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We discuss the optimal dividend and capital injection strategies in the Cramér-Lundberg risk model. The value function 𝑉(𝑥) is
defined by maximizing the discounted value of the dividend payment minus the penalized discounted capital injection until the
time of ruin. It is shown that 𝑉(𝑥) can be characterized by the Hamilton-Jacobi-Bellman equation. We find the optimal dividend
barrier 𝑏, the optimal upper capital injection barrier 0, and the optimal lower capital injection barrier−𝑧∗. In the case of exponential
claim size especially, we give an explicit procedure to obtain 𝑏, −𝑧∗, and the value function 𝑉(𝑥).

1. Introduction

In the modern theory of risk, people tend to study the cost of
postponing or avoiding outright ruin; that is, ruin does not
mean the end of the game but only the necessity of raising
additional money. So the risk process can continue if there is
a suitable injection of surplus.

Borch [1] pointed out that it was a good investment to
rescue an insolvent insurance company, provided that its
deficit was not too large. He studied this problem for a
random walk model and suggested that the company should
be rescued only if the deficit was smaller than the expected
profits from the rescue operation.

For a diffusion model, Sethi and Taksar [2] considered
the problem of finding an optimal financing mix of retained
earnings and external equity for maximizing the value of
a corporation. They showed that the optimal policy can be
characterized in terms of two threshold parameters. Løkka
and Zervos [3] studied the same problem with possibility
of bankruptcy in a model of Brownian motion with drift.
Depending on the relationships between the coefficients, the
optimal strategy requires the consideration of two auxiliary
suboptimal models. For more references in diffusion model
see He and Liang [4, 5], and so forth.

As pointed out by Bäuerle [6], the classical approach
is to model the liquid assets or risk reserve process of the
insurance company as a piecewise deterministic Markov
process (PDMP). However, within this setting the control
problem is very hard and many characteristics of the risk
process can not be calculated in closed form.

For the Cramér-Lundberg risk model without bankrupt-
cy (i.e., the shareholders will inject capital to cover the deficit
whatever serious it is) the optimal dividend problem was
studied. See, for example, Dickson and Waters [7], Gerber
et al. [8], Kulenko and Schmidli [9], and so forth. This
capital injection strategy makes sense for itself; at the same
time we notice that the injected capital can be viewed as an
investment. Therefore the shareholders should consider the
return of it. If the injected amount is small enough to the
shareholders to earn positive net profit, they accept to do
so and survive the company. Otherwise, they will refuse to
inject capital anymore and ruin occurs. Sowhat is the optimal
capital injection strategy is worth to be discussed.

In this paper, we will discuss the optimal dividend pay-
ment and capital injection strategies in the Cramér-Lundberg
risk model. The objective is to maximize the discounted
dividends payments minus the penalized discounted capital
injections. Through the discussion of the optimal capital
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injection strategy, we find the maximal deficit which the
shareholders can bear. Moreover, from the mathematical
point of view we give a rigorous proof that it is optimal
to inject capital once the reserves are below 0, that is, the
moment ruin occurs (in the previous literature about capital
injection strategy, considering discounting, it could not be
optimal to inject capital before it is really necessary.Therefore,
the shareholders postpone the injection as long as possible
and just conjecture that it is optimal to do so when the
reserves become 0).

Suppose the reserve process of an insurance company at
time 𝑡 is

𝑋
𝑡
= 𝑥 + 𝑐𝑡 −

𝑁
𝑡

∑

𝑖=1

𝑌
𝑖
, (1)

where 𝑥 ∈ 𝑅 is the initial capital, 𝑐 > 0 is the premium
rate, {𝑁

𝑡
, 𝑡 ≥ 0} is a Poisson process with intensity 𝜆 >

0, and {𝑌
𝑖
, 𝑖 ≥ 1} is a sequence of strictly positive i.i.d.

random variables with the distribution function 𝐹(𝑥). In
addition, {𝑌

𝑖
, 𝑖 ≥ 1} and {𝑁

𝑡
, 𝑡 ≥ 0} are independent. We

assume that 𝐸𝑌
𝑖
= 𝜇 < ∞ and 𝐹(𝑥) is continuous. {𝑋

𝑡
}

is on a filtrated probability space (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃), where

{F
𝑡
}
𝑡≥0

is the smallest right-continuous filtration such that
{𝑋

𝑡
} is adapted. Let 𝑃

𝑥
and 𝐸

𝑥
denote the probability and the

expectation with initial capital 𝑥, respectively.
Now we enrich the model with a strategy 𝜋 = {(𝐷

𝑡
, 𝑍

𝑡
)}.

{𝐷
𝑡
} and {𝑍

𝑡
} denote the aggregate dividends and capital

injections paid up to time 𝑡, respectively. The strategy 𝜋 is
admissible if

(1) {𝐷
𝑡
} is càdlàg, increasing and adapted processes with

𝐷
0−
= 0;

(2) {𝑍
𝑡
} is càglàd, increasing and adapted processes with

𝑍
0
= 0.

The reserve turns to

𝑋
𝜋

𝑡
= 𝑋

𝑡
− 𝐷

𝑡
+ 𝑍

𝑡
. (2)

Since the strategy 𝜋 will not assure that the process {𝑋𝜋

𝑡
} is

always larger than 0, ruin is possible.The ruin time is defined
by

𝑇
𝜋

= inf {𝑡 ≥ 0, 𝑋
𝜋

𝑡+
< 0} . (3)

The value of a strategy 𝜋 is

𝑉
𝜋

(𝑥) = 𝐸
𝑥
[∫

𝑇
𝜋
−

0−

𝑒
−𝛿𝑡d𝐷

𝑡
− 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
] , (4)

where 𝛿 > 0 is a discounted factor and 𝜙 > 1 is a penalizing
factor.The point 0 being included in the integration area is for
the reason of taking an immediate dividend 𝐷

0
> 0 into the

value. Our purpose is to maximize 𝑉𝜋

(𝑥). The value function
is defined by

𝑉 (𝑥) = sup
𝜋∈Π

𝑉
𝜋

(𝑥) , (5)

where Π denotes the set of all admissible strategies.

The paper is organized as follows. In Section 2, the
dividend strategy is constrained by a restricted density. Some
properties of the value function 𝑉(𝑥) are proved. We show
that 𝑉(𝑥) can be characterized by the Hamilton-Jacobi-
Bellman equation. Moreover, if 𝑉(𝑥) is concave, the optimal
dividend and capital injection strategies are both barrier
strategies. If we remove the constraint on the dividend strat-
egy, the results on 𝑉(𝑥) and optimal strategies are extended
in Section 3. In the last section, we give an explicit procedure
to obtain the optimal dividend barrier 𝑏, the optimal lower
capital injection barrier −𝑧∗, and the value function 𝑉(𝑥)

when the claim size is exponentially distributed.

2. Dividends with Restricted Densities

In this section, we study this optimization problem under
the constraint that the dividends are paid at a dividend rate,
which is bounded by a positive constant 𝑢

0
; that is, 0 ≤ 𝑈

𝑡
≤

𝑢
0
< ∞. Then𝐷

𝑡
= ∫

𝑡

0

𝑈
𝑠
d𝑠 and

𝑉
𝜋

(𝑥) = 𝐸
𝑥
[∫

𝑇
𝜋

0

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
] . (6)

In this section, Π𝑟 denotes the set of all admissible restricted
strategies and 𝜋 = (𝑈

𝑡
, 𝑍

𝑡
). So the value function

𝑉 (𝑥) = sup
𝜋∈Π
𝑟

𝑉
𝜋

(𝑥) . (7)

2.1. The Value Function𝑉(𝑥). 𝑉(𝑥) has the following proper-
ties.

Lemma 1. If the capital injection strategy is defined by

𝑍
𝑡
= max {− inf

0≤𝑠<𝑡

(𝑋
𝑠
− 𝐷

𝑠
) , 0} , (8)

Then, for 𝑥 ∈ 𝑅
+
, the value under any dividend strategy {𝐷

𝑡
} is

bounded from below by −𝜙𝜆𝜇/𝛿.

Proof. Under this assumption, ruin time is∞. The maximal
amount of capital injection may be that the shareholders
cover all the claims. If we are not considering the dividends,
value under such a strategy is the worst one. Using the time
of the 𝑘th claim 𝑇

𝑘
is Gamma Γ(𝜆, 𝑘), so

𝐸[

∞

∑

𝑘=1

𝑌
𝑘
𝑒
−𝛿𝑇
𝑘] = 𝜇

∞

∑

𝑘=1

(
𝜆

𝜆 + 𝛿
)

𝑘

=
𝜆𝜇

𝛿
. (9)

The value is bounded from below by −𝜙𝜆𝜇/𝛿.

Lemma 2. 𝑉(𝑥) is increasing and Lipschitz continuous on
(−∞,∞). Moreover, 0 ≤ 𝑉(𝑥) ≤ 𝑢

0
/𝛿 and lim

𝑥→∞
𝑉(𝑥) =

𝑢
0
/𝛿.

Proof. Obviously, 𝑉(𝑥) is increasing. For 𝑥 < 0, if define the
strategy 𝜋 as 𝑍

𝑡
= 𝑈

𝑡
= 0, then 𝑉(𝑥) ≥ 𝑉

𝜋

(𝑥) = 0. Because
𝑉(𝑥) is increasing, 𝑉(𝑥) ≥ 0 for 𝑥 ∈ 𝑅. If 𝑈

𝑡
= 𝑢

0
, 𝑍

𝑡
= 0,

then

𝑉 (𝑥) ≤ ∫

∞

0

𝑢
0
𝑒
−𝛿𝑡d𝑡 =

𝑢
0

𝛿
. (10)
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Consider a strategy 𝜋 = (𝑈
𝑡
, 𝑍

𝑡
), where 𝑈

𝑡
= 𝑢

0
and 𝑍

𝑡
=

max{−inf
0≤𝑠<𝑡

(𝑋
𝑠
−𝐷

𝑠
), 0}.Then𝑇𝜋

= ∞. Define 𝜏𝜋
𝑥
= inf{𝑡 :

𝑥 + (𝑐 − 𝑢
0
)𝑡 − ∑

𝑁
𝑡

𝑖=1
𝑌
𝑖
< 0}. Using Lemma 1,

∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
= ∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡
= ∫

∞

𝜏
𝜋

𝑥

𝑒
−𝛿𝑡d𝑍

𝑡

= 𝑒
−𝛿𝜏
𝜋

𝑥 ∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡+𝜏
𝜋

𝑥

≤ 𝑒
−𝛿𝜏
𝜋

𝑥𝜙
𝜆𝜇

𝛿
.

(11)

When 𝑥 → ∞, then 𝜏𝜋
𝑥
→ ∞ and 𝑃

𝑥
(∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡
> 𝜀) →

0. So we have
𝑉 (𝑥) ≥ 𝑉

𝜋

(𝑥)

≥ 𝐸[∫

𝜏
𝜋

𝑥

0

𝑢
0
𝑒
−𝛿𝑡d𝑡 − 𝜙∫

∞

0

𝑒
−𝛿𝑡d𝑍

𝑡
] 󳨀→

𝑢
0

𝛿
.

