
Research Article
Solving the Multiscenario Max-Min Knapsack Problem
Exactly with Column Generation and Branch-and-Bound

Telmo Pinto, Cláudio Alves, Ra\d Mansi, and José Valério de Carvalho

Centro de Investigação Algoritmi da Universidade doMinho, Escola de Engenharia, Universidade doMinho, 4710-057 Braga, Portugal

Correspondence should be addressed to Cláudio Alves; claudio@dps.uminho.pt

Received 25 November 2014; Revised 21 January 2015; Accepted 27 January 2015

Academic Editor: Lu Zhen

Copyright © 2015 Telmo Pinto et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Despite other variants of the standard knapsack problem, very few solution approaches have been devised for the multiscenario
max-min knapsack problem. The problem consists in finding the subset of items whose total profit is maximized under the worst
possible scenario. In this paper, we describe an exact solution method based on column generation and branch-and-bound for
this problem. Our approach relies on a reformulation of the standard compact integer programming model based on the Dantzig-
Wolfe decomposition principle. The resulting model is potentially stronger than the original one since the corresponding pricing
subproblem does not have the integrality property. The details of the reformulation are presented and analysed together with those
concerning the columngeneration andbranch-and-boundprocedures. To evaluate the performance of our algorithm,we conducted
extensive computational experiments on large scale benchmark instances, and we compared our results with other state-of-the-art
approaches under similar circumstances. We focused in particular on different relevant aspects that allow an objective evaluation
of the efficacy of our approach. From different standpoints, the branch-and-price algorithm proved to outperform the other state-
of-the-art methods described so far in the literature.

1. Introduction

Themultiscenario max-min knapsack problem is a variant of
the well-known knapsack problem.The problem is character-
ized by a set of items with a given weight and profits, and by a
knapsack whose capacity determines the unique constraint
that applies. In this context, a scenario is defined through
the set of profits that apply to each item, respectively. Hence,
the profit of an item depends directly on the scenario that
is considered. The objective of the multiscenario max-min
knapsack problem is to determine the subset of items whose
total weight is smaller than or equal to the knapsack capacity,
andwhose total profit ismaximized in theworst scenario over
all the possible scenarios.

The standard knapsack problem is a special case of the
multiscenario max-min knapsack problem in which there
is only one scenario. In this case, the worst scenario is
always the only one that applies, and the max-min knapsack
problem reduces to the problem of finding the items with the
maximum total profit under this scenario. As a consequence,
the multiscenario max-min knapsack problem is NP-hard. In

fact, Yu showed in [1] that the problem is pseudopolynomially
solvable when the number of scenarios is bounded, while it
is strongly NP-hard when this number is unbounded. The
complexity of min-max combinatorial optimization prob-
lemswas further studied in [2]where different approximation
results are provided. They proved in particular that the min-
max regret knapsack problem is not at all approximable even
in the case of two scenarios, and that the problem is also
strongly NP-hard for a nonconstant number of scenarios.
Specific variants of the min-max knapsack problemwere also
explored in [3] for the case where the item sizes are all equal
to 1, and one has to choose a given number of items so as to
minimize the total cost under the existing scenarios. In [3],
Kasperski et al. showed that the problem is not approximable
within a constant factor unless P = NP.

Unlike the standard knapsack problem and other variants
which have been explored in depth in the literature [4, 5],
the multiscenario max-min knapsack problem has received
much less attention, and only recently different approaches
began to be explored [1, 6–10]. In practice, solving large scale
instances of the multiscenario max-min knapsack problem

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 439609, 11 pages
http://dx.doi.org/10.1155/2015/439609

2 Mathematical Problems in Engineering

up to optimality remains a challenge. In this paper, we
describe and analyse an exact solution approach for the
problem that relies on the combination of branch-and-bound
and column generation. To the best of our knowledge, this is
the first time that these methods are used together to solve
this particular problem.

The first contributions towards the solution of the multi-
scenario max-min knapsack problem are due to Yu [1] and
Iida [6]. Yu [1] proposed and analysed lower and upper
bounds for the problem computed through surrogate relax-
ation. He described an exact branch-and-bound algorithm
for the problem which solved instances with up to 60 items
and 30 scenarios. Different lower and upper bounds based on
linear programming were proposed later by Iida in [6]. To
evaluate their effectiveness, the author embedded the bounds
on the branch-and-bound algorithm proposed by Yu [1].
Although Iida claimed that the bounds were not as tight
as those proposed by Yu [1], his computational experiments
showed that the bounds were sufficient to solve the instances
used by Yu up to optimality in less than one minute on
average.

Taniguchi et al. [7] explored the use of the pegging
test to reduce the size of the problem. The pegging test is
applied after lower and upper bounds have been computed
through surrogate relaxation. The optimal solution of the
multiscenario max-min knapsack problem is then searched
by applying branch-and-bound on the reduced problem.
The authors report on computational experiments conducted
on instances generated as described in [1]. The size of the
instances goes up to 30 scenarios and 1000 items, although
the method frequently found much difficulty in solving the
largest instances up to optimality within the time limit of
1200 seconds.The authors also compared their approach with
those by Yu [1] and Iida [6] on smaller instances with 60 items
and up to 30 scenarios and concluded that it outperformed
them both.

The same authors extended their work in [11] focus-
ing on the two-scenario max-min knapsack problem. They
described a heuristic algorithm with which they found solu-
tions for instances with up to 16000 items. In their approach,
lower and upper bounds are still obtained through surrogate
relaxation, while the pegging test is used to reduce the size of
the instance. The authors also describe a method to further
decrease the size of the problem based on a so-called virtual
pegging test.

In [8], a cooperative approach based on tabu search
and combining two local search algorithms is proposed.
The author described a generalized local search procedure
which is used to diversify the search and a restricted local
search procedure which is used to intensify the search in
a given region. To generate initial feasible solutions for the
problem, the author resorted to an iterative greedy heuristic.
The computational experiments reported in [8] showed that
good approximate solutions can be found with this approach
within small computing times.

In [9], Hanafi et al. explored a hybrid approach to solve
the max-min knapsack problem with two scenarios. Their
approach is based on the iterative improvement of lower
and upper bounds obtained through relaxations of mixed

integer programming models, temporary variable fixing,
and by enforcing pseudocuts that exclude prior solutions
of the problem. The authors reported on computational
experiments using instances with up to 20000 items which
showed a better performance on correlated instances of the
max-min knapsack problem with two scenarios.

