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An adaptive failure compensation controller for a class of nonlinear systems preceded by hysteretic actuators is proposed in this
paper. Three types of high-gain functions are constructed to counteract the effects of the hysteresis, bounded modeling errors, and
bounded disturbances. It is shown that the proposed controller not only ensures bounded signals and asymptotic tracking but also
avoids possible chattering, despite the presence of unknown hysteretic actuator failures. Simulation results verify the desired failure
compensation performance.

1. Introduction

The hysteresis phenomenon occurs in all the smart material-
based actuators and sensors. With such nonlinearity in
control systems, it may lead to undesirable inaccuracies
or oscillations. On the other hand, actuator failures seem
inevitable in practical systems.Thus, failure compensation of
hysteretic actuators is an important and challenging problem.
Adaptive failure compensation has received great attention
in recent years [1–12]. However, available results based on
adaptive approaches to address hysteretic actuator failures are
very limited [13–16].

To address such a challenging problem, it is important to
find an appropriate model for the hysteresis. As mentioned
in [17], several models were proposed such as Duhen model,
Preisach model, Prandtl-Ishlinskii hysteresis operator, Bouc-
Wen differential model [17, 18]. The Bouc-Wen differential
model is one of the most widely accepted models of the
hysteresis. Actually, it can be shown that the hysteresis model
presented in [13–16] is a special case of the Bouc-Wen
hysteresis model.

In [13], an adaptive failure compensation scheme for a
class of nonlinear systems was studied, where control gains

are constants. To avoid possible chattering, the sign (⋅)
functionswere involved in the backstepping controller.When
the control gains are nonlinear functions of system states, the
effects of the actuator hysteresis can no longer be assumed
bounded as in [13].How to handle such effects is a challenging
issue especially when there are possible actuator failures.
In [14, 15], the idea is to separate such effects into two
parts by applying Young’s inequality. It is noted that the
control methods in [14, 15] are very complicated and the
tracking error cannot asymptotically converge to zero but to
the so-called predefined bound. Furthermore, the existence
of the estimators increases the order of the closed-loop
system.

In this paper, we develop a backstepping [19, 20] adaptive
compensation controller for a class of nonlinear systems pre-
ceded by hysteretic actuators described by Bouc-Wen model.
Three types of high-gain functions are incorporated into the
controller to counteract the effects of the hysteresis, bounded
modeling errors, and bounded disturbances, respectively. In
our design, the sign (⋅) function and a priori knowledge on the
bounds of control gains are not required. Besides showing the
stability of the closed-loop system, the tracking error is also
ensured to achieve zero asymptotically.
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The rest of the paper is outlined as follows. In Section 2,
the control problem is formulated. In Section 3, a robust
adaptive compensation scheme with high-gain functions is
proposed. In Section 4, the stability analysis is presented.
Simulation results are presented to show the proposed
scheme is effective in Section 5. Finally, this paper is con-
cluded in Section 6.

2. Problem Formulation

Consider a class of nonlinear systems in the following form
[15]:
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(1)

where 𝜌 is the relative degree of the system; 𝑢
𝑗
∈ 𝑅, 𝑗 =

1, 2, . . . , 𝑚 are the inputs whose actuators may fail during
system operation; 𝑥

𝑖
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1
, 𝑥

2
, . . . , 𝑥
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1
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are unknown constant parameters; 𝑏
𝑗
∈ 𝑅 (𝑗 = 1, 2, . . . , 𝑚)

are unknown constant parameters with known signs; 𝜓
0
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(𝑛−𝜌)×𝜌 are known smooth
functions; |𝑑(𝑡)| ≤ 𝐷 denotes bounded disturbance; and
𝜂(𝑥, 𝑡) is an unknownnonlinear function representing system
modeling errors. There exists a known function 𝛿(𝑥, 𝑡) such
that |𝜂(𝑥, 𝑡)| ≤ 𝛿(𝑥, 𝑡).