(12)

Combining with (10), we have lim
𝑥→∞

𝑉(𝑥) = 𝑢
0
/𝛿.

For 𝑥 ≥ 0, let ℎ > 0 be small. Define

𝑈
𝑡
=

{{

{{

{

0, if 0 ≤ 𝑡 < ℎ ∧ 𝑇
1
,

𝑈̃
𝑡−ℎ
, if 𝑡 ∧ 𝑇

1
≥ ℎ,

0, if 𝑇
1
< ℎ,

𝑍
𝑡
=

{{

{{

{

0, if 0 ≤ 𝑡 < ℎ ∧ 𝑇
1
,

𝑍
𝑡−ℎ
, if 𝑡 ∧ 𝑇

1
≥ ℎ,

0, if 𝑇
1
< ℎ,

(13)

where 𝜋̃ = (𝑈̃, 𝑍) ∈ Π
𝑟 is for the initial capital 𝑥 + 𝑐ℎ. While

𝑃(𝑇
1
≥ ℎ) = 𝑒

−𝜆ℎ, then

𝑉 (𝑥) ≥ 𝑉
𝜋

(𝑥)

= 𝐸[𝐸[∫

𝑇
𝜋

0

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
| 𝑇

1
]]

= 𝑃 (𝑇
1
≥ ℎ)

× 𝐸[∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡d𝑍

𝑡
| 𝑇

1
≥ ℎ]

= 𝑒
−𝜆ℎ

𝐸[𝐸[∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋

ℎ

𝑒
−𝛿𝑡d𝑍

𝑡
| F

ℎ
]]

= 𝑒
−𝜆ℎ

𝐸[𝑒
−𝛿ℎ

𝐸 [∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡

𝑈
𝑡+ℎ

d𝑡

−𝜙∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡d𝑍

𝑡+ℎ
| F

ℎ
]]

= 𝑒
−(𝜆+𝛿)ℎ

𝐸[∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡

𝑈̃
𝑡
d𝑡 − 𝜙∫

𝑇
𝜋
−ℎ

0

𝑒
−𝛿𝑡d𝑍

𝑡
]

= 𝑒
−(𝜆+𝛿)ℎ

𝑉
𝜋̃

(𝑥 + 𝑐ℎ)

(14)

and so

𝑉 (𝑥) ≥ sup
𝜋̃∈Π
𝑟

𝑒
−(𝜆+𝛿)ℎ

𝑉
𝜋̃

(𝑥 + 𝑐ℎ) = 𝑒
−(𝜆+𝛿)ℎ

𝑉 (𝑥 + 𝑐ℎ) . (15)

From the bounded property of 𝑉(𝑥), we have

0 ≤ 𝑉 (𝑥 + 𝑐ℎ) − 𝑉 (𝑥) ≤ 𝑉 (𝑥 + 𝑐ℎ) (1 − 𝑒
−(𝜆+𝛿)ℎ

)

≤ 𝑉 (𝑥 + 𝑐ℎ) (𝜆 + 𝛿) ℎ ≤
𝑢
0

𝛿
(𝜆 + 𝛿) ℎ.

(16)

Let the shareholder inject ℎ and follow the optimal strategy
afterwards when 𝑥 < 0. So 𝑉(𝑥) ≥ 𝑉(𝑥 + ℎ) − 𝜙ℎ; that is,

𝑉 (𝑥 + ℎ) − 𝑉 (𝑥) ≤ 𝜙ℎ. (17)

Thus 𝑉(𝑥) is Lipschitz continuous on (−∞,∞).

2.2. HJB Equation and the Optimal Strategy. In this section,
wewill derive theHJB equation satisfied by the value function
𝑉(𝑥) and discuss the optimal strategy 𝜋∗.

Similar to the discussion in Azcue and Muler [10], the
following dynamic programming principle holds:

𝑉 (𝑥) = sup
𝜋

𝐸
𝑥
[∫

𝜏∧𝑇
𝜋

0

𝑒
−𝛿𝑡

𝑈
𝑡
d𝑡

−𝜙∫

𝜏∧𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
+ 𝑒

−𝛿(𝜏∧𝑇
𝜋
)

𝑉 (𝑋
𝜋

𝜏∧𝑇
𝜋)]

(18)

for 𝑥 ∈ 𝑅
+
and any {F

𝑡
}-stopping time 𝜏. This principle may

serve us to derive the HJB equation.
For 𝑥 ≥ 0, 𝜀 > 0, and any admissible strategy 𝜋, define

𝜎
𝜋

= inf{𝑡 ≥ 0, 𝑋
𝜋

𝑡
∉ (𝑥 − 𝜀, 𝑥 + 𝜀)}. Choose 𝜀 small enough;

then 𝜎𝜋 < 𝑇
𝜋. Let 𝜏𝜋 = 𝜎

𝜋

∧ℎ, ℎ > 0. So 𝜏𝜋 → 0 a.s. ℎ → 0.
Applying Itô formula into 𝑒−𝛿𝜏

𝜋

𝑉(𝑋
𝜋

𝜏
𝜋), we have

𝑒
−𝛿𝜏
𝜋

𝑉 (𝑋
𝜋

𝜏
𝜋)

= 𝑉 (𝑋
𝜋

0
)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

(𝑐 − 𝑈
𝑠
) 𝑉

󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑒

−𝛿𝑠

𝑉 (𝑋
𝜋

𝑠−
) d𝑠

+ ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)]

+ ∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] .

(19)

If 𝑈
𝑡
> 𝑐, {𝑋𝜋

𝑡
} could become negative before the first claim

and so dividends lead to ruin. Considering the early penalty,
this dividend strategy with 𝑈

𝑡
> 𝑐 at a point where 𝑋𝜋

𝑡
= 0

will not be optimal. So we can assumewithout restriction that
{𝑍

𝑡
} only increases when the claim arrives; that is, it is a pure

jump process. Thus

∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] = 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
. (20)
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When claim arrives,𝑋𝜋

𝑠−
̸= 𝑋

𝜋

𝑠
. Then

𝑀(𝜏
𝜋

) = 𝑀(𝜎
𝜋

∧ ℎ)

= ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)] − 𝜆

× ∫

𝜏
𝜋

0

∫

∞

0

𝑒
−𝛿𝑠

(𝑉 (𝑋
𝜋

𝑠−
− 𝑦) − 𝑉 (𝑋

𝜋

𝑠−
)) d𝐹 (𝑦) d𝑠

(21)

is a martingale with 𝑀(0) = 0. So from the dynamic pro-
gramming principle in (18), we have

𝑉 (𝑥)

≥ 𝐸
𝑥
[∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

𝑈
𝑠
d𝑠 − 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
+ 𝑉 (𝑥)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[(𝑐 − 𝑈
𝑠
) 𝑉

󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑉 (𝑋

𝜋

𝑠−
)

+ 𝜆∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦)

−𝑉 (𝑋
𝜋

𝑠−
) d𝐹 (𝑦)] d𝑠 + 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
] .

(22)

Equivalently

𝐸
𝑥
[∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[(𝑐 − 𝑈
𝑠
) 𝑉

󸀠

(𝑋
𝜋

𝑠−
) + 𝑈

𝑠

+ 𝜆∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
𝜋

𝑠−
)] d𝑠] ≤ 0.

(23)

Dividing 𝐸𝜏𝜋 in (23) and letting ℎ → 0 yield

(𝑐 − 𝑢)𝑉
󸀠

(𝑥) + 𝑢

+ 𝜆∫

∞

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0.

(24)

We have proved that 𝑉(𝑥) is increasing, continuous, and
nonnegative, so the above inequality can be rewritten as

(𝑐 − 𝑢)𝑉
󸀠

(𝑥) + 𝑢

+ 𝜆∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0

(25)

for 𝑧 ∈ 𝑅
+
.

On the other hand, consider a strategy by receiving 𝜀 > 0

from the shareholder immediately and following the optimal
strategy for the capital 𝑥 + 𝜀 afterwards; then 𝑉(𝑥) ≥ 𝑉(𝑥 +

𝜀) − 𝜙𝜀. Letting 𝜀 → 0, we get

𝑉
󸀠

(𝑥) ≤ 𝜙. (26)

Amore sophisticated analysis shows that one of the inequali-
ties (25) and (26) is always tight (see Fleming and Soner [11]).

As a result, we get the following HJB equation satisfied by
the value function 𝑉(𝑥) on [0,∞):

max
{{

{{

{

sup
0≤𝑢≤𝑢

0

𝑧∈𝑅
+

{ (𝑐 − 𝑢)𝑉
󸀠

(𝑥) + 𝑢 + 𝜆

×∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥)} ,

𝑉
󸀠

(𝑥) − 𝜙

}}

}}

}

= 0.

(27)

The expressions to be maximized are

𝑢 (1 − 𝑉
󸀠

(𝑥)) , ∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) . (28)

First, because 𝑢(1 − 𝑉
󸀠

(𝑥)) is linear in 𝑢, 𝑢∗(𝑥) maximizing
𝑢(1 − 𝑉

󸀠

(𝑥)) is

𝑢
∗

(𝑥) = {
0, if 𝑉󸀠

(𝑥) > 1,

𝑢
0
, if 𝑉󸀠

(𝑥) ≤ 1.
(29)

Second, we will maximize ∫
𝑥+𝑧

0

𝑉(𝑥 − 𝑦)d𝐹(𝑦). Because
𝑉(𝑥) ≥ 0, we can define 𝑧∗ = − inf{𝑧; 𝑉(𝑧) > 0}. If 𝑥 < 0,
the shareholders either inject capital to survive the company
or default to do so. Ruin occurs in the latter case, while in
the former case 𝑉(𝑥) will be linear when 𝑥 < 0; that is,
𝑉(𝑥) = 𝑉(0) + 𝜙𝑥. Thus, from the definition of 𝑧∗, we have

𝑧
∗

=
𝑉 (0)

𝜙
. (30)

In fact, 𝑧∗ is the maximal deficit that the shareholder should
bare. We call −𝑧∗ the optimal lower capital injection barrier.

If 𝑉(𝑥) is concave on (0,∞), then there exists an optimal
dividend barrier 𝑏 := inf{𝑥 : 𝑉󸀠

(𝑥) ≤ 1} with

𝑢
∗

(𝑥) = {
0, if 𝑥 < 𝑏 ⇐⇒ 𝑉

󸀠

(𝑥) > 1,

𝑢
0
, if 𝑥 ≥ 𝑏 ⇐⇒ 𝑉

󸀠

(𝑥) ≤ 1.
(31)

And also a barrier 𝑎
0
:= sup{𝑥, 𝑉󸀠

(𝑥) ≥ 𝜙}. If the reserves
become less than 𝑎

0
, according to 𝑧∗, the shareholders may

take actions between the following two choices.

(a) If the deficit is larger than 𝑧∗, they refuse to inject any
capital and ruin occurs.

(b) Otherwise, they inject capital and the injected amount
should recover the reserves to 𝑎

0
. If 𝑎

0
< 0, the

injected amount could not survive the company.
Therefore, we define the optimal upper capital injec-
tion barrier as 𝑎 = 𝑎

0
∨ 0.