More recently, Song et al. [10] proposed a fast heuristic
to solve the multiscenario max-min knapsack problem.Their
approach remains based on the solution of a surrogate relax-
ation of the original problem obtained by applying a subgra-
dient algorithm. The authors explored different incomplete
𝑚-exchange algorithms consisting in swapping the values of
some of the binary variables of the problem. Their approach
showed to be able to generate good approximate solutions for
large scale instances within reasonable time limits although
its effectiveness seems to decrease with strongly correlated
instances.

In this paper, we explore a novel approach for the exact
resolution of the multiscenario max-min knapsack problem
based on column generation and branch-and-bound. Prior
preliminary results on the use of column generation to
compute lower and upper bounds were discussed in [12] for
the problem with only two scenarios. Here, we extend this
approach by generalizing it to the case of multiple scenarios,
and we propose a branch-and-price algorithm to search for
optimal integer solutions. The performance of the global
approach is evaluated through extensive computational
experiments performed on large scale benchmark instances
from the literature. The results illustrate the effectiveness of
the branch-and-price algorithm in finding optimal solutions
within reasonable computing times even for strongly corre-
lated instances. Branch-and-price was never used before to
solve exactly the multiscenario max-min knapsack problem.
However, it is important to note that there are already some
successful attempts reported in the literature concerning the
application of column generation to other variants of the
standard knapsack problem. Such an example can be found
in [13] for the multiple-choice knapsack problem.

The outline of the paper is as follows. In Section 2, we
describe formally the elements that characterize the multi-
scenario max-min knapsack problem, and we introduce the
notation that will be used throughout the paper. In Section 3,
we describe two integer programming formulations for the
problem: a standard compact formulation and a column
generation reformulation that relies on a Dantzig-Wolfe
decomposition of the previous model. The components of
our branch-and-price algorithm are described in Section 4.
In Section 5, we report on the computational experiments
performed to evaluate the performance of our approach.
Some conclusions are finally drawn in Section 6.

2. The Multiscenario Max-Min
Knapsack Problem

As referred to above, the multiscenario max-min knapsack
problem is a generalization of the well-known standard
knapsack problem. In the latter, one is given a set of items
characterized by a weight 𝑤

𝑖
and a profit 𝑐

𝑖
. The objective

Mathematical Problems in Engineering 3

of this standard problem is to find the subset of items with
the maximum total profit that fit into a given knapsack of
capacity 𝑤; that is, whose total weight is smaller than or
equal to 𝑤. Let 𝑛 be the total number of items. The standard
knapsack problem can be formulated using the following
integer programming model:

max
𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑖

s.t.
𝑛

∑

𝑖=1

𝑤
𝑖
𝑥
𝑖
≤ 𝑤,

𝑥
𝑖
∈ {0, 1} , 𝑖 = 1, . . . , 𝑛,

(1)

with the binary variables 𝑥
𝑖
indicating whether the item 𝑖 is

selected or not.
The max-min knapsack problem shares most of the

defining characteristics of the standard knapsack problem. It
is defined from a set of 𝑛 items of weight 𝑤

𝑖
, 𝑖 = 1, . . . , 𝑛,

and from a knapsack of capacity 𝑤. The difference lies in the
definition of the profits associated with the items. In themax-
min knapsack problem, the profit of an item depends on the
particular scenario that is considered. For a given scenario 𝑠,
the profit of a given item 𝑖, 𝑖 = 1, . . . , 𝑛, under this scenario
will be denoted by 𝑐𝑠

𝑖
. Hence, a scenario is defined as a set

of profits that apply to the items of the problem. On the
contrary, the weights of the items are independent from the
scenarios, and remain equal to 𝑤

𝑖
for an item 𝑖 whatever the

scenario thatmay apply.Throughout the paper, wewill denote
by𝑚 the total number of scenarios. In the general case where
the number 𝑚 of scenarios is unbounded, the problem is
referred to as the multiscenario max-min knapsack problem.
In this context, the objective of the problem consists in
finding the subset of items that fit in the knapsack and with
the maximum total profit under the worst scenario, that is,
under the scenario with the minimum total profit over all the
scenarios. In the case where 𝑚 = 1, the problem reduces to
the standard knapsack problem, and, as a consequence, the
latter can be considered as a special case of the multiscenario
max-min knapsack problem.

In this paper, we will address the general multiscenario
max-min knapsack problem where the number 𝑚 of scenar-
ios is unbounded. Furthermore, we will assume that all the
items have positive integer profits, a weight which is smaller
than or equal to the capacity𝑤 of the knapsack, and such that
the items do not fit all in the knapsack, that is, ∑𝑛

𝑖=1
𝑤
𝑖
> 𝑤.

3. Integer Programming Formulations

3.1. The Standard Formulation. The multiscenario max-min
knapsack problem can be formulated as follows:

max min
𝑠=1,...,𝑚

{

𝑛

∑

𝑖=1

𝑐

𝑠

𝑖
𝑥
𝑖
}

s.t.
𝑛

∑

𝑖=1

𝑤
𝑖
𝑥
𝑖
≤ 𝑤,

𝑥
𝑖
∈ {0, 1} , 𝑖 = 1, . . . , 𝑛,

(2)

where the binary variables 𝑥
𝑖
represent the selection or not

of an item 𝑖, 𝑖 = 1, . . . , 𝑛. This model is a direct extension of
the integer programmingmodel (1) for the standard knapsack
problem.

The minimization part of the objective function can be
reformulated using a set of equivalent constraints stating that
the total profits under every scenario must be greater than or
equal to a given variable 𝑧. The resulting model becomes a
single-objective problem as illustrated next:

max 𝑧 (3)

s.t.
𝑛

∑

𝑖=1

𝑐

1

𝑖
𝑥
𝑖
≥ 𝑧, (4)

𝑛

∑

𝑖=1

𝑐

2

𝑖
𝑥
𝑖
≥ 𝑧, (5)

.

.

.

(6)

𝑛

∑

𝑖=1

𝑐

𝑚

𝑖
𝑥
𝑖
≥ 𝑧, (7)

𝑛

∑

𝑖=1

𝑤
𝑖
𝑥
𝑖
≤ 𝑤, (8)

𝑥
𝑖
∈ {0, 1} , 𝑖 = 1, . . . , 𝑛. (9)

In [9], Hanafi et al. explored different mixed integer
programming reformulations of the two-scenario max-min
knapsack problem, and described different approaches to
convert the multiobjective formulation (2) into a single-
objective one.

