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The 5-dimensional Lorenz system for the gravity-wave activity is considered. Some stability problems and the existence of periodic
orbits are studied. Also, a symplectic realization and some symmetries are given.

1. Introduction

The importance of the 5-dimensional Lorenz system [1] in
the study of geophysical fluid dynamics is well known. This
system describes coupled Rossby waves and gravity waves. It
wasmainly investigated from the existence of a slowmanifold
point of view [2–5]. Among other studies regarding 5-dimen-
sional Lorenz system we mention Hamiltonian structure [6],
chaotic behaviour [7–9], and analytic integrability [10].

According to [10], the 5-dimensional Lorenz system has
at most three functionally independent global analytic first
integrals. We mention that two first integrals are known
[1]. It raises the following question: how can the third first
integral be determined, provided that it exists? A possible
answer is given by the connection between symmetries and
the existence of conservative laws [11]. Ourmain purpose is to
try to determine the third first integral using symmetries.This
attempt was successful in the case of 5-dimensionalMaxwell-
Bloch equations with the rotating wave approximation [12].
“Intuitively speaking, a symmetry is a transformation of
an object leaving this object invariant” [13]. In our case, a
transformation means a vector field and an object means
a differential equation. Recently, this field is widely investi-
gated. We refer to some new progress [14–17].

In our paper, the constants of motion of the 5-dimension-
al Lorenz system are used to study some stability problems
and the existence of periodic orbits. “The stability of an
orbit of a dynamical system characterizes whether nearby
(i.e., perturbed) orbits will remain in a neighborhood of that

orbit or be repelled away from it” [18]. Also, with the aid
of these constants of motion, a symplectic realization and a
Lagrangian formulation are given. In the last part of our work
some symmetries are pointed out.

2. Stability and Periodic Orbits

We consider the 5-dimensional Lorenz system [1]:
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where 𝑏 ∈ R.
Recall that, for system (1), the functions 𝐻,𝐶 ∈

C∞(R5,R),
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are constants of motion. The functions 𝐻 and 𝐶 are linearly
related to analogs of the energy and, respectively, enstrophy of
the nine-component “primitive equations”model introduced
by Lorenz [1, 8].

Considering the matrix formulation of the Poisson
bracket {⋅, ⋅}, given in coordinates by
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system (1) has the Hamiltonian form [8]:

𝑥̇ = {𝑥,𝐻} , (5)

where the Hamiltonian𝐻 is given by (2). Hence (R5, 𝜋, 𝑋
𝐻
)

is a Hamilton-Poisson realization of dynamics (1), where
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It is easy to see that the function 𝐶 is a Casimir for the above
Poisson bracket.

In the following we study the stability of system (1).
The equilibrium states of system (1) are given as the union

of the following families:
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we have
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By [19, 20], we deduce that all the equilibrium states from the
family E

1
are nonlinearly stable.

The characteristic polynomial associated with the linear
part of system (1) at the equilibrium 𝑒
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We notice that a root of 𝑝
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is strictly positive, whence 𝑒2
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an unstable equilibrium state. Therefore, all the equilibrium
states from the family E
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Hence all the equilibrium states from the family E
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spectrally stable.
Now, we study the existence of periodic orbits of system
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Since the eigenvalues of the linear part of system (1) at the

equilibrium 𝑒

1

𝑀
= (𝑀, 0, 0, 0, 0),𝑀 ̸= 0, are

𝜆

1
= 0,

𝜆

2,3
= ±𝑖√−𝑦

1
,

𝜆

4,5
= ±𝑖√−𝑦

2
,

(12)

where 𝑦
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and 𝑦
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we applyTheorem 2.1 from [21]. The eigenspace correspond-
ing to the eigenvalue 𝜆
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= 0 has one dimension. Taking the

constant of motion 𝐼 : R5 → R,
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it follows that
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where
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Figure 1: Periodic orbits around equilibrium state (0, 0,𝑀, 0, 0) (3D
view in the 𝑥

3
− 𝑥

4
− 𝑥

5
space).

contains at least one periodic orbit of system (1) whose period
is close to 2𝜋/
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In the case of the equilibrium states from E
3
, we cannot

apply the above method. On the other hand the dynamics
of system (1) are carried out at the intersection of the
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Then the solution of system (1) is
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(20) represents periodic orbits around equilibrium state
(0, 0,𝑀, 0, 0),𝑀 ∈ R∗ (see Figure 1).

