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The global exponential stabilization for brushless direct currentmotor (BLDCM) system is studied. Four linear and simple feedback
controllers are proposed to realize the global stabilization of BLDCM with exponential convergence rate; the control law used in
each theorem is less conservative and more concise. Finally, an example is given to demonstrate the correctness of the proposed
results.

1. Introduction

A brushless direct current motor (BLDCM) is a synchronous
electric motor which is powered by direct current electricity
[1]. With the development of electronic technology and
control technology, the BLDCM is used widely in motion
control applications. The major advantage of BLDCM is the
elimination of the physical contact between the mechanical
brushes and the commutators [2]. However, it is found
that, with certain values of system parameters, the BLDCM
exhibits chaotic behavior, such as aperiodic, random, sudden,
or intermittent morbid oscillations of the motor angle speed,
which can seriously destroy the stable operation of the motor
and can even induce industrial drive system collapse [3–8].
Therefore, studying the stability of BLDCM is a significant job
and has been receiving considerable attention.

There has been a lot of work done in studying sta-
bility and designing controller of BLDCMs [1, 2, 9–13].
For instance, Dadras et al. studied the stability of chaotic
uncertain BLDCMs by feedback linearization and sliding-
mode control methods [1]. Ge and Chang studied the chaos
synchronization and parameters identification of single time-
scale BLDCMs by adaptive control and backstepping design
method [2]. Ren and Chen proposed a piecewise quadratic
state feedback method to control chaos in the BLDCM [9].
Meng et al. designed a fuzzy controller with time-delay
feedback to control the chaos movement in the BLDCM [10].

Uyaroğlu and Cevher studied sliding-mode control for single
time-scale BLDCM[13]. But the controllers proposed in these
papers are nonlinear or multiple, and the stability is uniform
or asymptotic, which is a weaker property than exponential
stability. So, searching a lower-dimensional linear control for
the global exponential stabilization of chaotic BLDCM is
significant.

Recently, Wei et al. studied the global exponential sta-
bilization for chaotic BLDCMs based on Lyapunov-like
theorem [14], although Wei et al. present the method to
address the problem about global exponential stability of the
BLDCM system firstly. It is innovative to generalize stability
and asymptotic stability to global exponential stability and
generalize nonlinear feedback control law to linear feedback
control law which is easier to implement. There is only one
theorem and the control law is not concise. In this paper,
we further improved the results of Wei et al. and gave four
theorems. The control law used in each theorem is less
conservative andmore concise, and the proofs aremuchmore
simple.

The rest of this paper is organized as follows. In
Section 2, system model is presented. In Section 3, the main
results of global exponential stabilization for BLDCM sys-
tem are derived. In Section 4, one example is presented to
demonstrate the effectivity of the proposedmethod.The final
section is the conclusion.
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Figure 1: The typical chaotic attractor of the BLDCM at 𝜎 = 4, 𝛾 =

55, and 𝛿 = 0.875.

2. Preliminaries

Consider the mathematical model of a BLDC motor as
follows [3–7]:

d𝑖𝑑
d𝑡

= 𝑈𝑑 − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= 𝑈𝑞 − 𝑖𝑞 − 𝑖𝑑𝜔+𝛾𝜔

d𝜔
d𝑡

= 𝜎𝑖𝑞 −𝜎𝜔−𝑇𝐿,

(1)

where 𝑖𝑑, 𝑖𝑞, and𝜔 denote quadrature-axis current, direct-axis
current, and angle speed, respectively. 𝛿, 𝛾, and 𝜎 are system
parameters, which determine the type of the dynamical
regime of the motor. Consider the case that the motor is
running freely under no loading conditions; that is, 𝑈𝑑 =

𝑈𝑞 = 𝑇𝐿 = 0, so system (1) becomes

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − 𝑖𝑞 − 𝑖𝑑𝜔+𝛾𝜔

d𝜔
d𝑡

= 𝜎𝑖𝑞 −𝜎𝜔.

(2)

System (2) has chaotic behaviors, with a chaotic attractor
shown in Figure 1.

From Figure 1 one can see that the BLDCM is not stable
and shows some chaos characteristics, which led to the
unstable operation of the motor which is not acceptable in
real applications.Therefore, studying stabilization for chaotic
BLDCM is significant and this paper will work on it.