3.2. A Column Generation Reformulation. A stronger model
for the multiscenario max-min knapsack problem can be
obtained from (3)–(9) by applying an appropriate Dantzig-
Wolfe decomposition. The result is a column generation
reformulation of (3)–(9) which is the base of the solution
approach described in this paper.

Applying the Dantzig-Wolfe decomposition principle to a
linear integer problem leads to a reformulation into a master
problem and one or more subproblems defined from the
constraints of the original formulation. Here, we consider
a reformulation of (3)–(9) in which the master problem is
defined from the constraints (4)–(7), and the subproblem
from the knapsack constraints (8) and (9). Since the subprob-
lem has not the integrality property, the resulting model is
potentially stronger than the original formulation (3)–(9).

Let 𝑋 denote the polyhedron given by the knap-
sack constraint (8), and let 𝑡 be the number of extreme
points of 𝑋. Since the polyhedron 𝑋 is bounded, a
point x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋 can be expressed as

a convex combination of the extreme points of 𝑋. Let

4 Mathematical Problems in Engineering

Ep = (𝐸

1

𝑝
, 𝐸

2

𝑝
, 𝐸

3

𝑝
, . . . , 𝐸

𝑛

𝑝
), 𝑝 = 1, . . . , 𝑡, be the 𝑝th extreme

point of𝑋 such that

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) =

𝑡

∑

𝑝=1

𝜆
𝑝
Ep (10)

= (

𝑡

∑

𝑝=1

𝜆
𝑝
𝐸

1

𝑝
,

𝑡

∑

𝑝=1

𝜆
𝑝
𝐸

2

𝑝
, . . . ,

𝑡

∑

𝑝=1

𝜆
𝑝
𝐸

𝑛

𝑝
) , (11)

𝑡

∑

𝑝=1

𝜆
𝑝
= 1, (12)

𝜆
𝑝
≥ 0, 𝑝 = 1, . . . , 𝑡. (13)

The master problem is further defined by replacing the
variables (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) of (3)–(9) by the previous reformu-

lation (11)–(13) of the knapsack polytope related to (8). The
master problem states formally as follows:

max 𝑧

s.t.
𝑛

∑

𝑖=1

𝑐

1

𝑖
(

𝑡

∑

𝑝=1

𝜆
𝑝
𝐸

𝑖

𝑝
) ≥ 𝑧,

𝑛

∑

𝑖=1

𝑐

2

𝑖
(

𝑡

∑

𝑝=1

𝜆
𝑝
𝐸

𝑖

𝑝
) ≥ 𝑧,

.

.

.

𝑛

∑

𝑖=1

𝑐

𝑚

𝑖
(

𝑡

∑

𝑝=1

𝜆
𝑝
𝐸

𝑖

𝑝
) ≥ 𝑧,

𝑡

∑

𝑝=1

𝜆
𝑝
= 1,

𝜆
𝑝
≥ 0, 𝑝 = 1, . . . , 𝑡,

(14)

or equivalently

max 𝑧 (15)

s.t.
𝑡

∑

𝑝=1

𝜆
𝑝
(

𝑛

∑

𝑖=1

𝑐

1

𝑖
𝐸

𝑖

𝑝
) ≥ 𝑧, (16)

𝑡

∑

𝑝=1

𝜆
𝑝
(

𝑛

∑

𝑖=1

𝑐

2

𝑖
𝐸

𝑖

𝑝
) ≥ 𝑧, (17)

.

.

.

(18)

𝑡

∑

𝑝=1

𝜆
𝑝
(

𝑛

∑

𝑖=1

𝑐

𝑚

𝑖
𝐸

𝑖

𝑝
) ≥ 𝑧, (19)

𝑡

∑

𝑝=1

𝜆
𝑝
= 1, (20)

𝜆
𝑝
≥ 0, 𝑝 = 1, . . . , 𝑡. (21)

The number of variables 𝜆
𝑝
, 𝑝 = 1, . . . , 𝑡, of the master

problem is exponential, as is the number 𝑡 of extreme
points of 𝑋. Constraint (20) corresponds to the convexity
constraint (12). An upper bound for the multiscenario max-
min knapsack problem can be computed from the linear
relaxation of the master problem. This bound is greater than
or equal to the bound computed from the linear relaxation of
(3)–(9).

In a column generation approach where the master
problem is solved iteratively by considering only a restricted
subset of its variables, the subproblem defined from the
constraints (8) and (9) of the original problem is used to
price out the variables (columns) that are not in the restricted
master problem and that may eventually improve its solution.
The solutions provided by the subproblem are in fact the
extreme points Ep of the knapsack polytope related to the
constraints (8) and (9) of the original formulation.

Let 𝜋
1
, 𝜋
2
, . . . , 𝜋

𝑚
, 𝜋
0
denote, respectively, the dual vari-

ables related to the constraints (16), (17), . . ., (19), and (20) of
the master problem. A variable 𝜆

𝑝
, 𝑝 = 1, . . . , 𝑡, of the master

problem is attractive if and only if its reduced cost

− 𝜋
1
(

𝑛

∑

𝑖=1

𝑐

1

𝑖
𝐸

𝑖

𝑝
) − 𝜋

2
(

𝑛

∑

𝑖=1

𝑐

2

𝑖
𝐸

𝑖

𝑝
) − ⋅ ⋅ ⋅

− 𝜋
𝑚
(

𝑛

∑

𝑖=1

𝑐

𝑚

𝑖
𝐸

𝑖

𝑝
) − 𝜋

0

(22)

is positive. The most attractive column corresponds to the
extreme point of 𝑋 that maximizes (22). As a consequence,
the pricing subproblem related to the Dantzig-Wolfe decom-
position described in this section states formally as follows:

min
𝑛

∑

𝑖=1

(𝜋
1
𝑐

1

𝑖
+ 𝜋
2
𝑐

2

𝑖
+ ⋅ ⋅ ⋅ + 𝜋

𝑚
𝑐

𝑚

𝑖
) 𝑦
𝑖 (23)

s.t.
𝑛

∑

𝑖=1

𝑤
𝑖
𝑦
𝑖
≤ 𝑤, (24)

𝑦
𝑖
∈ {0, 1} , 𝑖 = 1, . . . , 𝑛, (25)

where 𝑦
𝑖
, 𝑖 = 1, . . . , 𝑛 are the decision variables of this

standard knapsack problem.
Note that (23)–(25) provides a lower bound for the

multiscenario max-min knapsack problem since it generates
solutions which are feasible for this problem. Hence, a
column generation algorithm applied to the reformulation
discussed in this section generates at each iteration not only
an upper bound from the solutions of the master problem,
but also a lower bound from the solutions of the subproblem.

