (%) among different
polynomial kernel functions on ORL database.

Polynomial function 𝑘
1
(𝑥
𝑖
, 𝑥
𝑗
) 𝑘

2
(𝑥
𝑖
, 𝑥
𝑗
) 𝑘

3
(𝑥
𝑖
, 𝑥
𝑗
)

KPCA 82.1 84.0 84.5
KOPCA 90.0 86.7 87.3
KFD 38.0 43.1 41.0
SVM 78.5 80.7 82.3
KMSVM 89.2 85.6 87.4
SKLPP 91.1 89.0 89.5
SKOLPP 94.4 89.5 89.0

of polynomial functions are adopted in this part, 𝑘
1
(𝑥
𝑖
, 𝑥
𝑗
) =

⟨𝑥
𝑖
, 𝑥
𝑗
⟩, 𝑘
2
(𝑥
𝑖
, 𝑥
𝑗
) = [⟨𝑥

𝑖
, 𝑥
𝑗
⟩]
2, and 𝑘

3
(𝑥
𝑖
, 𝑥
𝑗
) = [⟨𝑥

𝑖
, 𝑥
𝑗
⟩ +

1]
2, to compare the different kernel methods, such as KPCA,

KOPCA, KFD, SVM, KMSVM, and KLPP.

Five images of each class are selected as training samples
and the rest of the images are used for testing. Table 3 shows
the performance of different methods under different poly-
nomial functions mentioned above.

From Table 3, we can see that the performance of KFD
is unsatisfactory whereas SKLPP and SKOLPP achieve bet-
ter results than other methods. Not surprisingly, KOSLPP
achieves a better result as well and reaches the highest rec-
ognition rate of 94.4%. The corresponding results on Yale
database are presented in Table 4.

4.3. SKOLPP on AR Database. This experiment is conducted
on the AR face database. The AR database [24] contains
over 4000 color images corresponding to 126 people’s face
(70 men and 56 women). Images feature frontal view faces

8 9 10 11 12 13

1 2 3 4 5 6 7

Figure 7: Image sample fromAR database under variations in facial
expressions, lighting conditions, and occlusions.

Table 4: Optimal average recognition accuracy (%) among different
polynomial kernel functions on Yale database.

Polynomial function 𝑘
1
(𝑥
𝑖
, 𝑥
𝑗
) 𝑘

2
(𝑥
𝑖
, 𝑥
𝑗
) 𝑘

3
(𝑥
𝑖
, 𝑥
𝑗
)

KPCA 80.0 81.1 81.1
KOPCA 87.7 85.3 83.2
KFD 68.8 72.2 74.4
SVM 74.3 78.0 78.5
KMSVM 87.3 82.4 85.6
SKLPP 89.5 75.5 71.1
SKOLPP 92.9 83.3 81.1

Table 5: Top recognition rates of different methods on AR database
under varying facial expressions.

Method 𝑑 Recognition rate (%)
PCA 80 72.5
2DPCA 10 78.5
LDA 39 77.5
NPE 70 75.0
SLPP 90 76.5
SKLPP 75 78.0
SKOLPP 50 84.5

with different facial expressions, illumination conditions, and
occlusions (sun glasses and scarf).The images of each person
were taken in two sessions, separated by two weeks’ time.The
same pictures were taken in both sessions. In this experiment,
we take 100 individuals (50 men and 50 women) and use
the first 13 images of each person to test the performance of
all the algorithms. Thus, the total number of images used in
this experiment is 1300. All images are gray with 256 levels
and are of size 13 × 100 pixels. To simplify the computation
of the experiments, we cropped each image manually and
resized each image to 48 × 48 pixels. Figure 5 shows the
samples of one person. To fully evaluate the performance of
SKOLPP, we make three tests based on variations in facial
expressions, lighting conditions, and occlusions. Gaussian
function is performed with 𝜎

2
= 10
7 for SKOLPP.

4.3.1. Facial Expressions. In this test, we randomly select two
images from Figure 7 (1–4) as training samples; then the
remaining two images are used for testing. Therefore, the
total number of training samples is 200. These images have
different facial expressions. Table 5 shows the top recognition
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Table 6: Top recognition rate of different methods on AR database
under varying lighting expressions.

Method 𝑑 Recognition rate (%)
PCA 160 74.4
2DPCA 38 76.2
LDA 39 81.1
NPE 70 69.5
SLPP 100 73.5
SKLPP 75 78.9
SKOLPP 50 82.5

Table 7: Top recognition rate of different methods on AR database
under varying occlusions.

Method 𝑑 Recognition rate (%)
PCA 70 35.2
2DPCA 24 39.3
LDA 39 56.2
NPE 65 54.7
SLPP 90 52.0
SKLPP 75 58.9
SKOLPP 50 78.5

rate of different algorithms. FromTable 5, we can see SKOLPP
achieves better results than other methods (PCA, 2DPCA
[25], LDA [26], NPE [27], SLPP, and SKLPP). Particularly,
SKOLPP performs better than SKLPP by 6.5% recognition
rate.