Mathematical Problems in Engineering 5

Recall that in the literature (e.g., Kulenko and Schmidli
[9] and He and Liang [4, 5]) concerning the capital injection
strategy, considering the discounting, it can not be optimal
to inject capital before they really are necessary. Therefore,
the shareholders postpone injecting capital as long as possible
and just conjecture that it is optimal to do so only when
the reserves become 0. In the next proposition, from the
mathematical point of view, we will give a rigorous proof of
𝑎 = 0.

Proposition 3. If𝑉(𝑥) is concave on (0,∞), the optimal upper
capital injection barrier 𝑎 = 0.

Proof. Under the assumption, 𝑎 is unique. Suppose 𝑎 > 0.
So 𝑉(𝑥) = 𝑉(0) + 𝜙𝑥 when 𝑥 ∈ [−𝑧

∗

, 𝑎]. Note that 𝑉󸀠

(𝑎) =

𝑉
󸀠

(0) = 𝜙. 𝑉(𝑥) fulfils the HJB equation (27), so at 𝑥 = 0

𝑐𝜙 + 𝜆∫

𝑉(0)/𝜙

0

[𝑉 (0) − 𝜙𝑦] d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (0) ≤ 0. (32)

If we take 𝑉(0) = 𝑉(𝑎) − 𝜙𝑎 into the left side of (32), the
expression turns into

𝑐𝜙 + 𝜆∫

𝑉(0)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑎 − 𝜙𝑦] d𝐹 (𝑦)

− (𝜆 + 𝛿) [𝑉 (𝑎) − 𝜙𝑎] .

(33)

At the optimal upper capital injection barrier 𝑎,

𝑐𝑉
󸀠

(𝑎+) + 𝜆∫

𝑉(𝑎)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑎) = 0.

(34)

It implies

(𝜆 + 𝛿)𝑉 (𝑎) = 𝑐𝑉
󸀠

(𝑎+) + 𝜆∫

𝑉(𝑎)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦) .

(35)

Pulling (35) into (33), we can rewrite the expression by

𝑐𝜙 + 𝜆∫

𝑉(0)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑎 − 𝜙𝑦] d𝐹 (𝑦) + (𝜆 + 𝛿) 𝜙𝑎

− 𝑐𝑉
󸀠

(𝑎+) − 𝜆∫

𝑉(𝑎)/𝜙

0

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦)

= −𝜆∫

𝑉(0)/𝜙

0

𝜙𝑎 d𝐹 (𝑦) − 𝜆∫
𝑉(𝑎)/𝜙

𝑉(0)/𝜙

[𝑉 (𝑎) − 𝜙𝑦] d𝐹 (𝑦)

+ (𝜆 + 𝛿) 𝜙𝑎 + 𝑐 (𝜙 − 𝑉
󸀠

(𝑎+))

= −𝜆𝜙𝑎𝐹(
𝑉 (0)

𝜙
) + 𝜆𝑉 (𝑎) 𝐹(

𝑉 (0)

𝜙
)

− 𝜆𝑉 (𝑎) 𝐹(
𝑉 (𝑎)

𝜙
) + 𝜙𝜆∫

𝑉(𝑎)/𝜙

e
𝑦 d𝐹 (𝑦)

+ (𝜆 + 𝛿) 𝜙𝑎 + 𝑐 (𝜙 − 𝑉
󸀠

(𝑎+))

= −𝜆𝜙𝑎𝐹(
𝑉 (0)

𝜙
) + 𝜆𝑉 (𝑎) 𝐹(

𝑉 (0)

𝜙
)

− 𝜆𝑉 (𝑎) 𝐹(
𝑉 (𝑎)

𝜙
) + 𝑐 (𝜙 − 𝑉

󸀠

(𝑎+))

− 𝜆𝑉 (0) 𝐹(
𝑉 (0)

𝜙
) + 𝜆𝑉 (𝑎) 𝐹(

𝑉 (𝑎)

𝜙
)

− 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + (𝜆 + 𝛿) 𝜙𝑎

= [−𝜆𝜙𝑎 + 𝜆𝑉 (𝑎) − 𝜆𝜙𝑉 (0)] 𝐹(
𝑉 (𝑎)

𝜙
) + (𝜆 + 𝛿) 𝜙𝑎

− 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + 𝑐 (𝜙 − 𝑉󸀠

(𝑎+))

= (𝜆 + 𝛿) 𝜙𝑎 − 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + 𝑐 (𝜙 − 𝑉󸀠

(𝑎+)) .

(36)

However

− 𝜆𝜙∫

𝑉(𝑎)/𝜙

𝑉(0)/𝜙

𝐹 (𝑦) d𝑦 + (𝜆 + 𝛿) 𝜙𝑎 + 𝑐 (𝜙 − 𝑉󸀠

(𝑎+))

≥ −𝜆𝑉 (𝑎) + 𝜆𝑉 (0) + (𝜆 + 𝛿) 𝜙𝑎

= −𝜆 (𝑉 (𝑎) − 𝑉 (0) − 𝜙𝑎) + 𝛿𝜙𝑎

= 𝛿𝜙𝑎 > 0,

(37)

which is contradictory with (32). So 𝑎 > 0 is impossible and
𝑎 = 0 is proved.

The above proposition tells us that the moment when
deficit occurs is just the time the shareholders consider to
inject capital.

Proposition 4. If𝑉(𝑥) is concave on (0,∞), it is continuously
differentiable on (0,∞).

Proof. From the concavity of 𝑉(𝑥), (31) is true. When 𝑥 ∈

(0, 𝑏), from HJB equation (27), and 𝑉(𝑥) is Lipschitz contin-
uous, so

𝑐𝑉
󸀠

(𝑥+) − (𝜆 + 𝛿)𝑉 (𝑥) + 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦)

= 𝑐𝑉
󸀠

(𝑥−) − (𝜆 + 𝛿)𝑉 (𝑥)

+ 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) = 0.

(38)
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Thus 𝑉󸀠

(𝑥−) = 𝑉
󸀠

(𝑥+). Similarly, we can proof 𝑉(𝑥) is
continuously differentiable on (𝑏,∞). Now suppose 𝑏 > 0.
Note

(𝑐 − 𝑢
0
) 𝑉

󸀠

(𝑏+) + 𝑢
0
− (𝜆 + 𝛿)𝑉 (𝑏)

+ 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦) = 0,

𝑐𝑉
󸀠

(𝑏−) − (𝜆 + 𝛿)𝑉 (𝑏) + 𝜆∫

𝑉(0)/𝜙

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦) = 0.

(39)

So 𝑐𝑉󸀠

(𝑏−) = 𝑢
0
+ (𝑐 − 𝑢

0
)𝑉

󸀠

(𝑏+) or equivalently 𝑐(𝑉󸀠

(𝑏−) −

𝑉
󸀠

(𝑏+)) = 𝑢
0
(1 − 𝑉

󸀠

(𝑏+)).
If 𝑢

0
< 𝑐, either 𝑉󸀠

(𝑏−) = 𝑉
󸀠

(𝑏+) = 1 or 1 > 𝑉
󸀠

(𝑏−).
The latter is impossible, so𝑉(𝑥) is continuously differentiable
under this case.

If 𝑢
0
≥ 𝑐, the reserve stays at 𝑏 until the first claim occurs

because dividend is a barrier strategy. 𝑏 is independent of the
constant 𝑢

0
. In fact, because the process does not leave the

interval [0, 𝑏] and the corresponding strategy is admissible for
any 𝑢

0
≥ 𝑐, it must be optimal for any initial value in [0, 𝑏].

For 𝑥 = 𝑏, the expected discounted dividends until the first
claim are

𝜆∫

∞

0

𝑒
−𝜆𝑡

∫

𝑡

0

𝑐𝑒
−𝛿𝑠d𝑠 d𝑡 = 𝜆𝑐

𝛿
∫

∞

0

(1 − 𝑒
−𝛿𝑡

) 𝑒
−𝜆𝑡d𝑡 = 𝑐

𝜆 + 𝛿
.

(40)

The expected discounted dividends after the first claim are

𝜆∫

∞

0

𝑒
−𝜆𝑡

∫

𝑏

0

𝑒
−𝛿𝑡

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦) d𝑡

+ 𝜆∫

∞

0

𝑒
−𝜆𝑡

∫

𝑏+𝑧
∗

𝑏

𝑒
−𝛿𝑡

[𝑉 (0) + 𝜙 (𝑏 − 𝑦)] d𝐹 (𝑦) d𝑡

=
𝜆

𝜆 + 𝛿
[∫

𝑏

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦)

+∫

𝑏+𝑧
∗

𝑏

[𝑉 (0) + 𝜙 (𝑏 − 𝑦)] d𝐹 (𝑦)] .

(41)

Hence, the value at 𝑏 can be characterized as

𝑉 (𝑏) =
𝑐

𝜆 + 𝛿
+

𝜆

𝜆 + 𝛿
[∫

𝑏

0

𝑉 (𝑏 − 𝑦) d𝐹 (𝑦)

+∫

𝑏+𝑧
∗

𝑏

[𝑉 (0) + 𝜙 (𝑏 − 𝑦)] d𝐹 (𝑦)] .

(42)

Pulling𝑉(𝑏) into (39), we find𝑉󸀠

(𝑏−) = 𝑉
󸀠

(𝑏+) = 1. So 𝑉(𝑥)
is continuously differentiable in this case, too.

It holds in an interval (𝑇
𝑖−1
, 𝑇

𝑖
) between two claims that

d𝑋𝜋

𝑡
= (𝑐 − 𝑈

𝑡
)d𝑡. Δ𝑍

𝑇
𝑖

= 𝑍
𝑇
𝑖
+
− 𝑍

𝑇
𝑖

denotes the injected
capital at the 𝑖th claim arrivals.

(i) If𝑋𝜋

𝑇
𝑖
−
− 𝑌

𝑖
≥ 0, then Δ𝑍

𝑇
𝑖

= 0;

(ii) If −𝑧∗ < 𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
< 0, then the shareholders pay

as much that 𝑋𝜋

𝑇
𝑖
+
= 𝑋

𝜋

𝑇
𝑖
−
− 𝑌

𝑖
+ Δ𝑍

𝑇
𝑖

= 0. That is,
Δ𝑍

𝑇
𝑖

= 0− (𝑋
𝜋

𝑇
𝑖
−
−𝑌

𝑖
). In this case, the value function

fulfils

𝑉(𝑋
𝜋

𝑇
𝑖
+
) (= 𝑉 (0)) = 𝑉 (𝑋

𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) + 𝜙Δ𝑍

𝑇
𝑖

,

if − 𝑧
∗

< 𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
< 0.

(43)

(iii) If 𝑋𝜋

𝑇
𝑖
−
− 𝑌

𝑖
≤ −𝑧

∗, then the shareholders would get
a negative net profit as long as they cover the deficit
(because𝑉(0)−𝜙Δ𝑍

𝑇
𝑖

< 0). It is unreasonable.Hence,
they prefer to “no-injection-no-profit” and refuse
to inject capital anymore. In this case, bankruptcy
occurs and 𝑇𝜋

= 𝑇
𝑖
. So

𝑉(𝑋
𝜋

𝑇
𝑖
+
) = 𝑉 (𝑋

𝜋

𝑇
𝑖

) = 𝑉 (𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) = 0,

if 𝑋𝜋

𝑇
𝑖
−
− 𝑌

𝑖
≤ −𝑧

∗

.