Now, some necessary definitions [15–18] that will be used
in this paper are introduced in the following. Consider a
general nonautonomous system of differential equation:

d𝑥
d𝑡

= 𝑓 (𝑥, 𝑡) , (3)

where 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
T is the state vector,𝑓 = [𝑓1, 𝑓2, . . . ,

𝑓𝑛]
T
∈ 𝑅
𝑛×1 are continuous functions with respect to 𝑥, and

𝑓(0) = 0. Furthermore, 𝑉(𝑥) is a radially unbounded and
positive definite Lyapunov function.

Definition 1. The trivial solution of system (3) is globally
exponentially stable if, for any 𝑥0 ∈ 𝑅

𝑛, there exist two
constants𝑀(𝑥0) > 0 and 𝛼 > 0, such that, for any solution of
system (3), it holds

‖𝑥 (𝑡)‖ ≤ 𝑀(𝑥0) 𝑒
−𝛼(𝑡−𝑡0)

, (4)

where 𝑥(𝑡) = 𝑥(𝑡, 𝑡0, 𝑥0).

Lemma 2. If there exists a Lyapunov function 𝑉(𝑡, 𝑥) satisfy-
ing

‖𝑥 (𝑡)‖ ≤ 𝑉 (𝑡, 𝑥) ,

d𝑉 (𝑥)

d𝑡








(3)

≤ − 𝑐𝑉 (𝑥) ,
(5)

where 𝑐 > 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 0, then the trivial solution of system (3)
is globally exponentially stable.

Proof. ∵ 𝑉(𝑥(𝑡)) ≤ 𝑉(𝑥(𝑡0))𝑒
−𝑐(𝑡−𝑡0), then

‖𝑥 (𝑡)‖ ≤ ‖𝑉 (𝑥 (𝑡))‖ ≤






𝑉 (𝑥 (𝑡0)) 𝑒

−𝑐(𝑡−𝑡0)



= 𝑀(𝑥0) 𝑒
−𝑐(𝑡−𝑡0)

.

(6)

So the trivial solution of system (3) is globally exponentially
stable.

3. Main Results

Theorem 3. Add a linear feedback controller 𝑢1 = −𝑘2𝑖𝑞 to
the second equation of system (2), and then the system can be
described as

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − (1+ 𝑘2) 𝑖𝑞 − 𝑖𝑑𝜔+ 𝛾𝜔

d𝜔
d𝑡

= 𝜎𝑖𝑞 −𝜎𝜔,

(7)

or add a linear feedback controller 𝑢2 = −𝑘3𝜔 to the third
equation of system (2), and then the system can be described
as

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − 𝑖𝑞 − 𝑖𝑑𝜔+ 𝛾𝜔

d𝜔
d𝑡

= 𝜎𝑖𝑞 − (𝜎 + 𝑘3) 𝜔.

(8)

If ( −1−𝑘2 (𝛾+𝜎)/2
(𝛾+𝜎)/2 −𝜎 ) is negative definite, which means

𝑘2 >

(𝛾 + 𝜎)
2

4𝜎
− 1, (9)
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then system (7) is globally exponentially stable at the equilib-
rium point (𝑖𝑑, 𝑖𝑞, 𝜔) = (0, 0, 0).

And if ( −1 (𝛾+𝜎)/2
(𝛾+𝜎)/2 −𝜎−𝑘3 ) is negative definite, which means

𝑘3 > (

𝛾 + 𝜎

2
)

2
−𝜎, (10)

then system (8) is globally exponentially stable at the equilib-
rium point (𝑖𝑑, 𝑖𝑞, 𝜔) = (0, 0, 0).