3. Symplectic Realization and Symmetries

First result shows that system (1) can be regarded as a
Hamiltonian mechanical system.

Theorem 1. The Hamilton-Poisson mechanical system
(R5, 𝜋, 𝑋
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and the corresponding Hamiltonian vector field is as follows:
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For details about Lagrangian andHamiltonian formalism
see, for example, [22, 23].

In the sequel we study the Lie-point symmetries for Euler-
Lagrange equations (28).
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is a Lie-point symmetry for Euler-Lagrange equations if the
action of its second prolongation on these equations vanishes.
For more details about symmetries see, for example, [24–26].

Applying the second prolongation of k,

pr(2) (k) = k +
3

∑

𝑖=1

( ̇𝜂

𝑖
−

̇

𝜉 ̇𝑞

𝑖
)

𝜕

𝜕 ̇𝑞

𝑖

+

3

∑

𝑖=1

( ̈𝜂

𝑖
−

̈

𝜉 ̇𝑞

𝑖
− 2

̇

𝜉 ̈𝑞

𝑖
)

𝜕

𝜕 ̈𝑞

𝑖

,

(36)
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on (28) one obtains

̈𝜂

1
−

̈

𝜉 ̇𝑞

1
− 2 ̈𝑞

1
̇

𝜉

+ (1 + 𝑏

2
)

1 − 5 sin2𝑞
1
+ 2 sin4𝑞

1

(1 + sin2𝑞
1
)

3
̇𝑞

2

3
𝜂

1

+ 𝑏 ( ̇𝜂

2
−

̇

𝜉 ̇𝑞

2
)

+ 2 (1 + 𝑏

2
)

sin 𝑞
1
cos 𝑞
1

(1 + sin2𝑞
1
)

2
( ̇𝜂

3
−

̇

𝜉 ̇𝑞

3
) ̇𝑞

3
= 0,

̈𝜂

2
−

̈

𝜉 ̇𝑞

2
− 2 ̈𝑞

2
̇

𝜉 +

1

1 + 𝑏

2
𝜂

2
−

𝑏

1 + 𝑏

2
( ̇𝜂

1
−

̇

𝜉 ̇𝑞

1
) = 0,

̈𝜂

3
−

̈

𝜉 ̇𝑞

3
− 2 ̈𝑞

3
̇

𝜉 + 2

3 sin2𝑞
1
− 1

(1 + sin2𝑞
1
)

2
𝜂

1
̇𝑞

1
̇𝑞

3

−

2 sin 𝑞
1
cos 𝑞
1

1 + sin2𝑞
1

( ̇𝜂

1
−

̇

𝜉 ̇𝑞

1
) ̇𝑞

3

−

2 sin 𝑞
1
cos 𝑞
1

1 + sin2𝑞
1

( ̇𝜂

3
−

̇

𝜉 ̇𝑞

3
) ̇𝑞

1
= 0.