(44)

Based on the discussion above, when 𝑥 < 0, we can
express 𝑉(𝑥) by

𝑉 (𝑥) = {
0, if 𝑥 ≤ −𝑧

∗

,

𝑉 (0) + 𝜙𝑥, if − 𝑧
∗

< 𝑥 < 0.
(45)

Thus it suffices to consider solutions 𝑓 to the HJB
equation with the properties

𝑓 (𝑥) = 0, if 𝑥 ≤ −
𝑓 (0)

𝜙
. (46)

𝑓 (𝑥) = 𝑓 (0) + 𝜙𝑥, if −
𝑓 (0)

𝜙
< 𝑥 < 0. (47)

Lemma 5. Let 𝑓(𝑥) be an increasing, bounded, and nonnega-
tive solution to (27)with properties (46) and (47).Then for any
admissible strategy 𝜋 ∈ Π

𝑟, the process

{𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓 (𝑥) − 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

− ∫

𝑡∧𝑇
𝜋

0

[ (𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − (𝜆 + 𝛿) 𝑓 (𝑋

𝜋

𝑠
)

+𝜆∫

𝑋
𝜋

𝑠
+(𝑓(0)/𝜙)

0

𝑓 (𝑋
𝜋

𝑠
− 𝑦) d𝐹 (𝑦)] 𝑒−𝛿𝑠d𝑠}

(48)

is a martingale.

Proof. First we decompose 𝑓(𝑋𝜋

𝑡∧𝑇
𝜋)𝑒

−𝛿(𝑡∧𝑇
𝜋
)

𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

= 𝑓 (𝑋
𝜋

0+
) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇
𝑖
+
) 𝑒

−𝛿𝑇
𝑖 − 𝑓 (𝑋

𝜋

𝑇
𝑖−1

+
) 𝑒

−𝛿𝑇
𝑖−1]



Mathematical Problems in Engineering 7

+ 𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓(𝑋
𝜋

𝑇
𝑁
𝑡∧𝑇
𝜋 +

) 𝑒
−𝛿𝑇
𝑁
𝑡∧𝑇
𝜋

= 𝑓 (𝑋
𝜋

0+
) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇
𝑖
+
) − 𝑓 (𝑋

𝜋

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖

+

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇
𝑖
−
) 𝑒

−𝛿𝑇
𝑖 − 𝑓 (𝑋

𝜋

𝑇
𝑖−1

+
) 𝑒

−𝛿𝑇
𝑖−1]

+ 𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓(𝑋
𝜋

𝑇
𝑁
𝑡∧𝑇
𝜋
+
) 𝑒

−𝛿𝑇
𝑁
𝑡∧𝑇
𝜋

= 𝑓 (𝑥) + 𝜙Δ𝑍
𝑇
0

+

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖

+ 𝜙

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

Δ𝑍
𝑇
𝑖

𝑒
−𝛿𝑇
𝑖 +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

∫

𝑇
𝑖
−

𝑇
𝑖−1

+

d𝑒−𝛿𝑠𝑓 (𝑋𝜋

𝑠
)

+ ∫

𝑡∧𝑇
𝜋

𝑇
𝑁
𝑡∧𝑇
𝜋
+

d𝑒−𝛿𝑠𝑓 (𝑋𝜋

𝑠
)

= 𝑓 (𝑥) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖

+ ∫

𝑡∧𝑇
𝜋

𝑇
𝑁
𝑡∧𝑇
𝜋
+

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − 𝛿𝑓 (𝑋

𝜋

𝑠
)] 𝑒

−𝛿𝑠d𝑠

+

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

∫

𝑇
𝑖
−

𝑇
𝑖−1

+

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − 𝛿𝑓 (𝑋

𝜋

𝑠
)] 𝑒

−𝛿𝑠d𝑠

+ 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

= 𝑓 (𝑥) +

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖

+ 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

+ ∫

𝑡∧𝑇
𝜋

0

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − 𝛿𝑓 (𝑋

𝜋

𝑠
)] 𝑒

−𝛿𝑠d𝑠.

(49)

Then in order to make the process {∑𝑁
𝑡∧𝑇
𝜋

𝑖=1
[𝑓(𝑋

𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) −

𝑓(𝑋
𝜋

𝑇
𝑖
−
)]𝑒

−𝛿𝑇
𝑖 −∫

𝑡∧𝑇
𝜋

0

𝑔(𝑋
𝜋

𝑠
)d𝑠} become amartingale with the

expected value 0, wemust find ameasurable function𝑔. Since
the above expression can be written as

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

{[𝑓 (𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖 − ∫

𝑇
𝑖

𝑇
𝑖−1

𝑔 (𝑋
𝜋

𝑠
) d𝑠}

− ∫

𝑡

𝑇
𝑁
𝑡∧𝑇
𝜋

𝑔 (𝑋
𝜋

𝑠
) d𝑠

(50)

it is enough to replace 𝑡 by 𝑇
1
∧ 𝑡; that is,

[𝑓 (𝑋
𝜋

𝑇
1
−
− 𝑌

1
) − 𝑓 (𝑋

𝜋

𝑇
1
−
)] 𝑒

−𝛿𝑇
11

(𝑇
1
≤𝑡)

− ∫

𝑡∧𝑇
1

0

𝑔 (𝑋
𝜋

𝑠
) d𝑠.

(51)

Because the exponential distribution is lack of memory, we
only consider the expected value. 𝑔 will satisfy

𝐸{[𝑓 (𝑋
𝜋

𝑇
1
−
− 𝑌

1
) − 𝑓 (𝑋

𝜋

𝑇
1
−
)] 𝑒

−𝛿𝑇
11

(𝑇
1
≤𝑡)

−∫

𝑡∧𝑇
1

0

𝑔 (𝑋
𝜋

𝑠
) d𝑠} = 0.

(52)

The expected values of the first and the second part are

∫

𝑡

0

𝜆𝑒
−𝜆𝑠

𝑒
−𝛿𝑠

{∫

𝑥+∫

𝑠

0
(𝑐−𝑈V)dV+𝑓(0)/𝜙

0

𝑓

× (𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV − 𝑦) d𝐹 (𝑦)

−𝑓(𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV)} d𝑠,

∫

𝑡

0

𝜆𝑒
−𝜆𝑠

∫

𝑠

0

𝑔(𝑥 + ∫

V

0

(𝑐 − 𝑈
𝑤
) d𝑤) dV d𝑠

+ 𝑒
−𝜆𝑡

∫

𝑡

0

𝑔(𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV) d𝑠

= ∫

𝑡

0

𝑒
−𝜆𝑠

𝑔(𝑥 + ∫

𝑠

0

(𝑐 − 𝑈V) dV) d𝑠.

(53)

Thus we can choose

𝑔 (𝑋
𝜋

𝑡
) = 𝜆𝑒

−𝛿𝑡

(∫

𝑋
𝜋

𝑡
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑡
− 𝑦) d𝐹 (𝑦) − 𝑓 (𝑋𝜋

𝑡
))

= 𝜆𝑒
−𝛿𝑡

∫

𝑋
𝜋

𝑡
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑡
− 𝑦) d𝐹 (𝑦) − 𝜆𝑒−𝛿𝑡𝑓 (𝑋𝜋

𝑡
) .

(54)

So

{

𝑁
𝑡∧𝑇
𝜋

∑

𝑖=1

[𝑓 (𝑋
𝜋

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑓 (𝑋

𝜋

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖 − 𝜆

×∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠

[∫

𝑋
𝜋

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑠
− 𝑦) d𝐹 (𝑦) − 𝑓 (𝑋𝜋

𝑠
)] d𝑠}

(55)

and, also, the process

{𝑓 (𝑋
𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

− 𝑓 (𝑥) − 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠

− ∫

𝑡∧𝑇
𝜋

0

[(𝑐 − 𝑈
𝑠
) 𝑓

󸀠

(𝑋
𝜋

𝑠
) − (𝜆 + 𝛿) 𝑓 (𝑋

𝜋

𝑠
)

+ 𝜆∫

𝑋
𝜋

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
𝜋

𝑠
− 𝑦) d𝐹 (𝑦)] 𝑒−𝛿𝑠d𝑠}

(56)

are {F
𝑡
}-martingales with expected value 0.

The following theorem serves as a verification theorem.
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Theorem 6. Let 𝑓(𝑥) be an increasing and bounded solution
to (27)with the properties (46) and (47).Then lim

𝑥→∞
𝑓(𝑥) =

𝑢
0
/𝛿 and𝑓(𝑥) = 𝑉(𝑥) on𝑅

+
.The optimal capital injection and

dividend barriers are given by (30) and (31).

Proof. Because 𝑓(𝑥) is increasing and bounded, we assume
lim

𝑥→∞
𝑓(𝑥) = 𝑓

0
. Then there exists a sequence 𝑥

𝑛
→ ∞

such that 𝑓󸀠

(𝑥
𝑛
) → 0. Let 𝑢

𝑛
= 𝑢(𝑥

𝑛
). From the definition

of the optimal dividend strategy, we can assume that 𝑢
𝑛
= 𝑢

0
.

As 𝑛 → ∞, the first term in (27) turns to

0 = (𝑐 − 𝑢
0
) 𝑓

󸀠

(𝑥
𝑛
) + 𝑢

0
− 𝛿𝑓 (𝑥

𝑛
)

+ 𝜆 [∫

𝑥
𝑛
+𝑓(0)/𝜙

0

𝑓 (𝑥
𝑛
− 𝑦) d𝐹 (𝑦) − 𝑓 (𝑥

𝑛
)]

󳨀→ −𝛿𝑓
0
+ 𝑢

0
.

(57)

Equivalently we have lim
𝑥→∞

𝑓(𝑥) = 𝑢
0
/𝛿.

Let 𝑇∗ be the ruin time under the strategies (30) and (31)
and 𝑉∗

(𝑥) the corresponding value. From Lemma 5 and the
HJB equation (27), we have

{𝑓(𝑋
𝜋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑓 (𝑥)

+∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠

𝑈
∗

𝑠
d𝑠 − 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
}

(58)

is a martingale with expected value 0. Then

𝑓 (𝑥) = 𝐸
𝑥
[𝑓 (𝑋

𝜋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

+ ∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠

𝑈
∗

𝑠
d𝑠

−𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
] .

(59)

Since 𝑓 is bounded and from the bounded convergence
theorem, as 𝑡 → ∞, we get that 𝐸[𝑓(𝑋𝜋

∗

𝑡∧𝑇
∗)𝑒

−𝛿(𝑡∧𝑇
∗
)

] →

0. The other terms are monotone, when 𝑡 → ∞, by
interchanging the limit and integration, so we obtain 𝑓(𝑥) =
𝑉
∗

(𝑥) ≤ 𝑉(𝑥).
On the other hand, because 𝑓(𝑥) is increasing and

satisfies (46), 𝑓(𝑥) is nonnegative on (−∞,∞). For any
admissible strategy 𝜋, HJB equation (27) gives that

𝑓 (𝑥) ≥ 𝐸
𝑥
[𝑓 (𝑋

𝜋

𝑡∧𝑇
𝜋) 𝑒

−𝛿(𝑡∧𝑇
𝜋
)

+ ∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠

𝑈
𝑠
d𝑠

−𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
]

≥ 𝐸
𝑥
[∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠

𝑈
𝑠
d𝑠 − 𝜙∫

𝑡∧𝑇
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
] .