The hysteresis nonlinearity can be described by Bouc-
Wen model [17, 18]. Consider
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(2)

where 0 < 𝜇

𝑖
< 1 (𝑖 = 1, . . . , 𝑚) are weighting parameters,

𝑘

𝑖
(𝑖 = 1, . . . , 𝑚) are stiffness coefficients, 𝜇

𝑖1
= 𝜇

𝑖
𝑘

𝑖
, 𝜇
𝑖2

=

(1 − 𝜇

𝑖
) 𝑘

𝑖
(𝑖 = 1, . . . , 𝑚) are constants; 𝑢

𝑐𝑖
is the input of the

𝑖th (𝑖 = 1, . . . , 𝑚) actuator, 𝜒
𝑖1
, 𝜒
𝑖2
(𝑖 = 1, . . . , 𝑚) describe

the shape and amplitude of the 𝑖th hysteresis, respectively,
𝐿

𝑖
governs the smoothness of the transition from initial

slope to the slope of the asymptote, and 𝜒

𝑖1
≥ |𝜒

𝑖2
|, 𝐿
𝑖
≥

1 (𝑖 = 1, 2 . . . , 𝑚). By Lemma 1 in [17], 𝜁
𝑖
(𝑖 = 1, 2 . . . , 𝑚) are

bounded.
The actuator failure can be modeled as [8, 9, 13–15]
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(3)

where 𝜌
𝑖
∈ [0, 1], 𝑢

𝑘𝑖
, and 𝑡

𝑖𝐹
are all unknown constants and

𝑑

𝑖
= 𝜌

𝑖
𝜇

𝑖2
𝜁

𝑖
(𝑖 = 1, 2 . . . , 𝑚) are bounded. For different values

of 𝜌
𝑖
, three types of failures are included:

(1) 𝜌
𝑖
= 1, where the actuator works normally; namely,

𝑢

𝑖
= 𝑢
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, which is regarded as a failure-free actuator;

(2) 0 < 𝜌

𝑖
< 1; it implies 𝑢

𝑖
= 𝜌

𝑖
𝑢
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called partial loss of effectiveness (PLOE);

(3) 𝜌
𝑖
= 0; it indicates 𝑢

𝑖
= 𝑢

𝑘𝑖
; the 𝑖th actuator is called

total loss of effectiveness (TLOE).

Remark 1. The values of 𝜌
𝑖
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𝑖
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some valueswith 0 ≤ 𝜌

𝑖
< 1.Thismeans that possible changes

fromnormal to any one of the failure cases are unidirectional.
The uniqueness of 𝑡
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indicates that a failure occurs only once

on the 𝑖th actuator.
Substituting (2), (3) into (1), we have
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(4)

To derive a suitable adaptive control scheme, the follow-
ing assumptions are made.

Assumption 2. WhenTOLE type of actuator failures up to𝑚−

1, the remaining actuators can still achieve a desired control
objective.

Remark 3. Note that all actuators are allowed to have partial
loss of effectiveness simultaneously.

Assumption 4. The zero dynamics of ̇

𝜉 = 𝜓(𝑥, 𝜉) + 𝑎

𝑇
𝜙(𝑥, 𝜉)

is input to state stable with respect to 𝑥 as its input.
Let 𝑇
0
= 0. Suppose that there are 𝑝

𝑘
(0 ≤ 𝑝

𝑘
≤ 𝑚)

actuators failing at time instants 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑞, and

𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ 𝑡

𝑞
< ∞. In other words, all actuators work

normally in time interval [𝑡
0
, 𝑡

1
) and no new failure will occur

after time 𝑡

𝑞
. Let the set 𝑄

𝑗𝑇
denote the actuators of total

failure in interval [𝑡
𝑗
, 𝑡

𝑗+1
) and use the set 𝑄

𝑗𝑇
to represent

other normal actuators. It can be concluded that𝑄
𝑗𝑇
∪𝑄

𝑗𝑇
=

{1, 2, . . . , 𝑚}.

Our objective is to design a control law 𝑢

𝑐𝑖
(𝑡) for the

nonlinear systems with 𝑝 unknown actuator failures, when
𝑝 changes at time instants 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑞, such that the

output 𝑦(𝑡) asymptotically tracks a given reference signal
𝑦

𝑟
(𝑡) with up to 𝜌th order derivatives bounded and that all

closed-loop signals are bounded.
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3. Adaptive Compensation Control Schemes

The backstepping technique [19, 20] is applied to derive
an adaptive actuator failure compensation controller. The
following change of coordinates is required:

𝑧

1
= 𝑥

1
− 𝑦

𝑟

𝑧

𝑖
= 𝑥

𝑖
− 𝑦

(𝑖−1)

𝑟
− 𝛼

𝑖−1
(𝑖 = 2, . . . , 𝜌) ,

(5)

where 𝑧
1
is the tracking error and 𝛼

𝜌
is the 𝜌th stabilizing

function. To illustrate the backstepping procedures, only the
last step of the design is elaborated in details.

