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This paper studies the cooperative output regulation problem for a class of nonlinear multiagent systems modeled by nonlinear
dynamics under a general directed communication topology. A type of distributed internal model is introduced to convert the
cooperative output regulation problem into a robust stabilization problem of a so-called augmented system. Based on the Lyapunov
stability theorem and M-matrix theorem, a kind of distributed output feedback controller only using the relative outputs of
neighboring agents together with its stability analysis is further proposed with the aid of the backstepping technology, under which
the outputs of the followers will asymptotically converge to that of the leader if, for each follower, there exists at least a directed path
from the leader to the follower. Finally, a numerical example is provided to illustrate the effectiveness of the analytic results.

1. Introduction

In recent decades, the cooperative control problem of dis-
tributed dynamic systems has received compelling atten-
tions from various scientific communities for its widespread
applications in many areas such as swarm of animals, col-
lection motion of particles, unmanned aerial vehicles, and
distributed sensors networks, to name a few. As part of
cooperative control, control problems for multiagent systems
(MAS) mainly involve designing distributed controllers for
each individual agent in the group to make the whole system
accomplish specified missions by local interactions with the
neighboring agents, due to its lack of global information of
the whole system. Several interesting problems in the field
have been studied widely, including consensus, formation,
flocking, coverage, and leader-following coordination [1–5].

Among these problems, leader-following consensus
problem, where the motion of the leader is independent
of all other agents and followed by all the other ones, is an
active topic recently. The basic idea of the leader-following
consensus is that each agent updates its information state on
the basis of a consensus protocol. The consensus protocol is
an interaction rule that specifies the information exchange

between an agent and all of its neighbors in the network
[6]. Leader-following consensus algorithms have been
investigated in various works [7–11]. Those algorithms take
the form of first- or second-order linear dynamics. Meng
et al. [11] focus on the leader-following consensus problem
for identical linear multiagent systems subject to control
input saturation where the linear systems are neutrally stable
double integrator systems. In addition, different conditions
on communication graphs to achieve the consensus have
been explored. Zhu and Cheng [7] give different conditions
to guarantee the leader-following consensus of second-order
multiagent systems with fixed and switching topologies as
well as nonuniform time-varying delays. A common feature
of those existing works on leader-following consensus is
that the intrinsic nonlinear dynamics of each agent are
not considered. In order to investigate and simulate more
realistic multiagent systems, the nonlinearity of the agents
should be taken into account. Extensions to nonlinear
dynamics are studied in [12, 13], where the authors discuss
the leader-following consensus problems of multiagent
systems with nonlinear dynamics. Based on graph theory,
matrix theory, and LaSalle’s invariance principle, Song
et al. [12] propose a pinning control algorithm to solve the
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coupled second-order leader-following consensus problem
of nonlinear multiagent systems at a constant reference
velocity. However, they assume that the nonlinear term
satisfies the Lipschitz condition. For the general nonlinear
term with local Lipschitz condition, a consensus algorithm
is developed with the aid of the cyclic-small-gain theorem to
solve the coordination control problem with second-order
dynamics under directed topology in our previous work [5]
by using the state feedback of the agents.

It is worth pointing out that most of the existing works
consider the state feedback, which requires the states of
the agents. In contrast, the output feedback is only using
the outputs of the system. In essence, the leader-following
consensus problem can be formulated as a cooperative output
regulation problem in a uniform framework, due to its strong
theoretical and practical background. Cooperative output
regulation mainly refers to designing distributed feedback
controllers for the considered multiagent systems, such that
all the followers can track the active leader and/or reject
disturbance signals generated by some so-called exosystem,
which has been widely studied in [14–16]. To name a few,
Su and Huang [14] define a general formulation for the
cooperative output regulation problem of linear multiagent
systems.Wang et al. [15] consider the cooperative output reg-
ulation problem of switched linear multiagent systems with
saturation input. Li et al. [16] consider a class of heteroge-
neous multiagent systems with a common reference input
but with different disturbances and present two classes of
distributed adaptive pinning control laws based on state
feedback and dynamic output feedback. Early researches
mostly focus on cooperative output regulation problems on
the linearmultiagent systems and are shifting to the problems
on the nonlinear multiagent systems.