(60)

Let 𝑡 → ∞; then 𝑓(𝑥) ≥ 𝑉
𝜋

(𝑥), which means 𝑓(𝑥) ≥ 𝑉(𝑥).
Thus, 𝑓(𝑥) = 𝑉(𝑥).

Based on the discussion above, if 𝑉(𝑥) is concave on
(0,∞), it is optimal for the shareholders to take no action

as long as the reserve process takes value in (0, 𝑏). When the
process reaches or exceeds the barrier 𝑏, dividends have to
be paid at the maximal rate 𝑢

0
. When the reserve is less than

0, the shareholders should consider either to inject capital to
recover the reserve to 0 or default to do so. If the decifit is less
than 𝑧∗, the shareholders can earn positive net profit. So they
inject capital which covers the deficit to survive the company.
Otherwise, once the deficit is larger than 𝑧∗, the shareholders
refuse to do so and ruin occurs.

Remark 7. Diffusion models can be used to approximate the
Cramér-Lundberg risk model. During the recent decades,
they have been applied to insurance modeling setting exten-
sively. See Radner and Shepp [12], Asmussen and Taksar [13],
and Højgaard and Taksar [14, 15], Sethi and Taksar [2], and
so forth. Diffusionmodels have the advantage that some very
explicit optimal controls and a smooth value function can
be made. Hopefully, these can help to take almost optimal
strategies for the original riskmodel. However, this statement
is not trivial.

The optimal dividend and issuance equity strategies (or
combined with other strategies) in diffusion risk model had
been studied by Løkka and Zervos [3], He and Liang [4, 5],
and so forth. In their paper, depending on the relationships
between the coefficients, it is optimal for the company either
to involve no issuance equity or to involve issuance equity
without ruin. In this paper, our conclusion in the Cramér-
Lundberg risk model is that the optimal capital injection
strategy will depend on the deficit. Once the deficit is
large, ruin will still occur. Thus the optimal capital injection
strategy looks different for these twomodels and the diffusion
approximations are not effective here.

Discussion on whether the diffusion approximation is
true can be found in Maglaras [16] and Bäuerle [6], and so
forth.

3. Unrestricted Dividends

In this section, we will discuss the dividend strategy without
restriction. Here all increasing, adapted, and càdlàg processes
are allowed to be the dividend strategy. LetΠ denote the set of
all admissible strategies. The value of an admissible strategy
𝜋 is

𝑉
𝜋

(𝑥) = 𝐸[∫

𝑇
𝜋
−

0−

𝑒
−𝛿𝑡d𝐷

𝑡
− 𝜙∫

𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡
] . (61)

The value function is 𝑉(𝑥) = sup
𝜋∈Π

𝑉
𝜋

(𝑥).

Lemma 8. On [0,∞), the function 𝑉(𝑥) is increasing and
local Lipschitz continuous; 𝑉(𝑥) − 𝑉(𝑦) ≥ 𝑥 − 𝑦 if 𝑥 ≥ 𝑦;
0 ≤ 𝑉(𝑥) ≤ 𝑥 + 𝑐/𝛿.

Proof. For any 𝜀 > 0, define a strategy 𝜋 satisfing 𝑉𝜋

(𝑦) ≥

𝑉(𝑦) − 𝜀. 𝜋󸀠 is a new strategy for 𝑥 ≥ 𝑦. {𝑍󸀠

𝑡
} in 𝜋󸀠 is the same

as {𝑍
𝑡
} in𝜋.While {𝐷󸀠

𝑡
} is defined as:𝑥−𝑦 is paid immediately

as dividend and then the strategy {𝐷
𝑡
} with initial capital 𝑦 is

followed.Therefore,𝑉(𝑥) ≥ 𝑥−𝑦+𝑉
𝜋

(𝑦) ≥ 𝑥−𝑦+𝑉(𝑦)− 𝜀.
From the arbitrary property of 𝜀, we have𝑉(𝑥)−𝑉(𝑦) ≥ 𝑥−𝑦.
In particulars, 𝑉(𝑥) is strictly increasing.
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Consider such a strategy 𝜋: the initial capital 𝑥 is paid
to the shareholders as dividends immediately and capital
injection is forbidden. Then 𝑉(𝑥) ≥ 𝑉

𝜋

(𝑥) ≥ 0.
To get the upper bound of 𝑉(𝑥), we consider a strategy

𝜋. {𝐷
𝑡
} is defined as: if the initial capital is 𝑥 (𝑥 ≥ 0), then 𝑥

is paid immediately and then the dividends are paid at rate
𝑐. If we donot take the capital injection into account, then
𝑥 + 𝐸

𝑥
[∫

∞

0

𝑒
−𝛿𝑡

𝑐 d𝑡] = 𝑥 + 𝑐/𝛿 is the upper bound of any
admissible strategy 𝜋; that is, 𝑉(𝑥) ≤ 𝑥 + 𝑐/𝛿.

The local Lipschitz continuity follows by the local bound-
edness of 𝑉(𝑥) as in the proof of Lemma 2.

3.1. HJB Equation and the Optimal Strategies. Similar to
the discussion in Section 2.2, 𝑉(𝑥) satisfies the following
dynamic programming principle:

𝑉 (𝑥) = sup
𝜋

𝐸
𝑥
[∫

𝜏∧𝑇
𝜋

0−

𝑒
−𝛿𝑡d𝐷

𝑡
− 𝜙∫

𝜏∧𝑇
𝜋

0

𝑒
−𝛿𝑡d𝑍

𝑡

+ 𝑒
−𝛿(𝜏∧𝑇

𝜋
)

𝑉 (𝑋
𝜋

𝜏∧𝑇
𝜋)]

(62)

for 𝑥 ∈ 𝑅
+
and any {F

𝑡
}-stopping time 𝜏.

For 𝑥 ≥ 0, similarly we define 𝜏𝜋 as in Section 2.2. Note
that 𝜎𝜋 = 𝑇

𝜋 is possible here. Applying Itô formula into
𝑒
−𝛿𝜏
𝜋

𝑉(𝑋
𝜋

𝜏
𝜋), we have

𝑒
−𝛿𝜏
𝜋

𝑉 (𝑋
𝜋

𝜏
𝜋) = 𝑉 (𝑋

𝜋

0−
)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

𝑐𝑉
󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑒

−𝛿𝑠

𝑉 (𝑋
𝜋

𝑠−
) d𝑠

+ ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)]

+ ∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] .

(63)

𝑋
𝜋

𝑠
̸= 𝑋

𝜋

𝑠+
only when capital is injected, so

∑

0≤𝑠<𝜏
𝜋

𝑋
𝜋

𝑠
̸=𝑋
𝜋

𝑠+

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠+
) − 𝑉 (𝑋

𝜋

𝑠
)] = 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
. (64)

When claim arrives or dividend occurs,𝑋𝜋

𝑠−
̸= 𝑋

𝜋

𝑠
.The jumps

caused by claim arrivals lead to

𝑀(𝜏
𝜋

) = 𝑀(𝜎
𝜋

∧ ℎ)

= ∑

0≤𝑠≤𝜏
𝜋

𝑋
𝜋

𝑠−
̸=𝑋
𝜋

𝑠

𝑒
−𝛿𝑠

[𝑉 (𝑋
𝜋

𝑠
) − 𝑉 (𝑋

𝜋

𝑠−
)]

− 𝜆∫

𝜏
𝜋

0

∫

∞

0

𝑒
−𝛿𝑠

(𝑉 (𝑋
𝜋

𝑠−
− 𝑦) − 𝑉 (𝑋

𝜋

𝑠−
)) d𝐹 (𝑦) d𝑠

(65)

is a martingale with 𝑀(0) = 0. And the amount of the
aggregated jumps caused by dividend are −∫𝜏

𝜋

0−

𝑒
−𝛿𝑠d𝐷

𝑠
. So

from the dynamic programming principle (62), yields

𝑉 (𝑥)

≥ 𝐸
𝑥
[∫

𝜏
𝜋

0−

𝑒
−𝛿𝑠d𝐷

𝑠
− 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
+ 𝑉 (𝑥)

+ ∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[𝑐𝑉
󸀠

(𝑋
𝜋

𝑠−
) − 𝛿𝑉 (𝑋

𝜋

𝑠−
) + 𝜆

×∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦) − 𝑉 (𝑋

𝜋

𝑠−
) d𝐹 (𝑦)] d𝑠

−∫

𝜏
𝜋

0−

𝑒
−𝛿𝑠d𝐷

𝑠
+ 𝜙∫

𝜏
𝜋

0

𝑒
−𝛿𝑠d𝑍

𝑠
] .

(66)

Equivalently

𝐸
𝑥
[∫

𝜏
𝜋

0

𝑒
−𝛿𝑠

[𝑐𝑉
󸀠

(𝑋
𝜋

𝑠−
) + 𝜆∫

∞

0

𝑉 (𝑋
𝜋

𝑠−
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
𝜋

𝑠−
)] d𝑠] ≤ 0.

(67)

If 𝑇𝜋

= 0, then 𝜏𝜋 = 0. Therefore (67) gives no information.
If 𝑇𝜋

> 0, we can choose 𝜀 such that 𝐸𝜏𝜋 > 0. Dividing 𝐸𝜏𝜋
in (67) and letting ℎ → 0, so

𝑐𝑉
󸀠

(𝑥) + 𝜆∫

∞

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0. (68)

Also we can rewrite the above inequality by

𝑐𝑉
󸀠

(𝑥) + 𝜆∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑥) ≤ 0 (69)

for 𝑧 ∈ 𝑅
+
.

Refering to the proof of (26), we have

𝑉
󸀠

(𝑥) ≤ 𝜙. (70)

If the company pays out 𝜀 as dividends, then the initial
capital reduces from 𝑥 to 𝑥 − 𝜀. Using the optimal strategy
afterwards, so𝑉(𝑥) ≥ 𝑉(𝑥− 𝜀) + 𝜀. Subtracting𝑉(𝑥− 𝜀) from
both sides, dividing by 𝜀, and letting 𝜀 → 0, we get

𝑉
󸀠

(𝑥) ≥ 1. (71)

One of the inequalities (69), (70), and (71) is always tight
(refer to Fleming and Soner [11]).

Thus we derive the HJB equation satisfied by 𝑉(𝑥) on
[0,∞)

max{sup
𝑧∈𝑅
+

{𝑐𝑉
󸀠

(𝑥) + 𝜆∫

𝑥+𝑧

0

𝑉 (𝑥 − 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑥)} , 1 − 𝑉
󸀠

(𝑥) , 𝑉
󸀠

(𝑥) − 𝜙} = 0.