(37)

The resulting equations obtained by expanding ̇

𝜉, ̈

𝜉, ̇𝜂

1
, ̈𝜂

1
,

̇𝜂

2
, ̈𝜂

2
, ̇𝜂

3
, ̈𝜂

3
and replacing ̈𝑞

1
, ̈𝑞

2
, and ̈𝑞

3
must be satisfied

identically in 𝑡, 𝑞
1
, 𝑞
2
, 𝑞
3
, ̇𝑞

1
, ̇𝑞

2
, ̇𝑞

3
, which are all independent

variables.
In the case 𝑏 ̸= 0, it follows that

𝜉

𝑞
1

= 𝜉

𝑞
2

= 𝜉

𝑞
3

= 0,

𝜂

1,𝑡
= 𝜂

1,𝑞
2

= 𝜂

1,𝑞
3

= 0,

𝜂

1,𝑞
1
𝑞
1

= 0,

𝜂

2,𝑞
1

= 𝜂

2,𝑞
3

= 0,

𝜂

2,𝑞
2
𝑞
2

= 0,

𝜂

3,𝑡
= 𝜂

3,𝑞
1

= 𝜂

3,𝑞
2

= 0,

𝜂

3,𝑞
3
𝑞
3

= 0,

𝜂

2
+ (1 + 𝑏

2
) 𝜂

2,𝑡𝑡
− 𝑞

2
𝜂

2,𝑞
2

+ 2𝑞

2
𝜉

𝑡
= 0,

𝜂

1,𝑞
1

+ 𝜉

𝑡
− 𝜂

2,𝑞
2

= 0,

2𝜂

2,𝑡𝑞
2

− 𝜉

𝑡𝑡
= 0,

𝑏𝜂

2,𝑡
= 0,

𝑏 (𝜂

2,𝑞
2

+ 𝜉

𝑡
− 𝜂

1,𝑞
1

) = 0,

1 − 5 sin2𝑞
1
+ 2 sin4𝑞

1

1 + sin2𝑞
1

𝜂

1

+ sin 𝑞
1
cos 𝑞
1
(2𝜂

3,𝑞
3

− 𝜂

1,𝑞
1

) = 0,

6 sin2𝑞
1
− 2

1 + sin2𝑞
1

𝜂

1
− 2 sin 𝑞

1
cos 𝑞
1
𝜂

1,𝑞
1

= 0.

(38)

The last relation implies 𝜂
1
= 0. It results in

𝜉 = 𝛼,

𝜂

1
= 0,

𝜂

2
= 0,

𝜂

3
= 𝛽,

(39)

𝛼, 𝛽 ∈ R.
In the case 𝑏 = 0, it follows that

𝜉

𝑞
1

= 𝜉

𝑞
2

= 𝜉

𝑞
3

= 0,

𝜂

1
= 0,

𝜂

2,𝑞
1

= 𝜂

2,𝑞
3

= 0,

𝜂

2,𝑞
2
𝑞
2

= 0,

𝜂

2,𝑡𝑞
2

= 0,

𝜂

3,𝑡
= 𝜂

3,𝑞
1

= 𝜂

3,𝑞
2

= 𝜂

3,𝑞
3

= 0,

𝜂

2
+ 𝜂

2,𝑡𝑡
− 𝑞

2
𝜂

2,𝑞
2

+ 2𝑞

2
𝜉

𝑡
= 0.

(40)

It results in
𝜉 = 𝑎𝑡 + 𝑏,

𝜂

2
= 𝑐𝑞

2
+ 𝑓 (𝑡) ,

𝑎, 𝑏, 𝑐 ∈ R.

(41)

Then 𝑎 = 0 and 𝑓󸀠󸀠(𝑡) + 𝑓(𝑡) = 0. Therefore

𝜉 = 𝛼,

𝜂

1
= 0,

𝜂

2
= 𝛾𝑞

2
+ 𝛿 cos 𝑡 + 𝜃 sin 𝑡,

𝜂

3
= 𝛽,

(42)

𝛼, 𝛽, 𝛾, 𝛿, 𝜃 ∈ R.
We can conclude the following result.

Theorem 3. The symmetries of (28) are given by

k = 𝛼

𝜕

𝜕𝑡

+ 𝛽

𝜕

𝜕𝑞

3

, (43)

where 𝛼, 𝛽 ∈ R, in the case 𝑏 ∈ R∗, respectively, and

u = 𝛼

𝜕

𝜕𝑡

+ (𝛾𝑞

2
+ 𝛿 cos 𝑡 + 𝜃 sin 𝑡) 𝜕

𝜕𝑞

2

+ 𝛽

𝜕

𝜕𝑞

3

, (44)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜃 ∈ R, in the case 𝑏 = 0.