Motivated by the above works, this paper investigates the
cooperative output regulation problem of multiagent systems
with general nonlinear dynamics under a general directed
communication topology, where the nonlinear terms are
not required to satisfy the Lipschitz condition. In detail, an
augmented system is firstly constructed based on the internal
model principle, such that the cooperative output regulation
problem is transformed into a stabilization problem of the
augmented system; then, a distributed control law based on
the relative information between neighboring agents under
a general directed graph is constructed with the aid of the
backstepping design method, which ensures the stability of
the original systems. The main contributions focus on the
following aspects. (i) The feedbacks used in the control law
are the outputs of the systems, rather than the widely used
states, which results in wide applications. (ii) The dynamics
of agents considered in this paper are with general nonlinear
terms, instead of the Lipschitz condition, a rather relaxed
assumption which has been used in a wide range of practical
nonlinear systems. (iii) The designed consensus protocol
only required the relative outputs of the neighboring agents,
which means it is distributed, and can easily be scaled up
for the larger networked systems. (iv) The communicating
topology is directed, and the bidirected graph can be taken
as a particular case.

The rest of the paper is organized as follows. Section 2
introduces some notations of the graph theory and gives the
problem formulation. In Section 3, a so-called augmented
system is constructed based on an internal model, and dis-
tributed feedback controllers based on the relative outputs of
neighboring agents with their stability analysis are designed
by using the backstepping method immediately, which are
the main results of this paper. Then, Section 4 presents a
simulation example to illustrate our proposed results. Finally,
the conclusion is given in Section 5.

2. Preliminaries and Problem Formulation

In this section, preliminary knowledge and problem formu-
lation are introduced.

2.1. Notations and Graph Theory. First of all, we review
some preliminary knowledge. The following notation will be
used throughout this paper: given the column vectors 𝑎

𝑖
,

𝑖 = 1, . . . , 𝑛, we denote col(𝑎
1
, . . . , 𝑎

𝑛
) = [𝑎

𝑇

1
, . . . , 𝑎

𝑇

𝑛
]. Let

𝐼 be the identity matrix with compatible dimension. For a
given matrix 𝐴, 𝐴𝑇 denotes its transpose, and 𝜆max(𝐴) and
𝜆min(𝐴) represent the maximum and minimum eigenvalue
of matrix 𝐴, respectively. A matrix is said to be Hurwitz
if all its eigenvalues have negative real parts. A matrix is
called a nonsingular M-matrix if all its off-diagonal entries
are nonpositive and all its eigenvalues have positive real parts.

Lemma 1 (see [17]). For a Hurwitz matrix 𝐴, there exists a
positive definite matrix 𝑃 such that 𝐴𝑇𝑃 + 𝑃𝐴 ≤ −𝐼.

Lemma 2 (see [17]). If 𝑍 is a nonsingular M-matrix, there
exists a diagonal matrix 𝐷 = diag(𝑑

1
, . . . , 𝑑

𝑛
) with 𝑑

𝑖
> 0,

for 𝑖 = 1, . . . , 𝑛, such that Π = 𝐷𝑍 + 𝑍
𝑇
𝐷 is symmetric and

positive definite.

Then, we describe the interaction relationship between
the agents in multiagent systems by a simple directed graph
G = (V, 𝜀, 𝐴) which is consisting of a node set V =

{1, 2, . . . , 𝑛} and an edge set 𝜀 ⊆ V × V [18]. (V
𝑖
, V
𝑗
) ∈ 𝜀

implies that node 𝑗 can access the information of node 𝑖, but
not necessarily vice versa. If an edge (V

𝑖
, V
𝑗
) ∈ 𝜀, then node 𝑖

is called a neighbor of node 𝑗. The set of neighbors of node
𝑖 is defined as N

𝑖
= {𝑗 ∈ V | (𝑗, 𝑖) ∈ 𝜀}. 𝐴 = [𝑎

𝑖𝑗
] ∈ R𝑛×𝑛

represents a weighed adjacency matrix associated with graph
G, where 𝑎

𝑖𝑗
> 0 if (V

𝑗
, V
𝑖
) ∈ 𝜀 and 𝑎

𝑖𝑗
= 0 otherwise.

A diagonal matrix 𝐷 = diag{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} with diagonal

element 𝑑
𝑖
= ∑
𝑛

𝑗=1
𝑎
𝑖𝑗
is called the degree matrix of graph.