4.3.2. Lighting Conditions. To test SKOLPP together with
othermethods under varying lighting conditions, we selected
images from Figure 7 (1, 3, and 6) as training samples. Images
2, 4, 5, and 7 in Figure 7 were considered as testing samples.
Thus the number of training samples is 300, while that of the
testing samples is 400. The recognition rates are summarized
in Table 6. It is obvious that SKOLPP is the most effective
technique dealing with illumination variation among the
listed methods. SKOLPP exceeds 6.6% rates compared with
SKLPP.

4.3.3. Occlusions. In this part, we test the recognition rate
under varying occlusions. We took images 1–7 in Figure 7 as
training samples.Then the number of training samples is 700.
Meanwhile, we took the rest of the images (8–13) (Figure 7)
as test samples. Table 7 shows the top recognition rates of
all the involved methods. Apparently, SKOLPP delivers the
best result of all the algorithms while SKLPP is worse than
SKOLPP by nearly 20% recognition rates. SKLPP, SLPP, and
NPE also achieve good result.

4.4. SKOLPP on Palmprint Database. The PolyU Palmprint
database contains 7752 grayscale images corresponding to
386different palms inBMP image format (http://www4.comp
.polyu.edu.hk/∼biometrics/). Around twenty samples from
each of these palms were collected in two sessions, where ten

Figure 8: Samples of the cropped images in the PolyU Palmprint
database.

Table 8: Top recognition rates of different methods on the PolyU
Palmprint database and the corresponding dimensions.

Methods 𝐺3/𝑃7 𝐺4/𝑃6 𝐺5/𝑃5
PCA 76.0 (120) 79.5 (100) 80.1 (100)
2DPCA 76.2 (50) 80.8 (50) 82.6 (50)
LDA 78.4 (60) 82.0 (80) 83.3 (80)
NPE 78.2 (180) 80.5 (200) 80.8 (200)
SLPP 78.2 (180) 79.4 (180) 81.5 (160)
SKLPP 82.2 (120) 84.5 (100) 85.0 (120)
SKOLPP 87.4 (100) 90.3 (80) 90.4 (80)

samples were captured in the first session and the other ten in
the second session.The average interval between the first and
the second collection was two months. In this experiment,
we took 200 different palms and used the first 5 images of
the first session and second session, respectively. Thus, the
total number of images used in this experiment is 2000. All
images are graywith 256 levels and are of size 384× 284 pixels.
To simplify the computation of the experiments, we cropped
each imagemanually and resized each image to 64× 64 pixels.
Figure 8 shows the samples of one person.

The maximal recognition rates of each method and the
corresponding dimension are given in Table 8. A random
subset with 𝐺

𝑚
(= 𝐺3, 𝐺4, 𝐺5) is taken with labels to form

the training set and the remaining part 𝑃
𝑛
(= 𝑃7, 𝑃6, 𝑃5) to

form the testing set. From Table 8, we notice that SKOLPP
consistently outperforms other methods in all the cases.
Particularly in the cases of 𝐺4/𝑃6 and 𝐺5/𝑃5, SKOLPP
boosts over 5% recognition rates compared with SKLPP and
even delivers nearly 10% of improvement recognition rates
compared to PCA. In addition, SKLPP gets the second best
results while the performance of SLPP is slightly better than
NPE. PCA performs the worst among all the methods.

Through the experimental results, we can come to the
conclusion that SKOLPP indeed improves the class dis-
crimination in the empirical feature space compared with
SKLPP, and it is robust to the influence of illumination, facial
expression, and occlusions.

5. Conclusion

In this paper, we proposed an efficient classification method
by maximizing a measure of the class separability in the fea-
ture space named supervised kernel optimizedLPP (SKOLPP).
Based on the Fisher Criterion, our method achieved satisfac-
tory classification performance by preserving the geometrical
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structure of the data in the kernel feature space. SKOLPP
integrates the merit of kernel optimization and SKLPP to
increase the performance of nonlinear feature extraction and
classification, and it is robust to the influence of illumination,
facial expression, and occlusions. Several experiments were
conducted to demonstrate the effectiveness of SKOLPP.

Appendix

Proof. Note the empirical feature mapping Φ
𝑟
: 𝑋 → R𝑟,

and 𝑦
𝑖
= Φ
𝑟
(𝑥
𝑖
); we know the dot product matrix 𝐾 has

exactly 𝑟 positive eigenvalues.
Let 𝑌𝑇 = [𝑦1, 𝑦2, . . . , 𝑦𝑁], 𝑌

𝑇

𝑖
= [𝑦
𝑖

1, 𝑦
𝑖

2, . . . , 𝑦
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The empirical feature space preserves the dot product,
that is,
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Therefore,

tr 𝑆
𝑏
=

1
𝑁

𝐶

∑

𝑖=1
𝑁
𝑖
(𝑚
𝑖
−𝑚0)