Remark 4. Let 𝛾 = 𝛿 = 𝜃 = 0. Denoting k
1
= 𝜕/𝜕𝑡 and

k
2
= 𝜕/𝜕𝑞

3
, it follows that k

1
, k
2
are variational symmetries.

Moreover,

(i) for 𝛽 = 0 and 𝛼 ̸= 0, we have k = 𝛼k
1

that represents the time translation symmetry which
generates the conservation of energy ̃

𝐻;
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(ii) for 𝛼 = 0 and 𝛽 ̸= 0, we have k = 𝛽k
2
that

represents a translation in the cyclic 𝑞

3
direction

which is related to the conservation of 𝑝
3
.

We notice that the vector field u leads to the vector field

X = 𝛼

𝜕

𝜕𝑡

+ (𝛾𝑥

4
− 𝛿 sin 𝑡 + 𝜃 cos 𝑡) 𝜕

𝜕𝑥

4

+ (𝛾𝑥

5
+ 𝛿 cos 𝑡 + 𝜃 sin 𝑡) 𝜕

𝜕𝑥

5

.

(45)

Also, we can consider the vector field

Y = 𝛼

𝜕

𝜕𝑡

+ (𝛾𝑥

5
− 𝛿 sin 𝑡 + 𝜃 cos 𝑡) 𝜕

𝜕𝑥

4

+ (−𝛾𝑥

4
+ 𝛿 cos 𝑡 + 𝜃 sin 𝑡) 𝜕

𝜕𝑥

5

.

(46)

The last result furnishes some symmetries of system (1) in
the case 𝑏 = 0.

Proposition 5. The vector field X given by (45) is a Lie-point
symmetry of system (1) in the case 𝑏 = 0. Also, if 𝛿 = 𝜃 = 0,
then X is a symmetry of system (1) in the case 𝑏 = 0. Moreover,
the vector field Y given by (46) has the same properties.

Proof. It is easy to see that the action of the first prolongation
of X on (1) in the case 𝑏 = 0 vanishes. Therefore X is a Lie-
point symmetry.

Considering 𝛿 = 𝜃 = 0, it immediately follows that
𝜕X
𝜕𝑡

+ [X,X
𝑓
] = 0,

(47)

where
X
𝑓
= (−𝑥

2
𝑥

3
, 𝑥

1
𝑥

3
, −𝑥

1
𝑥

3
, −𝑥

5
, 𝑥

4
) , (48)

whence X is a symmetry of system (1) in the case 𝑏 = 0.

4. Conclusions

In this paper the 5-dimensional Lorenz system is considered.
This is a system of five differential equations which couples
the Rossby waves and gravity waves. In Section 2 some
stability problems and the existence of periodic orbits are
studied. The equilibrium states of considered system are
given as the union of three families of points. For one of
these families, all the equilibria are spectrally stable, but it
remains an open problem to establish if these equilibria are
nonlinearly stable. In the third part of the paper a symplectic
realization and the corresponding Lagrangian formulation
are given. In the last part of our work, some symmetries of
the 5-dimensional Lorenz system are studied. Knowing the
connection between symmetries and conservative laws, we
tried to determine a third first integral of the considered
system, provided that it exists.
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vol. 17, Princeton University Press, Princeton, NJ, USA, 1949.

[21] P. Birtea, M. Puta, and R. M. Tudoran, “Periodic orbits in the
case of a zero eigenvalue,” Comptes Rendus Mathematique, vol.
344, no. 12, pp. 779–784, 2007.

[22] P. Libermann and C.-M. Marle, Symplectic Geometry and Ana-
lytical Mechanics, D. Reidel Publishing, Dordrecht,TheNether-
lands, 1987.
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