Then, the Laplacian matrix of G is defined as 𝐿 = 𝐷 − 𝐴. A
directed graph G has a directed spanning tree if and only if
there exists at least one node that has a directed path to any
other node.

For a multiagent system (labeled as 1, . . . , 𝑛) with a leader
(labeled as 0), the interaction topology is described by graph
G, which contains graph G, node V

0
, and edges from node

V
0
to other nodes. Let 𝐵 = diag{𝑎

1
, . . . , 𝑎

𝑁
}, where 𝑎

𝑖
, 𝑖 =

1, . . . , 𝑛, is the weight of edge (V
𝑖
, V
0
). And denote the matrix

𝐻 = 𝐿 + 𝐵 to describe the connectivity of graph G; then, the
matrix𝐻 has the following property.
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Lemma 3 (see [19]). All the eigenvalues of matrix 𝐻 have a
positive real part, if and only if the directed graph has a directed
spanning tree with node 0 as the root.

2.2. Problem Formulation. Consider the multiagent system
consisting of 𝑛 following agents and a leader. The dynamics
of the leader can be described as follows:

V̇ = 𝑆V,

𝑦
0
= 𝑞 (V, 𝑤) ,

(1)

where V ∈ R𝑛V and 𝑦
0
∈ R are the state variable andmeasured

output of the leader, respectively. 𝑆 ∈ R𝑛𝑠×𝑛𝑠 is a constant
matrix, and 𝑞(V, 𝑤) is a smooth function vanishing at the
origin.

For 𝑖 = 1, . . . , 𝑛, the 𝑖th following agent is represented by
the dynamic of the following form:

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
, 𝑦
𝑖
, 𝑤) ,

̇𝑦
𝑖
= 𝑔 (𝑥

𝑖
, 𝑦
𝑖
, 𝑤) + 𝑏 (𝑤) 𝑢𝑖

,

𝑒
𝑖
= 𝑦
𝑖
− 𝑦
0
,

(2)

where 𝑥
𝑖
∈ R𝑛𝑥 , 𝑢

𝑖
∈ R, and 𝑦

𝑖
∈ R are, respectively, the state

variable, control input, and measured output of agent 𝑖. 𝑤 ∈

R𝑛𝑤 is an uncertain vector and 𝑏(𝑤) > 0. Here, 𝑓(𝑥
𝑖
, 𝑦
𝑖
, 𝑤)

and 𝑔(𝑥
𝑖
, 𝑦
𝑖
, 𝑤) are smooth functions vanishing at the origin.

Denote 𝑒 = col(𝑒
1
, . . . , 𝑒

𝑛
).

Remark 4. According to the definition of the output regula-
tion theory, the control objective is to stabilize the closed-
loop system consisting of the leader subsystem and the 𝑛

follower subsystems, such that the regulated errors 𝑒
1
, . . . , 𝑒

𝑛

converge to zero. For 𝑖 = 1, . . . , 𝑛, if 𝑒
𝑖
is available to the 𝑖th

agent, the cooperative output regulation can be achieved by
decentralized output regulation. However, only a part of the
follower agents can obtain the information of the leader due
to the communication, whereas the others cannot.Therefore,
𝑒
𝑖
cannot be used directly in the controller design. Thus, in

general, a so-called virtual regulated error 𝑒V𝑖 is introduced,
which is defined as follows:

𝑒V𝑖 = ∑

𝑗∈N
𝑖

𝑎
𝑖𝑗
(𝑦
𝑗
− 𝑦
𝑖
) + 𝑎
𝑖
(𝑦
𝑖
− 𝑦
0
) , 𝑖 = 1, . . . , 𝑛. (3)

Denote 𝑒V = col(𝑒V1, . . . , 𝑒V𝑛).

In this paper, the distributed dynamic feedback con-
trollers based on the virtual regulated error 𝑒

𝑖V for agent 𝑖 are
given in the following form:

𝑢
𝑖
= 𝑘
𝑖
(𝜂
𝑖
, 𝑒
𝑖V) ,

̇𝜂
𝑖
= ℎ
𝑖
(𝜂
𝑖
, 𝑒
𝑖V) ,

𝑖 = 1, . . . , 𝑛,

(4)

where 𝜂
𝑖
is the compensator state vector with compatible

dimension to be specified later and 𝑘
𝑖
and ℎ
𝑖
are some smooth

functions vanishing at the origin.