4. A Branch-and-Price Algorithm

As alluded above, for any medium or large size instance,
the size of the model (15)–(21) prevents its resolution based
on a complete enumeration of the variables (columns). As
an alternative, we will consider an iterative resolution of a
restricted master problem defined from (15)–(21) where only

Mathematical Problems in Engineering 5

a subset of the variables is used. Columns that are not in
the restricted master problem, but which may potentially
improve its solution are added on the fly using a column
generation procedure.

The solution of (15)–(21) provides an upper (continuous)
bound for the value of the optimal integer solution of the
problem. Since the columns of the restricted master problem
required to find the optimal solution of (15)–(21) may not be
enough to find the optimal integer solution of the problem,
we will resort to branch-and-bound where at the nodes of the
search tree, the column generation procedure is used to find
attractive columns thatmay not have been generated yet.This
approach results in a so-called branch-and-price algorithm.
The details of our branch-and-price algorithm are described
in the sequel.

4.1. Column Generation Procedure. In our implementation,
the restricted master problem is initialized with a limited
subset of the variables of (15)–(21). A simple approach to
generate an initial set of columns is to choose the solutions
with only one item, and to add the corresponding columns
to the restricted master problem (by assumption, all these
solutions will satisfy the constraint on the capacity of the
knapsack). The restricted master problem is then solved up
to optimality.

The values of the dual variables related to the optimal
solution of the restricted master problem are used as an
input for the pricing subproblem. A set 𝑇 of integer and
best solutions for the subproblem is then computed using a
dynamic programming algorithm. The maximum size of 𝑇
is set through a parameter 𝑡max. Let 𝑧

𝑠

𝑆𝑃
denote the value of

a solution 𝑠 ∈ 𝑇. If −𝑧𝑠
𝑆𝑃

− 𝜋
0
is greater than 0, then the

column related to this solution is attractive. Note that here
we will consider that the set 𝑇 includes only solutions that
correspond to attractive columns. Hence, in practice, the size
of 𝑇may be smaller than 𝑡max. The columns in 𝑇 are added to
the restricted master which is solved once again. Meanwhile,
the set 𝑇 is used to update (eventually) the value of the best
lower bound for the problem. The process stops when there
are no more solutions of the subproblem such that −𝑧𝑠

𝑆𝑃
− 𝜋
0

is greater than 0.
The optimal solution of the restricted master problem

provides an upper bound for the value of the optimal integer
solution of the problem, while the solutions generated by
the pricing subproblems may improve the value of the lower
bound for the problem as referred to above. Hence, our
column generation procedure can be seen as a bounding
algorithm for the multiscenario max-min knapsack problem.

In our implementation, instead of generating only one
attractive column at each iteration which is the most usual
approach in column generation, we generate a set of different
attractive columns with the objective of visiting a significant
number of feasible solutions for the problem. Note that each
solution of the subproblem is feasible for the original multi-
scenario max-min knapsack problem. In our computational
experiments, this strategy proved to be effective in the search
for good incumbents.

Algorithm 1 describes formally our column generation
procedure.

Algorithm 1 does not ensure that an optimal integer
solution for the problem is found. At the end of the column
generation procedure, the optimality gap may still be greater
than 0. To overcome this issue, we resort to a branch-and-
bound procedure which is described in the next section.

4.2. Branch-and-Bound. The branch-and-bound algorithm
devised in this section is an exact algorithm that ensures that
an optimal integer solution of the multiscenario max-min
knapsack problem is found. The efficiency of branch-and-
bound approaches depends critically on two main issues: the
bounding strategy used to compute lower and upper bounds
for the problem, and the branching strategy. By focusing on
tightening the optimality gap, the former allows to reduce the
size of the search tree, while the latter is used to guide the
search so that the bounding strategy can be more effective.

In our algorithm, upper and lower bounds are computed
using the column generation procedure described in the
previous section (Algorithm 1). For the branching part of the
algorithm, we exploit the information provided at each node
of the search tree by the last pricing subproblem defined
within the column generation process.

Our branch-and-bound algorithm is described formally
in Algorithm 2. The algorithm is based on a LIFO (Last
In, Fist Out) strategy. At each node of the search tree, the
column generation algorithm (Algorithm 1) is used to solve
the master problem (15)–(21) taking into account the set
of variables fixed according to the branching strategy. After
completion, we get an upper bound (𝑢𝑏

𝑓
) at the current

node. Let 𝜋󸀠 denote the coefficients (profits) in the objective
function (23) of the variables𝑦

𝑖
in the last pricing subproblem

(23)–(25) solved during the column generation process, and
let x󸀠 be the solution of this last pricing subproblem. Note
that we exclude from x󸀠 those variables whose value has been
fixed during the branching process. Furthermore, let V∗ be
the value of the best solution of the multiscenario max-min
knapsack problem found so far (incumbent solution).

Our branching scheme is based on the variables of the
original compact formulation (3)–(9). In particular, the focus
is put on the variables whose value has greater propensity to
change in the optimal solution. From a heuristic standpoint,
we consider that the 𝑖th variable is in this situation if it satisfies
one of these two conditions:

(1) the value 𝑥

󸀠

𝑖
in x󸀠 is equal to 1, and its reduced

cost (its approximation 𝜋

󸀠

𝑖
/𝑤
𝑖
) is weak, that is, 𝑖

𝑓
=

argmin
𝑖
{𝜋

󸀠

𝑖
/𝑤
𝑖
and 𝑥

󸀠

𝑖
= 1};

(2) the value of 𝑥󸀠
𝑖
in x󸀠 is equal to 0, and its reduced

cost (its approximation 𝜋

󸀠

𝑖
/𝑤
𝑖
) is strong, that is, 𝑖

𝑓
=

argmax
𝑖
{𝜋

󸀠

𝑖
/𝑤
𝑖
and 𝑥

󸀠

𝑖
= 0}.