Step i.Consider 𝑖 = 1, . . . , 𝜌−1; the 𝑖th stabilizing function 𝛼
𝑖
,

the 𝑖th regressor 𝜔
𝑖
, and the 𝑖th tuning function 𝜏

𝑖
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𝛼

1
= − 𝑐

1
𝑧

1
− 𝜑

1
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1
)

𝑇
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+
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+
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(𝑘)

𝑟
)

+
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+
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(
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𝑘−1
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𝑖
𝑧

𝑘
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𝜔

𝑖
= 𝜑

𝑖
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∑

𝑘=1
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𝜕𝑥

𝑘

𝜑

𝑘
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𝜏

𝑖
= 𝜏
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+ 𝜔

𝑖
𝑧

𝑖
(𝑖 = 1, . . . , 𝜌 − 1) ,

(6)

where 𝑐
𝑖
(𝑖 = 1, . . . , 𝜌 − 1) are positive design parameters and

𝑎 ∈ 𝑅

𝑞 is estimator of the unknown vector 𝑎.

Step 𝜌. From (6), the derivative of 𝑧
𝜌
is

𝑧̇

𝜌
= 𝜑

0 (
𝑥, 𝜉) + 𝜑

𝜌
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𝜌
)

𝑇
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+

𝑚
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𝑏
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𝑢

𝑐𝑖
+ 𝑢

𝑘𝑖
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𝑖
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𝜕𝑦
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𝑟

𝑦
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𝑟
) − 𝑦

(𝜌)

𝑟
.

(7)

If the effects of hysteresis are treated as disturbances, it
should be noted that the disturbances in (7) can be classi-
fied into three types: (1) 𝑑(𝑡) is bounded by an unknown
constant 𝐷; (2) 𝜂(𝑥, 𝑡) is bounded by a known function; (3)
∑

𝑚

𝑗=1
𝑏

𝑗
𝛽

𝑗
(𝑥)𝑑
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but 𝛽
𝑗
(𝑥) (𝑗 = 1, . . . , 𝑚) are known and 𝑏

𝑗
𝑑

𝑗
(𝑗 = 1, 2 . . . , 𝑚)

are bounded. According to their different characteristics,
three high-gain functions will be proposed to counteract

the effects of the disturbances. At the final step, the stabilizing
function 𝛼

𝜌
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𝛼

𝜌
= −𝜑

0
− 𝜔

𝑇

𝜌
𝑎 − 𝑧
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+
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+
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𝑡→∞
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0
𝑒
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positive design parameter.
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1
, . . . , 𝛽
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𝑇

.
(10)

The control law and parameter update laws are obtained
as follows
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𝑘

𝑇

2
]

𝑇

, ̂𝑘
2
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, . . . ,

̂

𝑘

𝑇
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𝑇

, ̂𝑘 and 𝑎 are
the estimates of 𝑘 and 𝑎, respectively, and Γ, Γ

𝑘
are positive

definite matrices chosen by users. If 𝑘 is a desired constant
vector which can be chosen to satisfy
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. (15)

Substituting (11)–(13) and (8) into (7), we have

𝑧̇

𝜌
= −𝑧

𝜌−1
− 𝑐

𝜌
𝑧

𝜌
+ 𝜔

𝑇

𝜌
𝑎

+ ∑

𝑖∈𝑄𝑗𝑇

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖

󵄨

󵄨

󵄨

󵄨

𝜌

𝑖
𝜇

𝑖1
̃

𝑘

𝑇
𝜔 − (𝑒

𝑓(𝑡)
𝑧

𝜌
− 𝑑 (𝑡))

− (𝑒

𝑓(𝑡)
𝛿(𝑥)

2
𝑧

𝜌
− 𝜂 (𝑥, 𝑡))

− (𝑒

𝑓(𝑡)

𝑚

∑

𝑘=1

𝛽

2

𝑘
(𝑥) 𝑧𝜌

−

𝑚

∑

𝑘=1

𝛽

𝑘 (
𝑥) 𝑏𝑘

𝑑

𝑘
) .

(16)
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4. Stability Analysis

To prepare for the stability analysis, we rewrite the error
system as

𝑧̇ = 𝐴

𝑧 (
𝑧, 𝑡) 𝑧 + 𝑊

𝜃(
𝑧, 𝑡)

𝑇
𝑎 + 𝐷 (𝑡) 𝑒𝜌

, (17)

where the system matrices 𝐴
𝑧
(𝑧, 𝑡),𝑊

𝜃
(𝑧, 𝑡),𝐷(𝑡), and 𝑒

𝜌
are

given by

𝐴

𝑧 (
𝑧, 𝑡)

=

[

[

[

[

[

[

[

[

[

−𝑐

1
1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 −𝑐

2
1 + 𝜎

23
𝜎

24
⋅ ⋅ ⋅ 𝜎

2𝜌

.