Proof. Construct a radially unbounded and positive definite
Lyapunov function:

𝑉1 =

1
2
[(𝑖𝑑)

2
+ (𝑖𝑞)

2
+𝜔

2
] . (11)

(1) Because 𝑘2 > (𝛾 + 𝜎)
2
/4𝜎 − 1, ( −1−𝑘2 (𝛾+𝜎)/2

(𝛾+𝜎)/2 −𝜎 ) is
negative definite. So

𝜙1 = (

−𝛿 0 0

0 −1 − 𝑘2
𝛾 + 𝜎

2
0

𝛾 + 𝜎

2
−𝜎

) (12)

is negative definite.
Compute the derivative of 𝑉1 along system (7):

d𝑉1
d𝑡








(7)

= 𝑖𝑑
̇𝑖𝑑 + 𝑖𝑞

̇𝑖𝑞 +𝜔�̇�

= − 𝛿𝑖
2
𝑑
+ 𝑖𝑑𝑖𝑞𝜔− (1+ 𝑘2) 𝑖

2
𝑞
− 𝑖𝑑𝑖𝑞𝜔+ 𝛾𝜔𝑖𝑞

+𝜎𝑖𝑞𝜔−𝜎𝜔
2

= − 𝛿𝑖
2
𝑑
− (1+ 𝑘2) 𝑖

2
𝑞
−𝜎𝜔

2
+ (𝛾 + 𝜎) 𝜔𝑖𝑞

= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

(

−𝛿 0 0

0 −1 − 𝑘2
𝛾 + 𝜎

2
0

𝛾 + 𝜎

2
−𝜎

)(

𝑖𝑑

𝑖𝑞

𝜔

)

= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

𝜙1 (

𝑖𝑑

𝑖𝑞

𝜔

)

≤ 𝜆𝑀 (𝜙1)(

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

(

𝑖𝑑

𝑖𝑞

𝜔

) ≤ 2𝜆𝑀 (𝜙1) 𝑉1,

(13)

where 𝜆𝑀(𝜙1) is the largest eigenvalue of 𝜙1 and 𝜆𝑀(𝜙1) < 0.
Consider

𝑉1 (𝑡) ≤ 𝑉1 (𝑡0) 𝑒
2𝜆𝑀(𝜙1)(𝑡−𝑡0)

𝑖
2
𝑑
(𝑡) + 𝑖

2
𝑞
(𝑡) + 𝜔

2
(𝑡) ≤ 2𝑉1 (𝑡0) 𝑒

2𝜆𝑀(𝜙1)(𝑡−𝑡0)
.

(14)

So the zero solution of system (7) is globally exponentially
stable.

(2) Because 𝑘3 > ((𝛾 + 𝜎)/2)2 − 𝜎, ( −1 (𝛾+𝜎)/2
(𝛾+𝜎)/2 −𝜎−𝑘3 ) is

negative definite. So

𝜙2 = (

−𝛿 0 0

0 −1
𝛾 + 𝜎

2
0

𝛾 + 𝜎

2
−𝜎 − 𝑘3

) (15)

is negative definite.
Similarly, compute the derivative of 𝑉1 along system (8):
d𝑉1
d𝑡








(8)

= 𝑖𝑑
̇𝑖𝑑 + 𝑖𝑞

̇𝑖𝑞 +𝜔�̇�

= − 𝛿𝑖
2
𝑑
+ 𝑖𝑑𝑖𝑞𝜔− 𝑖

2
𝑞
− 𝑖𝑑𝑖𝑞𝜔+ 𝛾𝜔𝑖𝑞 +𝜎𝑖𝑞𝜔

− (𝜎+ 𝑘3) 𝜔
2

= − 𝛿𝑖
2
𝑑
− 𝑖

2
𝑞
− (𝜎+ 𝑘3) 𝜔

2
+ (𝛾 + 𝜎) 𝜔𝑖𝑞

= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

(

−𝛿 0 0

0 −1
𝛾 + 𝜎

2
0

𝛾 + 𝜎

2
−𝜎 − 𝑘3

)(

𝑖𝑑

𝑖𝑞

𝜔

)

= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

𝜙2 (

𝑖𝑑

𝑖𝑞

𝜔

)

≤ 𝜆𝑀 (𝜙2)(

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

(

𝑖𝑑

𝑖𝑞

𝜔

) ≤ 2𝜆𝑀 (𝜙2) 𝑉1,

(16)

where 𝜆𝑀(𝜙2) is the largest eigenvector of 𝜙2 and 𝜆𝑀(𝜙2) < 0.
Consider

𝑉1 (𝑡) ≤ 𝑉1 (𝑡0) 𝑒
2𝜆𝑀(𝜙2)(𝑡−𝑡0)

𝑖
2
𝑑
(𝑡) + 𝑖

2
𝑞
(𝑡) + 𝜔

2
(𝑡) ≤ 2𝑉1 (𝑡0) 𝑒

2𝜆𝑀(𝜙2)(𝑡−𝑡0)
.