Having defined the notations above, the cooperative
output regulation problem of nonlinear multiagent systems
can be stated as follows.

Definition 5. The cooperative output regulation problem of
systems (1) and (2) with the corresponding communication
graph G is achieved with the distributed feedback controller
of form (4) if, for any initial states (𝑥

1
(0), . . . , 𝑥

𝑁
(0)), the

following two properties are satisfied.

Property 1. The trajectories of the closed-loop composite
systems (2) and (4) exist and are bounded, for all 𝑡 ≥ 0.

Property 2. For any initial condition V(0), the regulated error
𝑒
𝑖
satisfies

lim
𝑡→∞

𝑒
𝑖 (
𝑡) = 0, 𝑖 = 1, . . . , 𝑛. (5)

Then, we will list some assumptions and definitions for
the problem as follows.

Assumption 6. Matrix 𝑆has all the eigenvalueswith a negative
real part.

Assumption 7. There exist smooth functions x
𝑖
(V, 𝑤), y

𝑖
(V, 𝑤),

and u
𝑖
(V, 𝑤) vanishing at the origin, such that, for arbitrary

V ∈ R𝑛V and 𝑤 ∈ R𝑛𝑤 ,

𝜕x
𝑖 (
V, 𝑤)

𝜕V
𝑆 = 𝑓 (x

𝑖 (
V, 𝑤) , y𝑖 (V, 𝑤) , V, 𝑤) ,

𝜕y
𝑖 (
V, 𝑤)

𝜕V
𝑆 = 𝑔 (x

𝑖 (
V, 𝑤) , y𝑖 (V, 𝑤) , V, 𝑤)

+ 𝑏 (𝑤) u𝑖 (V, 𝑤) ,

0 = y
𝑖 (
V, 𝑤) − 𝑞 (V) .

(6)

Assumption 8. The solutions u
𝑖
(V, 𝑤), 𝑖 = 1, . . . , 𝑛, are

polynomials in V with their coefficients depending on 𝑤.

Remark 9. According to Theorem 3.8 in [20], Assumption 6
implies that the leader subsystem is neutrally stable.
Equations (6) are called regulator equations (REs), and
Assumption 7 ensures the solvability of regulator equations,
since their solvability is a necessary condition for that of the
cooperative output regulation problem.UnderAssumption 7,
let y
𝑖
(V, 𝑤) = 𝑞(V, 𝑤), 𝑢

𝑖
(V, 𝑤) = 𝑏

−1

𝑖
(𝑤)((𝜕𝑞(V, 𝑤)/

𝜕V)𝑆V − 𝑔
𝑖
(z
𝑖
(V, 𝑤), 𝑞(V, 𝑤), V, 𝑤)); then, it can be verified that

x
𝑖
(V, 𝑤), y

𝑖
(V, 𝑤), and u

𝑖
(V, 𝑤) are solutions of the regulator

equations. Assumption 8 guarantees the existence of certain
linear dynamic equation which is independent of 𝑤 and can
produce the solution or part of the solution of the regulator
equations.

Next, we will introduce some concepts of internal model
[21].

Definition 10 (steady-state generator). The multiagent sys-
tems (1) and (2) are said to have a steady-state generator with
output u

𝑖
(V, 𝑤), if there exists a triple {𝜃

𝑖
, 𝛼
𝑖
, 𝛽
𝑖
} of smooth
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functions all vanishing at the origin for 𝑖 = 1, . . . , 𝑛, such that,
for all the trajectories V(𝑡) of the leader subsystem,

𝑑𝜃
𝑖 (
V, 𝑤)

𝑑𝑡

= 𝛼
𝑖
(𝜃
𝑖 (
V, 𝑤)) ,

u
𝑖 (
V, 𝑤) = 𝛽

𝑖
(𝜃
𝑖 (
V, 𝑤)) .

(7)

In addition, if the pair (𝛽
𝑖
, 𝛼
𝑖
) is observable, then {𝜃

𝑖
, 𝛼
𝑖
, 𝛽
𝑖
} is

called a linearly observable steady-state generatorwith output
Σ(x
𝑖
(V, 𝑤), u

𝑖
(V, 𝑤)).