These two conditions translate the fact that the 𝑖th
𝑓
variable

may have more chances to change its values in the optimal
solution if this one has not been found yet. The 𝑖th

𝑓
variable

is then selected for branching. It is fixed first to the value 1,
while in the backtracking phase, a solution is sought for the
case where its value is fixed to 0.These branching constraints
are easily translated into the master problem (15)–(21), and

6 Mathematical Problems in Engineering

Let (V∗, x∗) denote the value of the best solution found, and the corresponding solution, respectively;
Let 𝑇 denote the set of the best attractive solutions of the subproblem (with |𝑇| ≤ 𝑡max);
Initialization

Initialize 𝑇 with a set of solutions satisfying the knapsack constraint (24);
while |𝑇| > 0 do

Add the columns for the solutions in 𝑇 to the restricted master problem related to (15)–(21);
Solve the resulting restricted master problem;
Define the subproblem (23)–(25) using the optimal dual values of the restricted master problem;
Solve the resulting subproblem using dynamic programming;
Update the set 𝑇 with the attractive solutions found by solving the subproblem;
Update the best solution (V∗, x∗);

end

Algorithm 1: Column generation algorithm for the multiscenario max-min knapsack problem.

Let V∗ denote the value of the best solution found (incumbent);
Let x󸀠 denote the solution of the last pricing subproblem solved;
//We exclude from x󸀠 those variables whose value has been fixed during the branching process.
Let 𝐹 be the list of indexes of the variables fixed to 0 or 1 in the branching tree;
Let 𝑓last be the last index in the set 𝐹;
Initialization

𝐹 := 0; 𝑖𝑛𝑖𝑡 := 𝑡𝑟𝑢𝑒;
while 𝐹 ̸= 0 or 𝑖𝑛𝑖𝑡 = 𝑡𝑟𝑢𝑒 do

if 𝑖𝑛𝑖𝑡 = 𝑡𝑟𝑢𝑒 then 𝑖𝑛𝑖𝑡 := 𝑓𝑎𝑙𝑠𝑒;
Solve the restricted master problem related to (15)–(21) with variables fixed according to 𝐹 using Algorithm 1;
Let 𝑢𝑏

𝑓
be the value of the corresponding optimal solution;

𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 := 𝑓𝑎𝑙𝑠𝑒;
if the solution of the restricted master problem is integer then

𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 := 𝑡𝑟𝑢𝑒;
if 𝑢𝑏
𝑓
> V∗ then V∗ := 𝑢𝑏

𝑓
;

end
else

Let 𝜋󸀠 be the coefficients in (23) of the last pricing subproblem;
𝑖
𝑓
:= argmax

𝑖
{𝜋

󸀠

𝑖
/𝑤
𝑖
and 𝑥

󸀠

𝑖
= 0};

if ∄𝑖
𝑓
then 𝑖

𝑓
:= argmin

𝑖
{𝜋

󸀠

𝑖
/𝑤
𝑖
and 𝑥

󸀠

𝑖
= 1};

if ∃𝑖
𝑓
and 𝑢𝑏

𝑓
> V∗ then 𝐹 := 𝐹 ∪ {𝑖

𝑓
: 𝑥
𝑖𝑓
= 1}; // Branch on the variable 𝑥

𝑖𝑓
;

else 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 := 𝑡𝑟𝑢𝑒;
end
if 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒 then

// Backtracking
while 𝑥

𝑓last
is fixed to 0 do

𝐹 := 𝐹 \ 𝑓last;
end
if 𝐹 ̸= 0 then

Fix 𝑥
𝑓last

to 0;
// 𝐹 := (𝐹 \ {𝑓last : 𝑥𝑓last = 1}) ∪ {𝑓last : 𝑥𝑓last = 0}

end
end

end

Algorithm 2: Branch-and-price algorithm for the multiscenario max-min knapsack problem.

they do not induce any additional complexity to the pricing
subproblem (23)–(25). Backtracking is done whenever the
upper bound 𝑢𝑏

𝑓
is less than the best known value V∗. Finally,

the branch-and-bound search stops when the search tree
becomes empty.

5. Computational Experiments

To evaluate the performance of our branch-and-price algo-
rithm, we conducted a set of extensive computational exper-
iments on large scale benchmark instances of the literature.

Mathematical Problems in Engineering 7

In order to compare it objectively with current state-of-the-
art methods, we divided our tests in two parts. In the first
part, we report on results obtained using instances of the
max-min knapsack problemwith two scenarios. Our branch-
and-price algorithm is evaluated from different standpoints,
namely by considering a limit on the total computing time,
by analysing the quality of the upper bounds obtained from
it, and by analysing its potential in finding optimal integer
solutions in reasonable amounts of computing time. In the
first case, the focus is put on the capacity of the algorithm
in generating good incumbents for the problem, as if the
algorithm was being used as a heuristic. In the second part of
our experiments, wewill analyse the behavior of our approach
in the general case where there are more than two scenarios.
All the experiments were conducted on a PC with 2.4GHz
and 4GB of RAM. Additionally, we used the version 11.1 of
the CPLEX optimization solver.

5.1. Test Set I: Tests on Instances with Only Two Scenarios.
The experiments reported in this section were conducted
on the weakly and strongly correlated instances used in [9]
which were obtained from the generator described in [11].
We used three sets of instances which are divided according
to the capacity of the knapsack. The capacity 𝑤 of the
knapsack is set to 𝜎 × ∑

𝑛

𝑖=1
𝑤
𝑖
, where 𝜎 ∈ {0.25, 0.5, 0.75}.

For each value of 𝑛 (number of items) and 𝜎, there are
15 instances. For the set of weakly correlated instances, we
have 𝑛 ∈ {5000, 7000, 10000, 13000, 15000, 18000, 20000},
while for the strongly correlated instances, we have 𝑛 ∈

{500, 1000, 4000, 5000, 7000, 10000}. Our results are com-
pared with the exact resolution of the original model (3)–
(9) through the commercial solver CPLEX, and with the
approaches described by Taniguchi et al. in [11] and byHanafi
et al. in [9].

The presentation of the results is organized as follows.
In the first part, we compare all these approaches on the
aforementioned instances for a very limited execution time
(5 seconds). The objective is to evaluate the capacity of each
approach in finding good feasible solutions quickly, as if they
were used as heuristics. In the second part, we compare the
quality of the upper bounds given by our approach with those
obtained with CPLEX and the approach of Taniguchi et al.
[11]. Note that the algorithmdescribed byHanafi et al. [9] uses
initially the same upper bounds as CPLEX before improving
it by adding cuts during the execution of their algorithm.
Finally, we compare the results of the different approaches for
a larger execution time to evaluate the capacity of each one in
finding proven optimal solutions for the problem.