.

. −1 − 𝜎

23
d d d

.

.

.

.

.

. −𝜎

24
d d d 𝜎

𝜌−2𝜌

.

.

.

.

.

. d d d 1 + 𝜎

𝜌−1,𝜌

0 −𝜎

2𝜌
⋅ ⋅ ⋅ −𝜎

𝜌−2,𝜌
−1 − 𝜎

𝜌−1,𝜌
−𝑐

𝜌

]

]

]

]

]

]

]

]

]

𝑊

𝜀 (
𝑧, 𝑡) = [𝜔

1
𝜔

2
, . . . , 𝜔

𝜌
]

𝑇

∈ 𝑅

𝜌
.

𝑊

𝜃 (
𝑧, 𝑡) = 𝑊

𝜀 (
𝑧, 𝑡) 𝜔

𝑇
− 𝜌 ( ̇𝑦

𝑟
+ 𝛼

1
) 𝑒

1
𝑒

𝑇

1
∈ 𝑅

𝜌×𝜌

𝐷 (𝑡) = ∑

𝑖∈𝑄𝑗𝑇

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖

󵄨

󵄨

󵄨

󵄨

𝜌

𝑖
𝜇

𝑖1
̃

𝑘

𝑇
𝜔 − (𝑒

𝑓(𝑡)
𝑧

𝜌
− 𝑑 (𝑡))

− (𝑒

𝑓(𝑡)
𝛿(𝑥)

2
𝑧

𝜌
− 𝜂 (𝑥, 𝑡))

𝑒

𝜌
= [0, . . . , 0, 1]

𝑇
∈ 𝑅

𝜌

𝜎

𝑗𝑘
= −

𝜕𝛼

𝑗−1

𝜕𝑎

Γ𝜔

𝑘
.

(18)

The closed-loop system has the following desired proper-
ties.

Theorem 5. With the ISS of the zero dynamics of system
(1) and m hysteretic actuators modeled in (2) with possible
unknown failures by (3), the controller (11) with the adaptive
laws (12) and (13) ensures the boundedness of the closed-loop
signals and the asymptotic output tracking: lim

𝑡→∞
(𝑦−𝑦

𝑟
) →

0.

Proof. For each time interval (𝑡
𝑘
, 𝑡

𝑘+1
), 𝑘 = 0, 1, 2, . . . , 𝑞, we

have a Lyapunov function 𝑉 in the following form:

𝑉 =

1

2

𝜌

∑

𝑖=1

𝑧

2

𝑖
+

1

2

𝑎

𝑇
Γ𝑎 + ∑

𝑖∈𝑄𝑗𝑇

𝜌

𝑖
𝜇

𝑖1

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖

󵄨

󵄨

󵄨

󵄨

2

̃

𝑘

𝑇

𝑗
Γ

𝑘
̃

𝑘

𝑗
. (19)

Taking the derivative of (19) yields

̇

𝑉 =

𝜌

∑

𝑖=1

𝑧

𝑖
𝑧̇

𝑖
− 𝑎

𝑇
Γ

̇

𝑎̂ − ∑

𝑖∈𝑄𝑗𝑇

𝜌

𝑖
𝜇

𝑖1

󵄨

󵄨

󵄨

󵄨

𝑏

𝑖

󵄨

󵄨

󵄨

󵄨

̃

𝑘

𝑇

𝑗
Γ

𝑘

̇

̂

𝑘

𝑗
. (20)

Substituting (11)–(13) and (8) into (7), we have

̇

𝑉 = −

𝜌

∑

𝑖=1

𝑐

𝑖
𝑧

2

𝑖
− (𝑒

𝑓(𝑡)
𝑧

2

𝜌
− 𝑑 (𝑡) 𝑧𝜌

)

− (𝑒

𝑓(𝑡)
𝛿(𝑥)

2
𝑧

2

𝜌
− 𝜂 (𝑥, 𝑡) 𝑧𝜌

)

− (𝑒

𝑓(𝑡)

𝑚

∑

𝑘=1

𝛽

2

𝑘
(𝑥) 𝑧

2

𝜌
−

𝑚

∑

𝑘=1

𝛽

𝑘 (
𝑥) 𝑏𝑘

𝑑

𝑘
𝑧

𝜌
) .