𝑇
(𝑚
𝑖
−𝑚0) =

1
𝑁

𝐶

∑

𝑖=1
𝑁
𝑖
𝑚
𝑇

𝑖
𝑚
𝑖
−𝑚
𝑇

0
𝑚0

=

1
𝑁

𝐶

∑

𝑖=1
𝑁
𝑖

1
𝑁
𝑖

1𝑇
𝑁𝑖
𝑌
𝑖

1
𝑁
𝑖

𝑌
𝑇

𝑖
1
𝑁𝑖

−

1
𝑁

1𝑇
𝑁
𝑌

1
𝑁

𝑌
𝑇1
𝑁

=

1
𝑁

⋅

𝐶

∑

𝑖=1

1
𝑁
𝑖

1𝑇
𝑁𝑖
𝑌
𝑖
𝑌
𝑇

𝑖
1
𝑁𝑖

−

1
𝑁

2 1
𝑇

𝑁
𝑌𝑌
𝑇1
𝑁

=

1
𝑁

𝐶

∑

𝑖=1

1
𝑁
𝑖

1𝑇
𝑁𝑖
𝐾
𝑖𝑖
1
𝑁𝑖

−

1
𝑁

2

⋅ 1𝑇
𝑁
𝐾1
𝑁

=

1
𝑁

⋅ [1𝑇
𝑁1

1𝑇
𝑁2

⋅ ⋅ ⋅ 1𝑇
𝑁𝐶

]

[

[

[

[

[

[

[

[

[

[

[

[

[

1
𝑁1

𝐾11 0 ⋅ ⋅ ⋅ 0

0 1
𝑁2

𝐾22 ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅

1
𝑁
𝐶

𝐾
𝐶𝐶

]

]

]

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

1
𝑁1

1
𝑁2

.

.

.

1
𝑁𝐶

]

]

]

]

]

]

]

]

−

1
𝑁

1𝑇
𝑁

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1
𝑁

𝐾11
1
𝑁

𝐾12 ⋅ ⋅ ⋅

1
𝑁

𝐾1𝐶

1
𝑁

𝐾21
1
𝑁

𝐾22 ⋅ ⋅ ⋅

1
𝑁

𝐾2𝐶

.

.

.

.

.

. d
.
.
.

1
𝑁

𝐾
𝐶1

1
𝑁

𝐾
𝐶2 ⋅ ⋅ ⋅

1
𝑁

𝐾
𝐶𝐶

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

1
𝑁

=

1
𝑁

1𝑇
𝑁
𝐵1
𝑁
,

tr 𝑆
𝑤
=

1
𝑁

𝐶

∑

𝑖=1

𝑁𝑖

∑

𝑗=1
(𝑦
𝑗

𝑖
−𝑚
𝑖
)

𝑇

(𝑦
𝑗

𝑖
−𝑚
𝑖
) =

1
𝑁

⋅

𝐶

∑

𝑖=1
(

𝑁𝑖

∑

𝑗=1
(𝑦
𝑗

𝑖
)

𝑇

𝑦
𝑗

𝑖
−𝑁
𝑖
𝑚
𝑇

𝑖
𝑚
𝑖
) =

1
𝑁

(

𝑁

∑

𝑘=1
𝑦
𝑇

𝑘
𝑦
𝑘
−

𝐶

∑

𝑖=1
𝑁
𝑖
𝑚
𝑇

𝑖
𝑚
𝑖
)

=

1
𝑁

𝑁

∑

𝑘=1
𝑦
𝑇

𝑘
𝑦
𝑘
−

1
𝑁

𝐶

∑

𝑖=1

1
𝑁
𝑖

1𝑇
𝑁𝑖
𝐾
𝑖𝑖
1
𝑁𝑖

=

1
𝑁

⋅ 1𝑇
𝑁

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

diag (𝑘11, 𝑘22, . . . , 𝑘𝑁𝑁)

−

[

[

[

[

[

[

[

[

[

[

[

1
𝑁1

𝐾11 0 ⋅ ⋅ ⋅ 0

0 1
𝑁2

𝐾22 ⋅ ⋅ ⋅ 0
.
.
.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅

1
𝑁
𝐶

𝐾
𝐶𝐶

]

]

]

]

]

]

]

]

]

]

]

}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}

}

1
𝑁

=

1
𝑁

1𝑇
𝑁
𝑊1
𝑁
.

(A.3)

Note formula (3); we easily get 𝐵 = 𝑄𝐵0𝑄, 𝑊 = 𝑄𝑊0𝑄;
simultaneously, 1𝑇

𝑁
𝑄 = q𝑇 and 𝑄1

𝑁
= q. Hence,

𝐽 =

(1/𝑁) 1𝑇
𝑁
𝐵1
𝑁

(1/𝑁) 1𝑇
𝑁
𝑊1
𝑁

=

1𝑇
𝑁
𝐵1
𝑁

1𝑇
𝑁
𝑊1
𝑁

=

1𝑇
𝑁
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1𝑇
𝑁
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=

q𝑇𝐵0q
q𝑇𝑊0q

.

(A.4)
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