(17)

So the zero solution of system (8) is globally exponentially
stable.

Therefore, systems (7) and (8) are globally exponentially
stable at the equilibrium point 𝑠0 = (0, 0, 0).

Theorem 4. Add a linear negative feedback controller 𝑢3 =

−𝛾𝜔 to the second equation of system (2), and then the system
can be described as

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − 𝑖𝑞 − 𝑖𝑑𝜔+ (𝛾 − 𝛾) 𝜔

d𝜔
d𝑡

= 𝜎𝑖𝑞 −𝜎𝜔;

(18)
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if 𝛾 ≥ 𝛾, system (18) is globally exponentially stable at the
equilibrium point (𝑖𝑑, 𝑖𝑞, 𝜔) = (0, 0, 0).

Proof. (1) If 𝛾 > 𝛾, construct a radially unbounded and
positive definite Lyapunov function:

𝑉2 =

1
2
[(𝑖𝑑)

2
+ (𝑖𝑞)

2
+

𝛾 − 𝛾

𝜎

𝜔
2
] ,

min [1,
𝛾 − 𝛾

𝜎

] (𝑖
2
𝑑
+ 𝑖

2
𝑞
+𝜔

2
) ≤ 2𝑉2

≤ max [1,
𝛾 − 𝛾

𝜎

] (𝑖
2
𝑑
+ 𝑖

2
𝑞
+𝜔

2
) .

(19)

Compute the derivative of 𝑉2 along system (18):

d𝑉2
d𝑡








(18)

= 𝑖𝑑
̇𝑖𝑑 + 𝑖𝑞

̇𝑖𝑞 +

𝛾 − 𝛾

𝜎

𝜔�̇� = − 𝛿𝑖
2
𝑑
+ 𝑖𝑑𝑖𝑞𝜔− 𝑖

2
𝑞

− 𝑖𝑑𝑖𝑞𝜔+ (𝛾 − 𝛾) 𝜔𝑖𝑞 +

𝛾 − 𝛾

𝜎

𝜎𝑖𝑞𝜔−

𝛾 − 𝛾

𝜎

𝜎𝜔
2

= − 𝛿𝑖
2
𝑑
− 𝑖

2
𝑞
− (𝛾 − 𝛾) 𝜔

2
= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

⋅(

−𝛿 0 0
0 −1 0
0 0 𝛾 − 𝛾

)(

𝑖𝑑

𝑖𝑞

𝜔

)

≤ −min [𝜎, 1, 𝛾 − 𝛾] (𝑖
2
𝑑
+ 𝑖

2
𝑞
+𝜔

2
)

≤ −

min [𝜎, 1, 𝛾 − 𝛾]

max [1, (𝛾 − 𝛾) /𝜎]

2𝑉2

𝑉2 ≤ 𝑉2 (𝑡0) 𝑒
−(2min[𝜎,1,𝛾−𝛾]/max[1,(𝛾−𝛾)/𝜎])(𝑡−𝑡0)

𝑖
2
𝑑
(𝑡) + 𝑖

2
𝑞
(𝑡) + 𝜔

2
(𝑡) ≤

2𝑉2 (𝑡0)

min [1, (𝛾 − 𝛾) /𝜎]

⋅ 𝑒
−(2min[𝜎,1,𝛾−𝛾]/max[1,(𝛾−𝛾)/𝜎])(𝑡−𝑡0)

.

(20)

So the zero solution of system (18) is globally exponen-
tially stable.

(2) If 𝛾 = 𝛾, system (18) changes as

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − 𝑖𝑞 − 𝑖𝑑𝜔

d𝜔
d𝑡

= 𝜎𝑖𝑞 −𝜎𝜔.