(72)



10 Mathematical Problems in Engineering

To maximize ∫𝑥+𝑧
0

𝑉(𝑥 − 𝑦)d𝐹(𝑦), let us recall the proof
of 𝑧∗ = 𝑉(0)/𝜙 in Section 2.2. We can find that 𝑧∗ is
independent of 𝑢

0
. So we also have the optimal lower capital

injection barrier

−𝑧
∗

= −
𝑉 (0)

𝜙
. (73)

Hence when 𝑥 < 0, 𝑉(𝑥) can be expressed by

𝑉 (𝑥) = {
0 if 𝑥 ≤ −𝑧

∗

,

𝑉 (0) + 𝜙𝑥 if − 𝑧∗ < 𝑥 < 0.
(74)

In Section 2.2, the optimal dividend strategy and the opti-
mal capital injection strategy are both barrier strategies under
the assumption that 𝑉(𝑥) is concave on (0,∞). Moreover,
the optimal dividend barrier 𝑏 and the upper optimal capital
injection barrier 𝑎 are both independent of 𝑢

0
. Here if𝑉(𝑥) is

concave on (0,∞), similar to discussion in Section 2.2, we can
define the optimal dividend barrier 𝑏 := inf{𝑥 : 𝑉

󸀠

(𝑥) ≤ 1}

and the optimal upper capital injection barrier 𝑎 := sup{𝑥 :

𝑉
󸀠

(𝑥) ≥ 𝜙} ∨ 0. And also 𝑉(𝑥) is continuously differentiable.

Proposition9. If𝑉(𝑥) is concave on (0,∞), the optimal upper
capital injection barrier 𝑎 = 0.

Proof. The proof is similar as in Proposition 3, so we omit it
here.

Now define a strategy 𝜋1 = (𝐷
1

, 𝑍
1

) as follows:

𝐷
1

0
= max (𝑥 − 𝑏, 0) ,

𝐷
1

𝑡
= 𝐷

1

0
+ ∫

𝑡

0

𝑐1
{𝑋
𝜋
1

𝑠
=𝑏}

d𝑠, for 𝑡 > 0,

𝑍
1

𝑡
= max {− inf

0≤𝑠<𝑡

(𝑋
𝑠
− 𝐷

1

𝑠
) , 0} for 𝑡 > 0.

(75)

Let 𝑇∗

= inf{𝑡 ≥ 0 : 𝑋
𝜋
1

𝑡
≤ −𝑧

∗

}. Define strategy 𝜋∗ =

(𝐷
∗

, 𝑍
∗

) by the strategy 𝜋1 stopped at 𝑇∗:

𝐷
∗

𝑡
= {

𝐷
1

𝑡
, if 𝑡 < 𝑇

∗

,

𝐷
1

𝑇
∗
−
, if 𝑡 ≥ 𝑇

∗

,
𝑍
∗

𝑡
= {

𝑍
1

𝑡
, if 𝑡 < 𝑇

∗

,

𝑍
1

𝑇
∗ , if 𝑡 ≥ 𝑇

∗

.

(76)

Under 𝜋∗, if the initial capital 𝑥 > 𝑏, 𝑥 − 𝑏 will be paid to
the shareholders as dividends immediately.When the reserve
process takes value in (0, 𝑏), insurance company dose not pay
dividend and shareholders do not inject capital. When the
process reaches the barrier 𝑏, the premium income will be
paid as dividends. If deficit occurs and it is less than 𝑧∗, the
shareholders inject capital to recover the reserve process to 0.
Otherwise, they refuse to inject any capital and ruin occurs.
𝑋

∗

𝑡
= 𝑋

𝑡
− 𝐷

∗

𝑡
+ 𝑍

∗

𝑡
is the corresponding reserve process.

Theorem 10. If 𝑉(𝑥) is concave on (0,∞), the strategy 𝜋∗
defined in (76) is optimal; that is,

𝑉
𝜋
∗

(𝑥) = 𝑉 (𝑥) . (77)

Proof. Note that𝑉󸀠

(𝑋
∗

𝑡
) = 𝑉

󸀠

(𝑏) = 1 on {𝑋∗

𝑡
= 𝑏}. According

to (76), the possible increment of {𝑍∗

𝑡
} is at the time of claim

arrivals. As in Lemma 5,

𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

= 𝑉 (𝑥) − 𝐷
1

0
+ 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑉 (𝑋

∗

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇
𝑖
−
) 𝑒

−𝛿𝑇
𝑖 − 𝑉 (𝑋

∗

𝑇
𝑖−1

+
) 𝑒

−𝛿𝑇
𝑖−1]

+ 𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑉(𝑋
∗

𝑇
𝑁
𝑡∧𝑇
∗ +

) 𝑒
−𝛿𝑇
𝑁
𝑡∧𝑇
∗

= 𝑉 (𝑥) − 𝐷
1

0
+ 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑉 (𝑋

∗

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖

+

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

∫

𝑇
𝑖
−

𝑇
𝑖−1

+

[𝑐𝑉
󸀠

(𝑋
∗

𝑠
) − 𝛿𝑉 (𝑋

∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠

−

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

∫

𝑇
𝑖
−

𝑇
𝑖−1

+

𝛿𝑉 (𝑋
∗

𝑠
) 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠

+ ∫

𝑡∧𝑇
∗

𝑇
𝑁
𝑡∧𝑇
∗ +

[𝑐𝑉
󸀠

(𝑋
∗

𝑠
) − 𝛿𝑉 (𝑋

∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠

− ∫

𝑡∧𝑇
∗

𝑇
𝑁
𝑡∧𝑇
∗ +

𝛿𝑉 (𝑋
∗

𝑠
) 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠.

(78)

The process

{

𝑁
𝑡∧𝑇
∗

∑

𝑖=1

[𝑉 (𝑋
∗

𝑇
𝑖
−
− 𝑌

𝑖
) − 𝑉 (𝑋

∗

𝑇
𝑖
−
)] 𝑒

−𝛿𝑇
𝑖 − 𝜆

×∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠

[∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠−
− 𝑦) d𝐹 (𝑦) − 𝑉 (𝑋

∗

𝑠−
)] d𝑠}

(79)

is a martingale with expected value 0. Equivalently,

{𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑉 (𝑥) + 𝐷
1

0
− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

− ∫

𝑡∧𝑇
∗

0

[𝑐𝑉
󸀠

(𝑋
∗

𝑠
) + 𝜆∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠
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− ∫

𝑡∧𝑇
∗

0

[𝜆∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿)𝑉 (𝑋
∗

𝑠
)] 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠}

(80)

is a martingale. Because 𝑉(𝑥) is concave on (0,∞), the
derivatives of 𝑉(𝑥) from left and right exist. Moreover, 𝐹(𝑦)
is continuous, so 𝑉(𝑥) in (72) is continuously differentiable.
For 𝑉󸀠

(𝑋
∗

𝑠
) > 1 on {0 < 𝑋

∗

𝑠
< 𝑏}, the first term on the left-

hand side of (72) is 0, thus the integral over {0 < 𝑋
∗

𝑠
< 𝑏} on

the expression above is 0. Furthermore, from 𝑉
󸀠

(𝑋
∗

𝑠
) = 1 on

{𝑋
∗

𝑠
= 𝑏} and (72), it follows that

𝜆∫

𝑋
∗

𝑠
+𝑧
∗

0

𝑉 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿)𝑉 (𝑋

∗

𝑠
) = −𝑐. (81)

Taking this expression into (80), we have

{𝑉 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑉 (𝑥) + 𝐷
1

0

−𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
+ ∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠}

(82)

is a martingale with expected value 0. Then

𝑉 (𝑥) = 𝐸
𝑥
[𝑉 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠 + 𝐷1

0
] .

(83)

Note that

𝐸
𝑥
[𝑉 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

] = 𝑒
−𝛿𝑡

𝐸
𝑥
[𝑉 (𝑋

∗

𝑡
) 1

(𝑡≤𝑇
∗
)
]

≤ 𝑒
−𝛿𝑡

𝑉 (𝑏) .

(84)

By the bounded convergence theorem,

lim
𝑡→∞

𝐸
𝑥
[𝑉 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

] = 0. (85)

So

𝑉 (𝑥)

= lim
𝑡→∞

𝐸
𝑥
[∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠 − 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
+ 𝐷

1

0
]

= 𝐸
𝑥
[∫

𝑇
∗
−

0−

𝑒
−𝛿𝑠d𝐷∗

𝑠
− 𝜙∫

𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
] = 𝑉

∗

(𝑥) .

(86)

3.2. Characterization of the Solution. How to characterize the
solution 𝑉(𝑥) among other possible solutions?

Theorem 11. 𝑉(𝑥) is theminimal nonnegative solution to (72).

Proof. Let 𝑓 be a nonnegative solution to the HJB equation
(72). 𝑓 is increasing because 𝑓󸀠

(𝑥) ≥ 1. {𝑋∗

𝑡
} is the reserve

process under 𝜋∗. FromTheorem 10

{𝑓 (𝑋
∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝑓 (𝑥) + 𝐷
1

0
− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

− ∫

𝑡∧𝑇
∗

0

[𝑐𝑓
󸀠

(𝑋
∗

𝑠
) + 𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿) 𝑓 (𝑋
∗

𝑠
)] 1

{0<𝑋
∗

𝑠
<𝑏}
𝑒
−𝛿𝑠d𝑠

− ∫

𝑡∧𝑇
∗

0

[𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿) 𝑓 (𝑋
∗

𝑠
)] 1

{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠}

(87)

is a martingale with expected value 0. 𝑓(𝑥) satisfies (72); then

𝑐𝑓
󸀠

(𝑋
∗

𝑠
) + 𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦)

− (𝜆 + 𝛿) 𝑓 (𝑋
∗

𝑠
) ≤ 0.

(88)

Because 𝑓󸀠

(𝑥) ≥ 1,

𝜆∫

𝑋
∗

𝑠
+𝑓(0)/𝜙

0

𝑓 (𝑋
∗

𝑠
− 𝑦) d𝐹 (𝑦) − (𝜆 + 𝛿) 𝑓 (𝑋∗

𝑠
)

≤ −𝑐𝑓
󸀠

(𝑋
∗

𝑠
) ≤ −𝑐.

(89)

From the non-negative property of 𝑓(𝑥), we have

𝑓 (𝑥) ≥ 𝐸
𝑥
[𝑓 (𝑋

∗

𝑡∧𝑇
∗) 𝑒

−𝛿(𝑡∧𝑇
∗
)

− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠

+∫

𝑡∧𝑇
∗

0

𝑐1
{𝑋
∗

𝑠
=𝑏}
𝑒
−𝛿𝑠d𝑠 + 𝐷1

0
]

≥ 𝐸
𝑥
[∫

𝑡∧𝑇
∗
−

0−

𝑒
−𝛿𝑠d𝐷∗

𝑠
− 𝜙∫

𝑡∧𝑇
∗

0

𝑒
−𝛿𝑠d𝑍∗

𝑠
]

= 𝑉
∗

(𝑥) = 𝑉 (𝑥) .

(90)

4. Optimal Dividend and Capital Injection
Strategies for Exponential Claims

In this section we will consider the case that the claim size is
exponentially distributed and the dividend strategy without
restriction. Let 𝐹(𝑥) = 1 − 𝑒

−𝛼𝑥.
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First, we assume that 𝑓(𝑥) is an increasing, continuously
differentiable and concave solution to the HJB equation (72)
on [0,∞). Define 𝑏 = inf{𝑥 : 𝑓

󸀠

(𝑥) = 1} ∨ 0. On [0, 𝑏], 𝑓(𝑥)
satisfies

𝑐𝑓
󸀠

(𝑥) + 𝜆∫

𝑥

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦

+ 𝜆∫

𝑥+𝑓(0)/𝜙

𝑥

[𝑓 (0) + 𝜙 (𝑥 − 𝑦)] 𝛼𝑒
−𝛼𝑦d𝑦

− (𝜆 + 𝛿) 𝑓 (𝑥) = 0.