5.1.1. Evaluating the Branch-and-Price Algorithm as a Heuris-
tic. In this section, we evaluate the capacity of our branch-
and-price algorithm in finding quickly good feasible solu-
tions for the problem, and we compare it with the methods
described by Taniguchi et al. [11] and by Hanafi et al. [9]. For
this purpose, we used a time limit of 5 seconds. The results
for instances described above are presented in Tables 1 and 2.
The meaning of the corresponding columns is the following:

(i) 𝑛: number of items in the corresponding instance;

(ii) #𝑏𝑒𝑠t: number of times the corresponding algorithm
found the best solution;

(iii) 𝑐𝑝𝑢: average computing time (in seconds) required to
find the corresponding solution.

Table 1 shows that CPLEX provides the best solutions for
an important number of cases, although this performance
tends to decrease with the size of problem. The approach of
Taniguchi et al. [11] exhibits the worst results among all the
methods that were tested. The performance of the approach
of Hanafi et al. [9] is comparable to the performance of our
branch-and-price algorithm, although it tends to be better on
these instances for larger values of 𝜎. In fact, the algorithm
of Hanafi et al. fixes the values of the variables by exploiting
its improved upper and lower bounds. These fixing rules are
useful when the correlation between the coefficients of the
problem is weak. The fixation of an important number of
variables in the algorithm of Hanafi et al. helps it to deal with
this type of instances independently of the value of 𝜎. On the
contrary, this parameter has a non-negligible impact on our
algorithm. When 𝜎 = 0.25, our algorithm is the best among
all the methods, while it is the second best for 𝜎 = 0.5 and
𝜎 = 0.75. The value of 𝜎 defines the capacity of the knapsack.
The capacity of the knapsack becomes larger as the value of
𝜎 increases, which impacts on the dynamic programming
algorithm used to solve the pricing subproblems in column
generation.

For the strongly correlated instances (Table 2), the per-
formance of CPLEX when used directly on (3)–(9) tends
to decrease with the size of the problem independently of
the value of 𝜎. The algorithm of Taniguchi et al. found
much difficulty in finding the best solutions among all the
algorithms even for the small size instances. This difficulty
increases with the size of the problem, while it seems
independent of the value of 𝜎. Table 2 shows the algorithm
of Hanafi et al. outperforms the last two approaches, while
its performance decreases also with the size of the problem.
The branch-and-price algorithm, whose results are provided
in last columns of Table 2, clearly outperforms all the other
approaches. The algorithm found all the best solutions in a
small amount of time.The computing time increases with the
size of the instance, but it remained almost always less than
one second on average.

5.1.2. Quality of the Upper Bounds. In this section, we com-
pare the upper bounds provided by the different approaches.
The quality of the upper bounds is important to improve
the convergence of branch-and-bound algorithms, and in
methods that rely on fixing the values of the variables. Using
the same instances as in the previous tests, we compare the
upper bounds given by the linear relaxation of (3)–(9) (solved
with CPLEX) with the algorithm of Taniguchi et al. [11] and
Algorithm 1 applied to the master problem (15)–(21). We do
not compare these upper bounds with those obtained with
the method of Hanafi et al. [9] because the latter relies on
the resolution of the model (3)–(9) and, as a consequence,
it provides upper bounds which are similar to those reported
for CPLEX.

8 Mathematical Problems in Engineering

Table 1: Comparative results on weakly correlated instances for a limited execution time (5 seconds).

𝑛 𝜎

CPLEX Taniguchi et al. [11] Hanafi et al. [9] Algorithm 2
#best cpu #best cpu #best cpu #best cpu

5000

0,25

11 5,0 0 5,2 8 3,2 6 1,7
7000 6 5,0 1 4,8 6 2,4 5 2,4
10000 5 5,0 0 4,4 7 2,4 8 2,4
13000 4 5,0 0 3,2 9 2,5 8 1,9
15000 2 5,0 0 2,8 8 3,4 5 3,3
18000 3 5,0 0 2,4 4 3,6 11 2,7
20000 2 5,1 0 2,8 5 3,3 11 3,0

33 1 47 54
5000

0,50

7 5,0 1 5,6 6 4,2 5 2,1
7000 8 5,0 0 4,8 4 2,9 8 2,5
10000 4 5,0 2 4,0 6 2,1 5 2,9
13000 2 5,0 0 4,8 12 2,9 7 3,2
15000 5 4,9 0 4,4 9 3,5 5 2,6
18000 4 5,0 0 2,4 6 4,1 9 2,7
20000 2 5,0 0 4,0 5 3,7 8 2,6

32 3 48 47
5000

0,75

6 5,0 0 4,0 9 3,7 7 2,0
7000 6 4,9 0 4,8 5 2,9 4 3,0
10000 4 5,0 0 3,6 6 1,5 8 3,1
13000 4 5,0 0 3,6 9 2,8 3 2,3
15000 2 4,8 0 3,2 10 3,6 3 2,9
18000 2 5,1 0 3,2 8 3,1 5 2,3
20000 5 5,0 0 3,2 6 3,5 3 2,5

29 0 52 33

Table 2: Comparative results on strongly correlated instances for a limited execution time (5 seconds).

𝑛 𝜎

CPLEX Taniguchi et al. [11] Hanafi et al. [9] Algorithm 2
#best cpu #best cpu #best cpu #best cpu

500

0,25

15 5,00 11 3,33 15 1,47 15 0,33
1000 13 5,00 9 3,60 14 2,00 15 0,07
4000 9 5,00 2 1,20 14 3,33 15 0,40
5000 9 5,00 1 0,40 15 3,47 15 0,47
7000 10 5,00 1 0,80 10 2,87 15 0,27
10000 11 5,00 2 1,60 8 3,67 15 0,67

67 26 74 90
500

0,5

15 5,00 10 3,93 15 1,73 15 0,00
1000 15 5,00 7 3,20 15 1,53 15 0,00
4000 14 5,00 1 0,40 14 2,00 15 0,33
5000 12 5,00 4 2,00 15 2,67 15 0,33
7000 11 5,00 1 0,40 8 2,20 15 0,33
10000 8 5,00 2 0,80 6 2,13 15 0,80

75 25 73 90
500

0,75

15 5,00 5 3,20 15 2,93 15 0,00
1000 14 5,00 2 1,60 15 1,00 15 0,00
4000 12 5,00 3 1,60 15 2,13 15 0,47
5000 14 5,00 2 0,80 14 2,47 15 0,40
7000 12 5,00 3 1,60 12 4,13 15 0,40
10000 8 5,00 5 2,00 9 1,87 15 1,20

75 20 80 90

Mathematical Problems in Engineering 9

Table 3: Comparative results: upper bounds.