(21)

For the first two equations, construct a radially un-
bounded and positive definite Lyapunov function:

𝑉3 =

1
2
[(𝑖𝑑)

2
+ (𝑖𝑞)

2
] . (22)

Compute the derivative of 𝑉3 along system (21):

d𝑉3
d𝑡








(21)

= 𝑖𝑑
̇𝑖𝑑 + 𝑖𝑞

̇𝑖𝑞 = − 𝛿𝑖
2
𝑑
+ 𝑖𝑑𝑖𝑞𝜔− 𝑖

2
𝑞
− 𝑖𝑑𝑖𝑞𝜔

= −𝛿𝑖
2
𝑑
− 𝑖

2
𝑞
≤ −min [𝛿, 1] (𝑖2

𝑑
+ 𝑖

2
𝑞
)

= −min [𝛿, 1] 2𝑉3

𝑉3 ≤ 𝑉3 (𝑡0) 𝑒
−min[𝛿,1](𝑡−𝑡0)

𝑖
2
𝑑
(𝑡) + 𝑖

2
𝑞
(𝑡) ≤ 2𝑉3 (𝑡0) 𝑒

−min[𝛿,1](𝑡−𝑡0)
.

(23)

So the zero solution of system (21) is globally exponen-
tially stable on partial variables 𝑖𝑞, 𝑖𝑑.

For the third equation of system (21)

𝜔 (𝑡) = 𝜔 (𝑡0) 𝑒
−𝜎(𝑡−𝑡0)

+∫

𝑡

𝑡0

𝑒
−𝜎(𝑡−𝜏)

𝜎𝑖𝑞 (𝜏) 𝑑𝜏

≤




𝜔 (𝑡0)





𝑒
−𝜎(𝑡−𝑡0)

+∫

𝑡

𝑡0

𝑒
−𝜎(𝑡−𝜏)

𝜎






𝑖𝑞 (𝜏)






𝑑𝜏

≤




𝜔 (𝑡0)





𝑒
−𝜎(𝑡−𝑡0)

+𝜎𝑒
−𝜎𝑡

∫

𝑡

𝑡0

𝑒
𝜎𝜏
√(𝑖𝑞 (𝜏))

2
+ (𝑖𝑑 (𝜏))

2
𝑑𝜏

≤




𝜔 (𝑡0)





𝑒
−𝜎(𝑡−𝑡0)

+𝜎𝑒
−𝜎𝑡

∫

𝑡

𝑡0

𝑒
𝜎𝜏
√(𝑖𝑞 (𝑡0))

2
+ (𝑖𝑑 (𝑡0))

2
𝑒
−min(𝛿,1)(𝜏−𝑡0)

𝑑𝜏

≤




𝜔 (𝑡0)





𝑒
−𝜎(𝑡−𝑡0)

+𝜎𝑒
−𝜎𝑡

∫

𝑡

𝑡0

𝑒
𝜎𝜏
𝐻𝑒
−𝛼(𝜏−𝑡0)

𝑑𝜏

≤




𝜔 (𝑡0)





𝑒
−𝜎(𝑡−𝑡0)

+𝜎𝐻𝑒
−𝜎𝑡

𝑒
𝛼𝑡0

∫

𝑡

𝑡0

𝑒
(𝜎−𝛼)𝜏

𝑑𝜏

≤




𝜔 (𝑡0)





𝑒
−𝜎(𝑡−𝑡0)

+𝜎𝐻𝑒
−𝜎𝑡

𝑒
𝛼𝑡0 𝑒
(𝜎−𝛼)𝑡

− 𝑒
(𝜎−𝛼)𝑡0

𝜎 − 𝛼

≤




𝜔 (𝑡0)





𝑒
−𝜎(𝑡−𝑡0)

+

𝜎𝐻

𝜎 − 𝛼

[𝑒
−𝛼(𝑡−𝑡0)

− 𝑒
−𝜎(𝑡−𝑡0)

]

≤ (




𝜔 (𝑡0)





−

𝜎𝐻

𝜎 − 𝛼

) 𝑒
−𝜎(𝑡−𝑡0)

+

𝜎𝐻

𝜎 − 𝛼

𝑒
−𝛼(𝑡−𝑡0)

,

(24)

where we can suppose that 𝐻 = √(𝑖𝑞(𝑡0))
2
+ (𝑖𝑑(𝑡0))