(91)

Let 𝑧 = 𝑥 − 𝑦 and change (91) into

𝑐𝑓
󸀠

(𝑥) + 𝜆𝑒
−𝛼𝑥

∫

𝑥

0

𝑓 (𝑧) 𝛼𝑒
𝛼𝑧d𝑧

+ 𝜆𝑒
−𝛼𝑥

∫

0

−𝑓(0)/𝜙

[𝑓 (0) + 𝜙𝑧] 𝛼𝑒
𝛼𝑧d𝑧

− (𝜆 + 𝛿) 𝑓 (𝑥) = 0.

(92)

The above expression can be derivative, so it yields

𝑐𝑓
󸀠󸀠

(𝑥) − 𝛼𝜆𝑒
−𝛼𝑥

∫

𝑥

0

𝑓 (𝑧) 𝛼𝑒
𝛼𝑧d𝑧 + 𝛼𝜆𝑓 (𝑥)

− 𝛼𝜆𝑒
−𝛼𝑥

∫

0

−𝑓(0)/𝜙

[𝑓 (0) + 𝜙𝑧] 𝛼𝑒
𝛼𝑧d𝑧

− (𝜆 + 𝛿) 𝑓
󸀠

(𝑥) = 0.

(93)

Combining (92) with (93), we get the differentiable equation
about 𝑓(𝑥)

𝑐𝑓
󸀠󸀠

(𝑥) + (𝛼𝑐 − (𝜆 + 𝛿)) 𝑓
󸀠

(𝑥) − 𝛼𝛿𝑓 (𝑥) = 0. (94)

Its solution is

𝑓 (𝑥) = 𝐶
1
𝑒
V
1
𝑥

+ 𝐶
2
𝑒
V
2
𝑥

, (95)

where V
1
, V

2
are the solutions of equation 𝑐V2+(𝛼𝑐−(𝜆+𝛿))V−

𝛼𝛿 = 0; that is,

V
1
=

𝜆 + 𝛿 − 𝛼𝑐 − √(𝜆 + 𝛿 − 𝛼𝑐)
2

+ 4𝛼𝑐𝛿

2𝑐
< 0,

V
2
=

𝜆 + 𝛿 − 𝛼𝑐 + √(𝜆 + 𝛿 − 𝛼𝑐)
2

+ 4𝛼𝑐𝛿

2𝑐
> 0.

(96)

When 𝑥 ≥ 𝑏, we conjecture that

𝑓 (𝑥) = 𝑥 − 𝑏 + 𝑓 (𝑏) , 𝑥 ≥ 𝑏. (97)

Therefore, from (95) and (97), the suggested solution of HJB
equation (72) has the form

𝑓 (𝑥) = {
𝐶
1
𝑒
V
1
𝑥

+ 𝐶
2
𝑒
V
2
𝑥 if 0 ≤ 𝑥 ≤ 𝑏,

𝑥 − 𝑏 + 𝐶
1
𝑒
V
1
𝑏

+ 𝐶
2
𝑒
V
2
𝑏 if 𝑥 ≥ 𝑏,

(98)

where 𝐶
1
, 𝐶

2
, and 𝑏 are to be determined later.

Lemma 12. At 𝑥 = 𝑏, we have

𝑓
󸀠󸀠

(𝑏) = 0, 𝑓 (𝑏) =
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
. (99)

Proof. As we have assumed that 𝑓(𝑥) satisfies HJB equation
(72), when 𝑥 > 𝑏, we have

𝑐 + 𝜆∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿) 𝑓 (𝑥) ≤ 0.

(100)

Note that

∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦

= ∫

𝑥−𝑏

0

[𝑓 (𝑏) + (𝑥 − 𝑦 − 𝑏)] 𝛼𝑒
−𝛼𝑦d𝑦

+ ∫

𝑥+𝑓(0)/𝜙

𝑥−𝑏

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦

= [𝑓 (𝑏) + (𝑥 − 𝑏)] (1 − 𝑒
−𝛼(𝑥−𝑏)

) − ∫

𝑥−𝑏

0

𝑦𝛼𝑒
−𝛼𝑦d𝑦

+ ∫

𝑏+𝑓(0)/𝜙

0

𝑓 (𝑏 − 𝑢) 𝛼𝑒
−𝛼(𝑥−𝑏+𝑢)d𝑢

= [𝑓 (𝑏) + (𝑥 − 𝑏)] (1 − 𝑒
−𝛼(𝑥−𝑏)

) + (𝑥 − 𝑏) 𝑒
−𝛼(𝑥−𝑏)

−
1

𝛼
+
1

𝛼
𝑒
−𝛼(𝑥−𝑏)

+ (∫

𝑏+𝑓(0)/𝜙

0

𝑓 (𝑏 − 𝑢) 𝛼𝑒
−𝛼𝑢d𝑢) 𝑒−𝛼(𝑥−𝑏)

(101)

and from the HJB equation (72), when 𝑥 = 𝑏,

𝑐 + 𝜆∫

𝑏+𝑓(0)/𝜙

0

𝑓 (𝑏 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿)𝑉 (𝑏) = 0. (102)

Plugging (101) and (102) into the left side of (100), thenwe can
rewrite the expression by

𝑐 + 𝜆 {[𝑓 (𝑏) + (𝑥 − 𝑏)] (1 − 𝑒
−𝛼(𝑥−𝑏)

)

+ (𝑥 − 𝑏) 𝑒
−𝛼(𝑥−𝑏)

−
1

𝛼
+
1

𝛼
𝑒
−𝛼(𝑥−𝑏)

}

+ [(𝜆 + 𝛿) 𝑓 (𝑏) − 𝑐] 𝑒
−𝛼(𝑥−𝑏)

− (𝜆 + 𝛿) (𝑓 (𝑏) + (𝑥 − 𝑏))

= (𝑐 − 𝛿𝑓 (𝑏) −
𝜆

𝛼
) (1 − 𝑒

−𝛼(𝑥−𝑏)

) − 𝛿 (𝑥 − 𝑏) .

(103)

Therefore (100) is established if and only if 𝑓(𝑏) ≥ [𝛼𝑐 − 𝜆 −

𝛼𝛿(𝑥 − 𝑏)/(1 − 𝑒
−𝛼(𝑥−𝑏)

)]/(𝛼𝛿) for all 𝑥 > 𝑏. When 𝑥 → 𝑏,
𝑓(𝑏) ≥ (𝛼𝑐 − 𝜆 − 𝛿)/(𝛼𝛿).
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In (94), let 𝑥 = 𝑏. From 𝑓(𝑏) ≥ (𝛼𝑐 − 𝜆 − 𝛿)/(𝛼𝛿), we find
that

0 = 𝑐𝑓
󸀠󸀠

(𝑏) + (𝛼𝑐 − (𝜆 + 𝛿)) − 𝛼𝛿𝑓 (𝑏)

≤ 𝑐𝑓
󸀠󸀠

(𝑏) + (𝛼𝑐 − (𝜆 + 𝛿)) − 𝛼𝛿
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
= 𝑐𝑓

󸀠󸀠

(𝑏) ,

(104)

which implies 𝑓󸀠󸀠

(𝑏) ≥ 0.
On the other hand, because 𝑓(𝑥) is concave, we have

𝑓
󸀠󸀠

(𝑥) ≤ 0. Particularly,𝑓󸀠󸀠

(𝑏) ≤ 0. Combining the discussion
above, 𝑓󸀠󸀠

(𝑏) = 0.
Furthermore, taking 𝑓󸀠󸀠

(𝑏) = 0 and 𝑓󸀠

(𝑏) = 1 into (94)
yields

𝑓 (𝑏) =
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
. (105)

Next we will determine 𝐶
1
, 𝐶

2
, and 𝑏.

From the expression of 𝑓(𝑥) in (95) and 𝑓󸀠󸀠

(𝑏) = 0 (it has
been proved in Lemma 12), it holds that

𝑓
󸀠󸀠

(𝑏) = 𝐶
1
V2
1
𝑒
V
1
𝑏

+ 𝐶
2
V2
2
𝑒
V
2
𝑏

= 0. (106)

The continuously differentiable property of 𝑓(𝑥) tells us that

𝑓
󸀠

(𝑏) = 𝐶
1
V
1
𝑒
V
1
𝑏

+ 𝐶
2
V
2
𝑒
V
2
𝑏

= 1. (107)

Combining the two equations above, we can get the expres-
sion of 𝐶

1
and 𝐶

2
:

𝐶
1
=

V
2

(V
2
− V

1
) V

1
𝑒V1𝑏

, 𝐶
2
=

V
1

(V
1
− V

2
) V

2
𝑒V2𝑏

. (108)

When 𝑥 = 0, (95) informs us that 𝑓(0) = 𝐶
1
+ 𝐶

2
, 𝑓

󸀠

(0) =

𝐶
1
V
1
+ 𝐶

2
V
2
. Meanwhile, at 𝑥 = 0 the integral-differential

equation (91) implies

𝑐𝑓
󸀠

(0) + 𝜆∫

𝑓(0)/𝜙

0

[𝑓 (0) − 𝜙𝑦] d𝐹 (𝑦) − (𝜆 + 𝛿) 𝑓 (0) = 0.

(109)

Together with (108), (109) can be rewritten as

𝑐V
2

V
2
− V

1

𝑒
−V
1
𝑏

+
𝑐V

1

V
1
− V

2

𝑒
−V
2
𝑏

−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)[(V
2
/(V
2
−V
1
)V
1
)𝑒
−V1𝑏

+(V
1
/(V
1
−V
2
)V
2
)𝑒
−V2𝑏

]

)

− 𝛿 [
V
2

(V
2
− V

1
) V

1

𝑒
−V
1
𝑏

+
V
1

(V
1
− V

2
) V

2

𝑒
−V
2
𝑏

] = 0,

(110)

which can be used to calculate 𝑏.