Definition 11 (internal model). Under Assumptions 6 and 7,
suppose themultiagent systems (1) and (2) have a steady-state
generator with output u

𝑖
(V, 𝑤). Then, the following dynamic

system,

̇𝜂
𝑖
= 𝑀
𝑖
𝜂
𝑖
+ 𝑁
𝑖
𝑢
𝑖
, 𝑖 = 1, . . . , 𝑛, (8)

is called an internal model with output u
𝑖
(V, 𝑤), if

𝑀
𝑖
𝜃
𝑖
+ 𝑁
𝑖
u
𝑖 (
V, 𝑤) = 𝛼

𝑖
(𝜃
𝑖 (
V, 𝑤)) . (9)

3. The Main Results

In this section, we will construct the distributed dynamic
feedback controller based on the distributed internal model.
It is well known that there is a general framework established
in Huang and Chen [21] to handle the general nonlinear
output regulation. By this methodology, the problem can be
fixed in two steps. First, seek a suitable internalmodel, and the
problem can be converted into a robust stabilization problem
of a so-called augmented system by a suitable coordinate
and input transformation. Second, the robust stabilization
problem can be solved by many complex nonlinear design
methodologies. Therefore, the controller of the cooperative
output regulation problem is composed of two coupled parts:
a distributed internal model and a stabilizer.

3.1. Distributed Internal Models. According to the concept
of the internal model defined in Definition 11, perform the
following coordinate and input transformation:

𝑥
𝑖
= 𝑥
𝑖
− x
𝑖 (
V, 𝑤) ,

𝜂
𝑖
= 𝜂
𝑖
− 𝜃
𝑖 (
V, 𝑤) − 𝑏

−1
(𝑤)𝑁𝑖

𝑒
𝑖
,

𝑢
𝑖
= 𝑢
𝑖
− Γ
𝑖
𝑇
−1

𝑖
𝜂
𝑖
.

(10)

Then, the following augmented system (11) is obtained:

̇
𝑥
𝑖
= 𝑓 (𝑥

𝑖
, 𝑒
𝑖
, 𝜇) ,

̇
𝜂̃
𝑖
= 𝑀
𝑖
𝜂
𝑖
+ 𝜑 (𝑥

𝑖
, 𝑒
𝑖
, 𝜇) ,

̇𝑒
𝑖
= 𝑔 (𝑥

𝑖
, 𝜂
𝑖
, 𝑒
𝑖
, 𝜇) + 𝑏 (𝑤) 𝑢𝑖

,

(11)

where 𝜇(𝑡) = col(V(𝑡), 𝑤) and

𝑓
𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) = 𝑓 (𝑥

𝑖
+ x
𝑖
, 𝑒
𝑖
+ 𝑞 (V, 𝑤) , V, 𝑤)

− 𝑓 (x
𝑖
, 𝑞 (V, 𝑤) , V, 𝑤) ,

𝜑
𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) = 𝑏

−1
(𝑤)𝑀𝑖

𝑁
𝑖
𝑒
𝑖

− 𝑏
−1

(𝑤)𝑁𝑖
𝜛
𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) ,

𝑔
𝑖
(𝑥
𝑖
, 𝜂
𝑖
, 𝑒
𝑖
, 𝜇) = 𝜛

𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) + 𝑏 (𝑤)Ψ𝑖

𝜂
𝑖
+ Ψ
𝑖
𝑁
𝑖
𝑒
𝑖
,

𝑤
𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) = 𝑔 (𝑥

𝑖
+ x
𝑖 (
V, 𝑤) , 𝑒𝑖

+ 𝑞 (V, 𝑤) , V, 𝑤)

− 𝑓 (x
𝑖 (
V, 𝑤) , 𝑞 (V, 𝑤) , V, 𝑤) .

(12)

Now we can start to construct a suitable distributed
internal model for the system. The following theorem shows
the existence of a distributed linear internal model for the
multiagent systems and how to solve the cooperative output
regulation problem on the basis of the internal model.