2, 𝛼 =

min(𝛿, 1).
So the zero solution of system (21) is globally exponen-

tially stable on partial variables 𝜔.
Therefore system (18) is globally exponentially stable on

all variables (𝑖𝑑, 𝑖𝑞, 𝜔) at the equilibrium point (𝑖𝑑, 𝑖𝑞, 𝜔) =

(0, 0, 0).
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Theorem 5. Add a linear negative feedback controller 𝑢4 =

−�̃�𝑖𝑞 to the third equation of system (2), and then the system
can be described as

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − 𝑖𝑞 − 𝑖𝑑𝜔+𝛾𝜔

d𝜔
d𝑡

= (𝜎 − �̃�) 𝑖𝑞 −𝜎𝜔;

(25)

if �̃� ≥ 𝜎, system (25) is globally exponentially stable at the
equilibrium point (𝑖𝑑, 𝑖𝑞, 𝜔) = (0, 0, 0).

Proof. (1) If �̃� > 𝜎, construct a radially unbounded and
positive definite Lyapunov function:

𝑉4 =

1
2
[(𝑖𝑑)

2
+ (𝑖𝑞)

2
+

𝛾

�̃� − 𝜎

𝜔
2
] ,

min [1,
𝛾

�̃� − 𝜎

] (𝑖
2
𝑑
+ 𝑖

2
𝑞
+𝜔

2
) ≤ 2𝑉4

≤ max [1,
𝛾

�̃� − 𝜎

] (𝑖
2
𝑑
+ 𝑖

2
𝑞
+𝜔

2
) .

(26)

Compute the derivative of 𝑉4 along system (25):

d𝑉4
d𝑡








(25)

= 𝑖𝑑
̇𝑖𝑑 + 𝑖𝑞

̇𝑖𝑞 +

𝛾

�̃� − 𝜎

𝜔�̇� = − 𝛿𝑖
2
𝑑
+ 𝑖𝑑𝑖𝑞𝜔− 𝑖

2
𝑞

− 𝑖𝑑𝑖𝑞𝜔+ 𝛾𝜔𝑖𝑞 +

𝛾

�̃� − 𝜎

(𝜎 − �̃�) 𝑖𝑞𝜔−

𝛾

�̃� − 𝜎

𝜎𝜔
2

= − 𝛿𝑖
2
𝑑
− 𝑖

2
𝑞
−

𝛾𝜎

�̃� − 𝜎

𝜔
2

≤ −min [𝛿, 1, 𝛾𝜎/ (�̃� − 𝜎)] (𝑖
2
𝑑
+ 𝑖

2
𝑞
+𝜔

2
)

≤ −

min [𝜎, 1, 𝛾𝜎/ (�̃� − 𝜎)]

max [1, 𝛾/ (�̃� − 𝜎)]

2𝑉4

𝑉4 (𝑡) ≤ 𝑉4 (𝑡0) 𝑒
−(2min[𝜎,𝛾𝜎/(𝜎−𝜎)]/max[1,𝛾/(𝜎−𝜎)])(𝑡−𝑡0)

𝑖
2
𝑑
(𝑡) + 𝑖

2
𝑞
(𝑡) + 𝜔

2
(𝑡) ≤

2𝑉4 (𝑡0)

min [1, 𝛾/ (�̃� − 𝜎)]

⋅ 𝑒
−(2min[𝜎,𝛾𝜎/(𝜎−𝜎)]/max[1,𝛾/(𝜎−𝜎)])(𝑡−𝑡0)

.

(27)

When �̃� > 𝜎, the zero solution of system (25) is globally
exponentially stable.

(2) If �̃� = 𝜎, the system is

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − 𝑖𝑞 − 𝑖𝑑𝜔+𝛾𝜔

d𝜔
d𝑡

= − 𝜎𝜔.