Weakly correlated instances Strongly correlated instances

𝑛 𝜎

CPLEX Taniguchi et al. [11] Algorithm 1
𝑛 𝜎

CPLEX Taniguchi et al. [11] Algorithm 1
ub Gap Gap ub Gap Gap

5000

0,25

896067,07 −2,11 0,55 500

0,25

87479,19 −0,15 21,59
7000 1253428,76 −3,31 0,36 1000 174658,07 −0,34 19,32
10000 1792894,59 −3,70 0,24 4000 700131,20 −0,59 28,04
13000 2331663,99 −4,53 0,20 5000 875128,10 −1,61 25,63
15000 2688442,51 −6,01 0,21 7000 1225569,44 −1,32 24,69
18000 3225076,77 −6,53 0,13 10000 1750641,34 −2,33 18,75
20000 3585803,96 −6,53 0,14
5000

0,50

1632862,83 −2,09 0,46 500

0,50

160240,63 −1,41 19,90
7000 2284894,04 −3,15 0,34 1000 320830,19 −0,30 23,88
10000 3263829,38 −4,23 0,27 4000 1282512,32 −1,24 31,36
13000 4243497,29 −4,42 0,19 5000 1603836,11 −6,38 27,29
15000 4896680,33 −6,77 0,13 7000 2244474,61 −15,69 47,88
18000 5875562,14 −10,03 0,10 10000 3206448,08 −19,28 46,87
20000 6528236,22 −6,85 0,11
5000

0,75

2335623,64 −2,00 0,51 500

0,75

230631,50 −1,19 18,10
7000 3268655,45 −3,26 0,37 1000 461424,33 −3,84 40,67
10000 4669024,62 −4,20 0,30 4000 1847076,46 −2,13 40,66
13000 6072679,02 −6,12 0,20 5000 2309220,20 −6,94 40,59
15000 7003993,61 −6,10 0,19 7000 3231105,62 −2,66 18,76
18000 8406040,02 −6,81 0,15 10000 4615654,05 −3,55 34,91
20000 9338818,70 −5,71 0,11

Table 3 gives the average results for the weakly and
strongly correlated instances. Column 𝑢𝑏 associated with
CPLEX presents the average upper bound provided by
CPLEX over the different groups of 15 instances. The
columns 𝐺𝑎𝑝 related to the algorithm of Taniguchi et al.
and Algorithm 2 give the average absolute gap between their
corresponding upper bound and the upper bound provided
by CPLEX (𝐺𝑎𝑝 = CPLEX upper bound – upper bound
provided by the corresponding algorithm). Hence, in Table 3,
when 𝐺𝑎𝑝 is positive, the upper bound of the corresponding
algorithm is better than the one provided by CPLEX.

Table 3 shows that the bounds provided by our column
generation algorithm are always better than those provided
by the other two approaches. Recall that since our pricing
subproblem has not the integrality property, the quality of
the upper bounds provided by our reformulation (15)–(21) are
potentially better than those obtained by using the compact
model (3)–(9). Furthermore, the approach of Taniguchi et al.
relies on a surrogate relaxation that is worse than the linear
relaxation of (3)–(9). The comparative quality of the upper
bounds provided by our column generation increases as the
instances become more strongly correlated.

5.1.3. Evaluating the Branch-and-Price Algorithm as an Exact
Algorithm. Here, we report on the results obtained with
our branch-and-price algorithm on the strongly correlated
instances with a time limit of 10 minutes. The objective is
to evaluate the capacity of our algorithm in finding proven
optimal solutions for the problem. The results are presented

in Table 4. Column #𝑜𝑝𝑡 gives the number of proven optimal
solutions found for each set of 15 instances, while column
𝑐𝑝𝑢 indicates average computing time required to reach the
corresponding solution.

Our branch-and-price algorithm found the optimal solu-
tion for 181 instances out of 270 within the time limit,
which represents more than 67% of the tested instances. In
many cases, the solution is found in the first nodes of the
branching tree, which is due to the quality of the bounds
computed using our column generation approach. For the
other cases where the optimality of the solution has not been
proved, the optimality gap remains much smaller than the
one obtained by using CPLEX with the same time limit. The
other approaches from Taniguchi et al. [11] and Hanafi et al.
[9] are also clearly outperformed by the branch-and-price
algorithm described in this paper. Indeed, the approach of
Taniguchi et al. solved only 3 of the 270 instances up to
optimality, while the algorithm of Hanafi et al. solved exactly
only 5 of these 270 instances.

5.2. Test Set II: Tests on Instances with More Than Two Sce-
narios. To evaluate the performance of our branch-and-price
algorithm on general instances of themultiscenariomax-min
knapsack problem, we generated a set of instances using the
generator proposed in [7]. In particular, to test the limits of
our algorithm, we consider the case of strongly correlated
instances with 𝜎 = 0.75. Recall that the capacity of the
knapsack increases with 𝜎. This increase has a non-negligible
impact on the resolution of the pricing subproblem through

10 Mathematical Problems in Engineering

Table 4: Number of proven optimal solutions found by branch-and-price on strongly correlated instances.

𝑛 𝜎 #opt cpu 𝑛 𝜎 #opt cpu 𝑛 𝜎 #opt cpu
500

0,25

6 400,4 500

0,5

5 400,3 500

0,75

7 345,3
1000 6 360,4 1000 8 280,6 1000 10 200,6
4000 10 206,4 4000 11 160,7 4000 13 80,8
5000 12 120,8 5000 11 160,7 5000 14 66,5
7000 10 200,8 7000 12 120,8 7000 10 200,6
10000 10 204,0 10000 14 42,9 10000 12 120,8

Table 5: Comparative results over large scale instances with more than two scenarios (Algorithm 2 versus CPLEX).