(21)

From |𝑑(𝑡)| ≤ 𝐷, |𝜂(𝑥, 𝑡)| ≤ 𝛿(𝑥, 𝑡), and bounded 𝑑

𝑖
(𝑖 =

1, 2, . . . , 𝑚), we get

̇

𝑉 ≤ −

𝜌

∑

𝑖=1

𝑐

𝑖
𝑧

2

𝑖
− (𝑒

𝑓(𝑡)
𝑧

2

𝜌
−

󵄨

󵄨

󵄨

󵄨

󵄨

𝐷

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

)

− (𝑒

𝑓(𝑡)
𝛿(𝑥)

2
𝑧

2

𝜌
− |𝛿 (𝑥)|

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

)

− (𝑒

𝑓(𝑡)

𝑚

∑

𝑘=1

𝛽

2

𝑘
(𝑥) 𝑧

2

𝜌
−

𝑚

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

𝛽

𝑘 (
𝑥)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝑘
𝑑

𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝜌

󵄨

󵄨

󵄨

󵄨

󵄨

)

≤ −

𝜌

∑

𝑖=1

𝑐

𝑖
𝑧

2

𝑖
+

𝐷

2

4

𝑒

−𝑓(𝑡)
+

1

4

𝑒

−𝑓(𝑡)
+

1

4

𝑚

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

2

𝑘
𝑑

2

𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

−𝑓(𝑡)

= −

𝜌

∑

𝑖=1

𝑐

𝑖
𝑧

2

𝑖
+

∑

𝑚

𝑘=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

2

𝑘
𝑑

2

𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝐷

2

+ 1

4

𝑒

−𝑓(𝑡)

= −

𝜌

∑

𝑖=1

𝑐

𝑖
𝑧

2

𝑖
+ 𝐷

0
𝑒

−𝑓(𝑡)
,

(22)

where

𝐷

0
=

∑

𝑚

𝑘=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

2

𝑘
𝑑

2

𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝐷

2

+ 1

4

.

(23)

From (22), we conclude that 𝑉(𝑡) ∈ 𝐿

∞
, 𝑡 ∈ [𝑡

0
, 𝑡

1
), so

that 𝑧
𝑖
(𝑖 = 1, . . . , 𝜌), 𝑧̇

𝑖
(𝑖 = 1, . . . , 𝜌), and 𝑎,

̃

𝑘 are bounded
for 𝑡 ∈ [𝑡

0
, 𝑡

1
). It follows from (8) and (10) that 𝛼

𝜌
and 𝜔 are

bounded. Therefore, all closed-loop signals are bounded for
(𝑡

0
, 𝑡

1
). In order to prove the asymptotic tracking, considering

the last time interval (𝑡
𝑞
,∞). From (22), we can obtain

𝑐

𝑖
∫

𝑡

0

𝑧

2

𝑖
(𝜏) 𝑑𝜏 ≤ 𝑉 (0) − 𝑉 (𝑡) + 𝐷

0
∫

𝑡

0

𝑒

−𝑓(𝜏)
𝑑𝜏.

(24)

Because of the boundedness of 𝐷

0
∫

𝑡

0
𝑒

−𝑓(𝜏)
𝑑𝜏, we

have 𝑧

𝑖
∈ 𝐿

2
, (𝑖 = 1, . . . , 𝜌). By Barbalat’s lemma,

lim
𝑡→∞

(𝑧

𝑖
(𝑡)) → 0 (𝑖 = 1, . . . , 𝜌) can be obtained.

This completes the proof.

5. Simulations

We consider a second order nonlinear [15] system with two
inputs described as

𝑥̇

1
= 𝑥

2
+ 𝜑

𝑇

1
(𝑥

1
) 𝜃

𝑥̇

2
= 𝜑

𝑇

2
(𝑥) 𝜃 +

2

∑

𝑖=1

𝑏

𝑖
𝛽

𝑖 (
𝑥) 𝑢𝑖

+ 𝜂 (𝑥, 𝑡) ,

(25)
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Figure 1: Output 𝑦, reference 𝑦
𝑟
, and error 𝑒(𝑡).
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Figure 2: 𝑢
1
and 𝑢

2
.