(28)

Because ( −1 𝛾/2
𝛾/2 0 ) is negative definite,

(

−𝛿 0 0

0 −1
𝛾

2
0

𝛾

2
0

) (29)

is negative definite.
For the first two equations, compute the derivative of 𝑉3

along system (28):

d𝑉3
d𝑡








(28)

= 𝑖𝑑
̇𝑖𝑑 + 𝑖𝑞

̇𝑖𝑞

= − 𝛿𝑖
2
𝑑
+ 𝑖𝑑𝑖𝑞𝜔− 𝑖

2
𝑞
− 𝑖𝑑𝑖𝑞𝜔+ 𝛾𝜔𝑖𝑞

= − 𝛿𝑖
2
𝑑
− 𝑖

2
𝑞
+ 𝛾𝜔𝑖𝑞

= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

(

−𝛿 0 0

0 −1
𝛾

2
0

𝛾

2
0

)(

𝑖𝑑

𝑖𝑞

𝜔

)

= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

𝜙3 (

𝑖𝑑

𝑖𝑞

𝜔

)

≤ 𝜆𝑀 (𝜙3)(

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

(

𝑖𝑑

𝑖𝑞

𝜔

) ≤ 2𝜆𝑀 (𝜙3) 𝑉3,

(30)

where 𝜆𝑀(𝜙3) is the largest eigenvector of 𝜙3 and 𝜆𝑀(𝜙3) < 0.
Consider

𝑉3 ≤ 𝑉3 (𝑡0) 𝑒
𝜆𝑀(𝜙3)(𝑡−𝑡0)

𝑖
2
𝑑
(𝑡) + 𝑖

2
𝑞
(𝑡) ≤ 2𝑉3 (𝑡0) 𝑒

𝜆𝑀(𝜙3)(𝑡−𝑡0)
.

(31)

When �̃� = 𝜎, the zero solution of system (25) is globally
exponentially stable on partial variables 𝑖𝑑, 𝑖𝑞.

For the third equation of system (28)

𝜔 (𝑡) = 𝜔 (𝑡0) 𝑒
−𝜎(𝑡−𝑡0)

. (32)

So the zero solution of system (28) is globally exponen-
tially stable on partial variable 𝜔.

Therefore, system (25) is globally exponentially stable on
all variables 𝑖𝑑, 𝑖𝑞, and 𝜔 at the equilibrium point (𝑖𝑑, 𝑖𝑞, 𝜔) =
(0, 0, 0).
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Theorem 6. Add linear negative feedback controllers 𝑢3 =

−𝛾𝜔, 𝑢4 = −�̃�𝑖𝑞 to the second and third equations of system
(2) simultaneously; then the system can be described as

d𝑖𝑑
d𝑡

= − 𝛿𝑖𝑑 + 𝑖𝑞𝜔

d𝑖𝑞
d𝑡

= − 𝑖𝑞 − 𝑖𝑑𝜔+ (𝛾 − 𝛾) 𝜔

d𝜔
d𝑡

= (𝜎 − �̃�) 𝑖𝑞 −𝜎𝜔.

(33)

If 𝛾 ≤ 𝛾, �̃� ≤ 𝜎 and 0 < (𝛾 − 𝛾) ≪ 1, 0 < (𝜎 − �̃�) ≪ 1,
such that following matrix ( −1 (𝛾−𝛾+𝜎−𝜎)/2

(𝛾−𝛾+𝜎−𝜎)/2 −𝜎
) is negative

definite. Then system (33) is globally exponentially stable at the
equilibrium point (𝑖𝑑, 𝑖𝑞, 𝜔) = (0, 0, 0).

Proof. Since (
−1 (𝛾−𝛾+𝜎−𝜎)/2

(𝛾−𝛾+𝜎−𝜎)/2 −𝜎
) is negative definite,

(

−𝜎 0 0
0 −1 (𝛾−𝛾+𝜎−𝜎)/2
0 (𝛾−𝛾+𝜎−𝜎)/2 −𝜎

) is negative definite.
Compute the derivative of 𝑉1 along system (33):
d𝑉1
d𝑡








(33)

= 𝑖𝑑
̇𝑖𝑑 + 𝑖𝑞

̇𝑖𝑞 +𝜔�̇� = − 𝛿𝑖
2
𝑑
+ 𝑖𝑑𝑖𝑞𝜔− 𝑖

2
𝑞

− 𝑖𝑑𝑖𝑞𝜔+ (𝛾 − 𝛾) 𝜔𝑖𝑞 + (𝜎 − �̃�) 𝑖𝑞𝜔−𝜎𝜔
2
= − 𝛿𝑖

2
𝑑

− 𝑖
2
𝑞
−𝜎𝜔

2
+ (𝛾 − 𝛾 +𝜎− �̃�) 𝜔 = (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

⋅(

−𝛿 0 0

0 −1
𝛾 − 𝛾 + 𝜎 − �̃�

2
0

𝛾 − 𝛾 + 𝜎 − �̃�

2
−𝜎

)(

𝑖𝑑

𝑖𝑞

𝜔

)