Instances 60 seconds 300 seconds 600 seconds
𝑛 𝑚 #best #only best #best #only best #best #only best

1000
100 0 0 0 0 0 0
500 10 10 10 10 10 10
1000 10 10 10 10 10 10

5000
100 10 10 10 10 7 7
500 10 10 10 10 10 10
1000 10 10 10 10 10 10

10000
100 10 10 10 10 10 10
500 10 10 10 10 10 10
1000 10 10 10 10 10 10

20000
100 10 10 10 10 10 10
500 10 10 10 10 10 10
1000 10 10 10 10 10 10

dynamic programming. Furthermore, on these instances, the
method of Taniguchi et al. [7] is outperformed by the exact
resolution of (3)–(9) using CPLEX. Additionally, we consider
large scale instances with 𝑛 ∈ {1000, 5000, 10000, 20000} and
𝑚 ∈ {100, 500, 1000} (number of scenarios). Within each set,
we generated 10 instances. Our branch-and-price algorithm is
compared with the exact resolution of (3)–(9) using CPLEX.

In Table 5, we show the results obtained using a time
limit of 60, 300 and 600 seconds, respectively. In column
(#𝑏𝑒𝑠𝑡), we give the number of times where our algorithm
provides the best solution when compared to CPLEX. The
number of times in which our branch-and-price algorithm
is the only one to provide the best solution is given in column
(#𝑜𝑛𝑙𝑦 𝑏𝑒𝑠𝑡).

While CPLEX provides better results for the set of
smallest instances with 𝑛 = 1000 and 𝑚 = 100, it is clearly
outperformed for the other 11 sets of larger instances. For
example, as the number of items increases from 𝑛 = 1000

to 𝑛 = 5000 (with 𝑚 = 100), CPLEX did not provide
any best solution in 60 and 300 seconds, while it provided
only 3 best solutions when it ran during 600 seconds. This
behavior may be explained in part by the results presented in
the previous sections, and in particular those that illustrate
the quality of the lower and upper bounds provided by our
branch-and-price algorithm. Indeed, the branch-and-price
algorithm proved to be able to generate good incumbents
quickly while relying at the same time on a stronger (column

generation based) model from which strong upper bounds
can be derived.

6. Conclusions

In this paper, we explored for the first time an exact solution
approach for the multiscenario max-min knapsack problem
based on column generation and branch-and-bound. The
resulting branch-and-price algorithm proved to outperform
in different aspects other state-of-the-art methods described
in the literature. The column generation reformulation
provides stronger upper bounds, while the corresponding
subproblems can be used at the same time to price out
attractive columns and to generate feasible solutions for the
max-min knapsack problem that may contribute to improve
the incumbent solution. Furthermore, the branching strategy
explored in this paper is such that it does not induce any
additional complexity to the pricing subproblem. Extensive
computational experiments were conducted and discussed
using large scale benchmark instances. Comparative results
with other approaches were provided, supporting the evi-
dence that branch-and-price performs globally better than
the best known methods of the literature.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Mathematical Problems in Engineering 11

Acknowledgments

This work was supported by FEDER funding through the
Programa Operacional Factores de Competitividade, COM-
PETE, and by national funding through the Portuguese
Science and Technology Foundation (FCT) in the scope of
the project PTDC/EGE-GES/116676/2010 (reference COM-
PETE: FCOMP-01-0124-FEDER-020430). Additionally, this
work was supported by FCT through the doctoral grant
SFRH/BD/73584/2010 for Telmo Pinto (funded by QREN,
POPH, Typology 4.1, cofunded by MEC National Funding
and the European Social Fund), and by FEDER funds through
theCompetitiveness FactorsOperational Programme, COM-
PETE. We would like to thank the referee for the time he/she
spent on the reviewing process involved in this paper, for
his/her helpful comments, and for his/her recommendations.
His/her suggestions have greatly improved the contents and
the presentation of this paper.

References

[1] G. Yu, “On themax-min 0-1 knapsack problemwith robust
optimization applications,” Operations Research, vol. 44, no. 2,
pp. 407–415, 1996.

[2] H. Aissi, C. Bazgan, and D. Vanderpooten, “Approximation of
min-max and min-max regret versions of some combinato-
rial optimization problems,” European Journal of Operational
Research, vol. 179, no. 2, pp. 281–290, 2007.

[3] A. Kasperski, A. Kurpisz, and P. Zielinski, “Approximating
the min-max (regret) selecting items problem,” Information
Processing Letters, vol. 113, no. 1-2, pp. 23–29, 2013.

[4] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, John Wiley & Sons, New York, NY,
USA, 1990.

[5] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems,
Springer, 2004.

[6] H. Iida, “A note on themax-min 0-1 knapsack problem,” Journal
of Combinatorial Optimization, vol. 3, no. 1, pp. 89–94, 1999.

[7] F. Taniguchi, T. Yamada, and S. Kataoka, “Heuristic and exact
algorithms for the max-min optimization of the multi-scenario
knapsack problem,”Computers andOperations Research, vol. 35,
no. 6, pp. 2034–2048, 2008.

[8] A. Sbihi, “A cooperative local search-based algorithm for
the multiple-scenario max-min knapsack problem,” European
Journal of Operational Research, vol. 202, no. 2, pp. 339–346,
2010.

[9] S. Hanafi, R. Mansi, C. Wilbaut, and A. Fréville, “Hybrid
approaches for the two-scenario max-min knapsack problem,”
International Transactions in Operational Research, vol. 19, no.
3, pp. 353–378, 2012.

[10] X. Song, R. Lewis, J. Thompson, and Y. Wu, “An incomplete m-
exchange algorithm for solving the large-scale multi-scenario
knapsack problem,” Computers & Operations Research, vol. 39,
no. 9, pp. 1988–2000, 2012.

[11] F. Taniguchi, T. Yamada, and S. Kataoka, “A virtual pegging
approach to the max-min optimization of the bi-criteria knap-
sack problem,” International Journal of Computer Mathematics,
vol. 86, no. 5, pp. 779–793, 2009.

[12] C. Alves, R. Mansi, J. Valério de Carvalho, and T. Pinto, “A
column generation approach for the bi-objective max-min

knapsack problem,” in Proceedings of the 1st International Con-
ference on Operations Research and Enterprise Systems (ICORES
’12), pp. 165–170, Vilamoura, Portugal, February 2012.

[13] D. Pisinger, “Budgeting with bounded multiple-choice con-
straints,” European Journal of Operational Research, vol. 129, no.
3, pp. 471–480, 2001.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