Theorem 12. Under Assumptions 6–8, if there exist distributed
feedback controllers 𝑢

𝑖
= 𝑘
𝑖
(𝑒V𝑖) stabilizing augmented system

(11), then there exist controllable pairs (𝑀
𝑖
, 𝑁
𝑖
), 𝑀
𝑖
∈ R𝑛𝑖×𝑛𝑖

is a Hurwitz matrix, and 𝑁
𝑖
∈ R𝑛𝑖×1 is a column vector, such

that the cooperative output regulation problem of multiagent
systems (1) and (2) can be solved by the following controllers:

𝑢
𝑖
= 𝑘
𝑖
(𝑒V𝑖) + Γ

𝑖
𝑇
−1

𝑖
𝜂
𝑖
,

̇𝜂
𝑖
= 𝑀
𝑖
𝜂
𝑖
+ 𝑁
𝑖
𝑢
𝑖
,

𝑖 = 1, . . . , 𝑛,

(13)

where a nonsingular matrix 𝑇
𝑖
satisfies the Sylvester equation,

𝑇
𝑖
Φ
𝑖
−𝑀
𝑖
𝑇
𝑖
= 𝑁
𝑖
Γ
𝑖
, (14)

and Γ
𝑖
is a column vector.

Proof. Under Assumption 8, there exist integers 𝑛
𝑖
(𝑖 =

1, . . . , 𝑛), such that, for all 𝑤 ∈ W, u
𝑖
(V, 𝑤) satisfies [20]:

𝑑
𝑛
𝑖u
𝑖 (
V, 𝑤)

𝑑𝑡
𝑛
𝑖

= 𝑎
1𝑖
u
𝑖 (
V, 𝑤) + 𝑎

2𝑖

𝑑u
𝑖 (
V, 𝑤)

𝑑𝑡

+ ⋅ ⋅ ⋅

+ 𝑎
𝑛
𝑖
𝑖

𝑑
(𝑛
𝑖
−1)u
𝑖 (
V, 𝑤)

𝑑𝑡
(𝑛
𝑖
−1)

.

(15)

Then, denote

Φ
𝑖
= [

0 𝐼
𝑛
𝑖
−1

𝑎
1𝑖

𝑎
2𝑖
, . . . , 𝑎

𝑛
𝑖
𝑖

]

𝑛
𝑖
×𝑛
𝑖

,

Γ
𝑖
= [1 0 ⋅ ⋅ ⋅ 0]

1×𝑛
𝑖

.

(16)

It can be verified that (Γ
𝑖
, Φ
𝑖
) is observable. Then, it is

noted that the spectra of Φ
𝑖
and 𝑀

𝑖
are disjoint; therefore,

there exists a nonsingular matrix 𝑇
𝑖
satisfying the Sylvester

equation:

𝑇
𝑖
Φ
𝑖
−𝑀
𝑖
𝑇
𝑖
= 𝑁
𝑖
Γ
𝑖
. (17)
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Consequently, define 𝜃
𝑖
(V, 𝑤) = 𝑇

𝑖
col(u
𝑖
(V, 𝑤), 𝑑u

𝑖
(V,

𝑤)/𝑑𝑡, . . . , 𝑑
(𝑛
𝑖
−1)u
𝑖
(V, 𝑤)/𝑑𝑡

(𝑛
𝑖
−1)

). Then, it can be verified
that

𝑑𝜃
𝑖 (
V, 𝑤)

𝑑𝑡

= 𝑇
𝑖
Φ
𝑖
𝑇
−1

𝑖
𝜃
𝑖 (
V, 𝑤) ,

u
𝑖 (
V, 𝑤) = Γ

𝑖
𝑇
−1

𝑖
𝜃
𝑖 (
V, 𝑤) .

(18)

Thus, by Definition 10, the triple {𝜃
𝑖
(V, 𝑤), 𝑇

𝑖
Φ
𝑖
𝑇
−1

𝑖
𝜃
𝑖
(V,

𝑤), Γ
𝑖
𝑇
−1

𝑖
𝜃
𝑖
(V, 𝑤)} is a steady-state generator with output

u
𝑖
(V, 𝑤) for the multiagent system.
Then, it can be verified that

𝑀
𝑖
𝜃
𝑖 (
V, 𝑤) + 𝑁

𝑖
u
𝑖 (
V, 𝑤)

= 𝑀
𝑖
𝜃
𝑖 (
V, 𝑤) + 𝑁

𝑖
Γ
𝑖
𝑇
−1

𝑖
𝜃
𝑖 (
V, 𝑤)

= (𝑀
𝑖
+ 𝑁
𝑖
Γ
𝑖
𝑇
−1

𝑖
) 𝜃
𝑖 (
V, 𝑤) = 𝑇

𝑖
Φ
𝑖
𝑇
−1

𝑖
𝜃
𝑖 (
V, 𝑤) .