= (

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

𝜙4 (

𝑖𝑑

𝑖𝑞

𝜔

) ≤ 𝜆𝑀 (𝜙4)(

𝑖𝑑

𝑖𝑞

𝜔

)

𝑇

(

𝑖𝑑

𝑖𝑞

𝜔

)

≤ 2𝜆𝑀 (𝜙4) 𝑉,

(34)

where 𝜆𝑀(𝜙4) is the largest eigenvalue of 𝜙4 and 𝜆𝑀(𝜙4) < 0.
Consider

𝑉1 (𝑡) ≤ 𝑉1 (𝑡0) 𝑒
2𝜆𝑀(𝜙4)(𝑡−𝑡0)

𝑖
2
𝑑
(𝑡) + 𝑖

2
𝑞
(𝑡) + 𝜔

2
(𝑡) ≤ 2𝑉1 (𝑡0) 𝑒

2𝜆𝑀(𝜙1)(𝑡−𝑡0)
.

(35)

So when 𝛾 ≥ 𝛾, �̃� ≥ 𝜎 and 0 < (𝛾−𝛾) ≪ 1, 0 < (𝛾−𝛾) ≪ 1
system (33) is globally exponentially stable at the equilibrium
point (𝑖𝑑, 𝑖𝑞, 𝜔) = (0, 0, 0).

4. Illustrative Example

The parameters of the motor are selected as 𝜎 = 4, 𝛾 = 55,
and 𝛿 = 0.875 and the initial values of the system are chosen
as (𝜔(0), 𝑖𝑞(0), 𝑖𝑑(0)) = (0.1, 0.1, 0.1).
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Figure 2: The state trajectory of 𝑖𝑑, 𝑖𝑞, and 𝜔 with the controller 𝑢1.
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Figure 3: The state trajectory of 𝑖𝑑, 𝑖𝑞, and 𝜔 with the controller 𝑢2.

According to Theorem 3, we may choose 𝑘2 = 216.6 >

(𝛾 + 𝜎)
2
/4𝜎 − 1 = 216.5625, 𝑘3 = 867 > ((𝛾 + 𝜎)/4𝜎)2 − 𝜎 =

866.25.Then, we can see that it takes short time for the system
to be stabilized at origin point and the state trajectories are
illustrated in Figures 2 and 3.

According to Theorem 4, we may choose 𝛾 = 100 > 𝛾 =

55. Then, we can see that it takes short time for the system
to be stabilized at origin point and the state trajectories are
illustrated in Figure 4.

According to Theorem 5, we may choose �̃� = 7 > 𝜎 =

4. Then, we can see that it takes short time for the system
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Figure 4: The state trajectory of 𝑖𝑑, 𝑖𝑞, and 𝜔 with the controller 𝑢3.
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Figure 5: The state trajectory of 𝑖𝑑, 𝑖𝑞, and 𝜔 with the controller 𝑢4.

to be stabilized at origin point and the state trajectories are
illustrated in Figure 5.

According to Theorem 6, we may choose 𝛾 = 54.6 < 𝛾 =

55, �̃� = 3.2 < 𝜎 = 4, so 0 < 𝛾 − 𝛾 = 0.4 < 1, 0 < 𝜎 − �̃� =

0.8 < 1.Then,we can see that it takes short time for the system
to be stabilized at origin point and the state trajectories are
illustrated in Figure 6.

5. Conclusion

In this paper, we investigated the global exponential stabiliza-
tion for BLDCM system and designed four linear and simple
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Figure 6: The state trajectory of 𝑖𝑑, 𝑖𝑞, and 𝜔 with the controllers 𝑢3
and 𝑢4.

feedback controllers. These controllers realized the global
stabilization of BLDCM with exponential convergence rate,
and the control law used in each theorem is less conservative
andmore concise. Finally an example is given to demonstrate
the correctness of the proposed results.
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