Proposition 13. The solution of (110) is unique. 𝑏 = 0 if and
only if

𝜆 + 𝛿 ≥ 𝜆𝜙 (1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

) . (111)

Proof. To analyse the solution of (110), we first define a
function

𝑔 (𝑧) :=
𝑐V

2

V
2
− V

1

𝑒
−V
1
𝑧

+
𝑐V

1

V
1
− V

2

𝑒
−V
2
𝑧

−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)[(V
2
/(V
2
−V
1
)V
1
)𝑒
−V1𝑧

+(V
1
/(V
1
−V
2
)V
2
)𝑒
−V2𝑧

]

)

− 𝛿 [
V
2

(V
2
− V

1
) V

1

𝑒
−V
1
𝑧

+
V
1

(V
1
− V

2
) V

2

𝑒
−V
2
𝑧

] ,

(112)

where 𝑧 ≥ 0. In view of V
1
+ V

2
= [(𝜆 + 𝛿) − 𝛼𝑐]/𝑐 and V

1
V
2
=

−𝛼𝛿/𝑐, we find that

𝑔
󸀠

(𝑧) = 𝑐
V
1
V
2

V
1
− V

2

(𝑒
−V
1
𝑧

− 𝑒
−V
2
𝑧

)

+ 𝛿(
V
2

V
2
− V

1

𝑒
−V
1
𝑧

+
V
1

V
1
− V

2

𝑒
−V
2
𝑧

)

− 𝜆(
V
2

V
1
− V

2

𝑒
−V
1
𝑧

+
V
1

V
2
− V

1

𝑒
−V
2
𝑧

)

⋅ 𝑒
−(𝛼/𝜙)[(V

2
/(V
2
−V
1
)V
1
)𝑒
−V1𝑧

+(V
1
/(V
1
−V
2
)V
2
)𝑒
−V2𝑧

]

> 0,

(113)

which implies 𝑔(𝑧) is increasing strictly. So the solution is
unique. Consider

lim
𝑧→∞

𝑔 (𝑧) = lim
𝑧→∞

[
𝑐V

2

V
2
− V

1

𝑒
−V
1
𝑧

−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)(V
2
/(V
2
−V
1
)V
1
)𝑒
−V1𝑧

)

−𝛿
V
2

(V
2
− V

1
) V

1

𝑒
−V
1
𝑧

] = ∞.

(114)

Hence 𝑏 = 0 if and only if 𝑔(0) ≥ 0. While

𝑔 (0) = 𝑐 −
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼/𝜙)((V
1
+V
2
)/V
1
V
2
)

) − 𝛿
V
1
+ V

2

V
1
V
2

=
𝜆 + 𝛿

𝛼
−
𝜆𝜙

𝛼
(1 − 𝑒

−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

) ,

(115)

so the necessary and sufficient condition of 𝑏 = 0 is 𝜆 + 𝛿 ≥

𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

).

Based on the discussion above, we obtain the expression
of𝑓(𝑥).The following proposition will verify the concavity of
𝑓(𝑥).

Proposition 14. 𝑓(𝑥) is concave on [0,∞).

Proof. When 𝑥 ∈ [0, 𝑏), from (95) and (108), we have

𝑓
󸀠󸀠

(𝑥) =
V
2
V
1

V
2
− V

1

𝑒
V
1
(𝑥−𝑏)

+
V
1
V
2

V
1
− V

2

𝑒
V
2
(𝑥−𝑏)

=
V
2
V
1

V
2
− V

1

(𝑒
V
1
(𝑥−𝑏)

− 𝑒
V
2
(𝑥−𝑏)

) < 0

(116)
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due to the fact V
1
< 0 and V

2
> 0. What is more, 𝑓󸀠󸀠

(𝑥) = 0

for 𝑥 ≥ 𝑏. Therefore 𝑓󸀠󸀠

(𝑥) ≤ 0 on [0,∞). This establishes the
concavity of 𝑓(𝑥) on [0,∞).

Proposition 15. 𝑓(𝑥) is the solution of HJB equation (72)
when 𝑥 ∈ [0,∞).

Proof. From the construction of 𝑓(𝑥),

𝑓
󸀠

(𝑥) = 1 for 𝑥 ≥ 𝑏

𝑐 + 𝜆∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿) 𝑓 (𝑥) = 0

for 0 ≤ 𝑥 ≤ 𝑏

(117)

are established obviously. We only remain to show that 𝑓(𝑥)
satisfies

𝑓
󸀠

(𝑥) > 1 for 0 ≤ 𝑥 < 𝑏, (118)

𝑐 + 𝜆∫

𝑥+𝑓(0)/𝜙

0

𝑓 (𝑥 − 𝑦) 𝛼𝑒
−𝛼𝑦d𝑦 − (𝜆 + 𝛿) 𝑓 (𝑥) < 0

for 𝑥 > 𝑏,

(119)

𝑓
󸀠

(𝑥) < 𝜙 for 𝑥 > 0. (120)

From the concavity of 𝑓(𝑥) and 𝑓󸀠

(𝑏) = 1, (118) is true.
Similar to the proof in Lemma 12 we can show (119) is

established.
To prove (120), according to the concavity of 𝑓(𝑥), we

only need to show 𝑓
󸀠

(0) < 𝜙. Let 𝑥 = 0 in (91) and assume
that 𝑓󸀠

(0) ≥ 𝜙. We find

𝑓 (0) =
𝛼𝑐𝑓

󸀠

(0) − 𝜆𝜙 + 𝜆𝜙𝑒
−(𝛼/𝜙)𝑓(0)

𝛼𝛿

≥
𝛼𝑐𝜙 − 𝜆𝜙 + 𝜆𝜙𝑒

−(𝛼/𝜙)𝑓(0)

𝛼𝛿

= 𝜙
𝛼𝑐 − 𝜆 + 𝜆𝑒

−(𝛼/𝜙)𝑓(0)

𝛼𝛿

> 𝜙
𝛼𝑐 − 𝜆 − 𝛿

𝛼𝛿
= 𝜙𝑓 (𝑏) .

(121)

The last equality comes from 𝑓(𝑏) = (𝛼𝑐 − 𝜆 − 𝛿)/𝛼𝛿 which
is proved in Lemma 12. While 𝑓(0) > 𝜙𝑓(𝑏) is impossible
because 𝑓(𝑥) is increasing and 𝜙 > 1. This also tells us
that 𝑓󸀠

(0) < 𝜙. Therefore 𝑓
󸀠

(0) ≤ 𝜙. And the proof is
completed.

The following theorem gives the optimal value function
and optimal strategies when the claim size is exponentially
distributed.

Theorem 16. Suppose 𝐹(𝑥) = 1 − 𝑒
−𝛼𝑥. The value function

𝑉(𝑥) and the optimal strategy are as follows.

(1) If 𝜆 + 𝛿 < 𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

), the value function

𝑉 (𝑥) =

{{{{

{{{{

{

0 if 𝑥 < −𝑧
∗

,

𝑉 (0) + 𝜙𝑥 if − 𝑧∗ ≤ 𝑥 < 0,

𝐶
1
𝑒
V
1
𝑥

+ 𝐶
2
𝑒
V
2
𝑥 if 0 ≤ 𝑥 < 𝑏,

𝑥 − 𝑏 + 𝐶
1
𝑒
V
1
𝑏

+ 𝐶
2
𝑒
V
2
𝑏 if 𝑥 ≥ 𝑏,

(122)

where 𝐶
1
, 𝐶

2
are given by (108). The optimal lower

capital injection barrier −𝑧
∗

= −𝑉(0)/𝜙 and the
optimal upper capital injection barrier 𝑎 = 0. The
optimal dividend barrier 𝑏 can be calculated from (110).

(2) If 𝜆 + 𝛿 ≥ 𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

), the value function

𝑉 (𝑥)

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

0 if 𝑥 < −𝑧
∗

,

𝑉 (0) + 𝜙𝑥

= [𝜙𝑊(
𝜆

𝛿
𝑒
−(𝛼𝑐−𝜆𝜙)/𝜙𝛿

)

+
𝛼𝑐 − 𝜆𝜙

𝛿
] (𝛼 + 𝜙𝑥)

−1 if − 𝑧∗ ≤ 𝑥 < 0,

𝑥 + 𝑉 (0)

= 𝑥 + [𝜙𝑊(
𝜆

𝛿
𝑒
−(𝛼𝑐−𝜆𝜙)/𝜙𝛿

)

+
𝛼𝑐 − 𝜆𝜙

𝛿
] (𝛼)

−1 if 𝑥 ≥ 0,

(123)

where 𝑊(𝑥) is Lambert W function which is the
solution of 𝑊(𝑥)𝑒

𝑊(𝑥)

= 𝑥. The optimal lower capital
injection barrier −𝑧∗ = −𝑉(0)/𝜙 and the optimal
upper capital injection barrier 𝑎 = 0. The optimal
dividend barrier 𝑏 = 0.

Proof. (1) For 𝑥 ≥ 0, because 𝑓(𝑥) is the solution of HJB
equation (72) on [0,∞), from Theorem 11, we know 𝑉(𝑥)

coincides with 𝑓(𝑥) on [0,∞). Because 𝑉(𝑥) is concave on
[0,∞), Proposition 9 and the expression (73) inform us what
are the optimal upper and lower capital injection barriers.
Under the condition in (1), 𝑏 > 0 by Proposition 13. 𝑏 can
be derived by (110). When 𝑥 < 0, the expression of 𝑉(𝑥) has
been discussed in (74).Therefore, (122) is established. Figure 1
shows us the sample path of the reserve process under the
optimal strategy 𝜋∗ and Figure 2 is the figure of the value
function 𝑉(𝑥).

(2) If 𝜆 + 𝛿 ≥ 𝜆𝜙(1 − 𝑒
−(𝛼𝑐−(𝜆+𝛿))/𝜙𝛿

), then 𝑏 = 0

by Proposition 13. 𝑏 = 0 means that under the optimal
strategy, the shareholders will act as the insurer: they receive
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∗
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∗
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∗
t

Figure 1: The sample path of the reserve process under the optimal
strategy 𝜋∗.

b−z
∗

t

V(x)

Figure 2: The value function 𝑉(𝑥).

the premium income andpay each claim in full when it occurs
(see Dickson and Waters [7]). 𝑉(0)must be recalculated by

𝑉 (0) = 𝐸 [∫

𝑇
1

0

𝑐𝑒
−𝛿𝑡d𝑡 + 𝑒−𝛿𝑇1 (𝑉 (0) − 𝜙𝑌

1
) 1

(𝑌
1
≤𝑉(0)/𝜙)

]

= ∫

∞

0

𝜆𝑒
−𝜆𝑠

∫

𝑠

0

𝑐𝑒
−𝛿𝑡d𝑡 d𝑠

+ ∫

∞

0

𝜆𝑒
−𝜆𝑠

𝑒
−𝛿𝑠

∫

𝑉(0)/𝜙

0

(𝑉 (0) − 𝜙𝑦) 𝛼𝑒
𝛼𝑦d𝑦 d𝑠

=
𝛼𝑐 − 𝜆𝜙

𝛼𝛿
+
𝜆𝜙

𝛼𝛿
𝑒
−𝛼(𝑉(0)/𝜙)

.

(124)

So 𝑉(0) = [𝜙𝑊((𝜆/𝛿)𝑒
−(𝛼𝑐−𝜆𝜙)/𝜙𝛿

) + (𝛼𝑐 − 𝜆𝜙)/𝛿]/𝛼, where
𝑊(𝑥) is Lambert 𝑊 function which is the solution of
𝑊(𝑥)𝑒

𝑊(𝑥)

= 𝑥. −𝑧∗ = −𝑉(0)/𝜙 and 𝑎 = 0 are same as the
discussion in proof of (1). Therefore, 𝑉(𝑥) can be expressed
by (123). Figure 3 is the figure of the value function 𝑉(𝑥).

Note that it is the first time that Lambert 𝑊 function is
used in the risk theory. It simplifies the expression of 𝑉(𝑥)
when 𝑏 = 0.

−z
∗ t

V(x)

Figure 3: The value function 𝑉(𝑥).
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