where 𝜑
1
(𝑥

1
) = 1 + 𝑥

2

1
, 𝜑
2
(𝑥) = 1 + sin(𝑥

1
), 𝛽
1
(𝑥) = 1.9 +

0.1 sin𝑥
1
, 𝛽
2
(𝑥) = 𝑒

𝑥1 , 𝜃 = 2, 𝑏
1
= 𝑏

2
= 1, 𝑏
1
, 𝑏
2
are unknown

constants, 𝑢
1
, 𝑢
2
are the outputs of two hysteretic actuators,

𝑥

1
, 𝑥

2
are the states, and 𝜂(𝑥) = 0.1𝑥

2

1
(1 + sin 𝑡)(1 + sin𝑥

2
)

is bounded by 𝛿(𝑥) = 0.4𝑥

2

1
. The reference signal is set as

𝑦

𝑟
(𝑡) = sin(3𝑡). The backlash-like hysteresis is described by

(2) with parameters 𝜇
11
= 𝜇

21
= 𝜇

12
= 𝜇

22
= 1, 𝜒

11
= 𝜒

21
= 1,

𝜒

12
= 𝜒

22
= 0, and 𝐿

1
= 𝐿

2
= 1. The high-gain function

is chosen as 𝑓(𝑡) = 𝑒

2.5 arctan(𝑡). For simulation, we consider
three actuator failure cases.

Case 1. There are no actuator failures.
By Theorem 5, we can obtain the actual control law and

the update laws. The initial conditions are set as follows:
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Figure 3: Output 𝑦, reference 𝑦
𝑟
, and error 𝑒(𝑡).

𝑎 = 1.5, Γ = 0.0005,

̂

𝑘 = [0.4, 0, 0]

𝑇
, Γ

𝑘
= 0.0001 ∗ 𝐼

3

𝑥

0
= [0.3, 0]

𝑇
, 𝑐

1
= 60, 𝑐

2
= 60,

(26)

where 𝐼
3
is the 3rd order identity matrix.

The simulation results including output 𝑦(𝑡), reference
output 𝑦

𝑟
(𝑡), and tracking error 𝑒(𝑡) are shown in Figure 1;

the actuators outputs 𝑢
1
, 𝑢

2
are shown in Figure 2.The system

responses are as expected. At the beginning, there is a
transient response in tracking errors. But, as time goes on,
the tracking errors become smaller and ultimately vanish.The
proposed controller guarantees that asymptotic tracking is
achieved.

Case 2. Actuator 𝑢
1
is stuck at 𝑢

1
= 45 from 𝑡 = 3 s, thus

undergoing a TLOE type of failure. By Theorem 5, we can
obtain the actual control law and the update laws. The initial
conditions are set as follows.

The other parameters are the same as those in Case 1.

The simulation results including output 𝑦(𝑡), reference
output 𝑦

𝑟
(𝑡), and tracking error 𝑒(𝑡) are shown in Figure 3;

the actuators outputs 𝑢
1
, 𝑢

2
are shown in Figure 4.The system

responses are as expected. When one of the actuators fails,
there is a transient response in tracking errors. But, as time
goes on, the tracking errors become smaller and ultimately
vanish. The proposed controller guarantees that asymptotic
tracking is achieved.

Case 3. Actuator 𝑢
2
is stuck at 𝑢

2
= 40 from 𝑡 = 3 s and

actuator 𝑢
1
loses 60% from 𝑡 = 6 s. Thus, 𝑢

1
undergoes a

PLOE type of failure while 𝑢
2
is a TLOE type of failure.

The other parameters are the same as those in Case 1.
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Figure 5: Output 𝑦, reference 𝑦
𝑟
, and error 𝑒(𝑡).

The simulation results including output 𝑦(𝑡), reference
output 𝑦

𝑟
(𝑡), and tracking error 𝑒(𝑡) are shown in Figure 5;

the actuators outputs 𝑢
1
, 𝑢

2
are shown in Figure 6.The system

responses are as expected. When the actuators fail, there is
a transient response in tracking errors. But, as time goes on,
the tracking errors become smaller and ultimately vanish.The
proposed controller guarantees that asymptotic tracking is
achieved.

6. Conclusions

This paper presents an adaptive failure compensation con-
troller for a class of uncertain nonlinear systems dominated
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Figure 6: 𝑢
1
and 𝑢

2
.

by the hysteresis actuator nonlinearity. We propose three
types of high-gain functions to deal with the unknown
bounded disturbances, unknown modeling errors, and
unknown actuator failures. It has been shown that the
tracking errors can converge to zero asymptotically while all
the closed-loop signals remain bounded. Furthermore, the
proposed scheme can avoid possible chattering. Simulation
results illustrate the effectiveness of our proposed scheme.
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