(19)

Therefore, according to Definition 11, ̇𝜂
𝑖
= 𝑀
𝑖
𝜂
𝑖
+ 𝑁
𝑖
𝑢
𝑖
is an

internal model for each follower with output u
𝑖
(V, 𝑤).

According to Corollary 6.9 in Huang [20], it is known
that if a controller solves the stabilization problem for the
augmented system, then this controller together with the
internal model solves the output regulation for the original
system.Therefore, due to the distributed feedback controllers
𝑢
𝑖
= 𝑘
𝑖
(𝑒V𝑖) stabilizing augmented system (11), controllers

(13) solve the cooperative output regulation problem of
multiagent systems (1) and (2).

Thus, the proof is completed.

Remark 13. Note that there are a variety of internal models
with output u

𝑖
(V, 𝑤). In fact, the steady-state generator itself is

an internalmodel.The reason for choosing the internalmodel
presented above is that the Hurwitz property of matrix 𝑀

𝑖

can lead to an augmented system whose robust stabilization
problem is solvable, and it has advantages in the stabilization
design shown later in the next subsection; however, the
steady-state generator does not.

In addition, it is noted that an equilibrium of augmented
system (11) is at (𝑥

𝑖
, 𝜂
𝑖
, 𝑒
𝑖
), for all V ∈ V . As long as a stabilizer

𝑢
𝑖
can be found such that the augmented system is globally

asymptotically stable at the equilibrium, the cooperative
output regulation problem will be solved.

3.2. Distributed Stabilization of Augmented System. Here, we
will adopt the backstepping method to construct a suitable
stabilizer for the augmented system, only by using relative
information of the outputs between neighboring agents.
Firstly, an important property of continuous function is given
as follows.

It is known that since 𝜑
𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) is a smooth function

vanishing at the origin, then there exist some real constant 𝑐
𝑖

and some smooth positive functions 𝜋
1𝑖
(𝑥
𝑖
) and 𝜋

2𝑖
(𝑒
𝑖
), such

that, for all 𝜇 ∈ Σ,
󵄩
󵄩
󵄩
󵄩
𝜑
𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇)

󵄩
󵄩
󵄩
󵄩
≤ 𝑐
𝑖
[𝜋
1𝑖
(𝑥
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩
+ 𝜋
2𝑖
(𝑒
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖

󵄩
󵄩
󵄩
󵄩
] . (20)

Denote𝑋
𝑖
= col(𝑥

𝑖
, 𝜂
𝑖
); then, it is the same with the function

𝑔
𝑖
(𝑋
𝑖
, 𝑒
𝑖
). It is known that there exist some real constant 𝜀

𝑖

and some smooth positive functions 𝜋
3𝑖
(𝑋
𝑖
) and 𝜋

4𝑖
(𝑒
𝑖
), such

that, for all 𝜇 ∈ Σ,
󵄩
󵄩
󵄩
󵄩
𝑔
𝑖
(𝑋
𝑖
, 𝑒
𝑖
)
󵄩
󵄩
󵄩
󵄩
≤ 𝜀
𝑖
[𝜋
3𝑖
(𝑋
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑋
𝑖

󵄩
󵄩
󵄩
󵄩

2
+ 𝜋
4𝑖
(𝑒
𝑖
) 𝑒
2

𝑖
] . (21)

Now, the main results are given as follows.

Theorem 14. Suppose G is a directed graph which contains a
directed spanning tree with node 0 as the root. Then, under
Assumptions 6–8, there exists a controller of the following form:

𝑢
𝑖
= −

1 + (1/2) 𝜉max𝜆max (𝐻
𝑇
𝐻) (𝜀
𝑖
+max𝜋

4𝑖
(𝑒
𝑖
))

𝑏 (𝑤) 𝜆min (𝑅) 𝜆min (𝐻
𝑇
𝐻)

⋅ 𝑒V𝑖, 𝑖 = 1, . . . , 𝑛,

(22)

such that augmented system (11) is globally asymptotically
stable.

Proof. Firstly, denote 𝑘
𝑖
(𝑒V𝑖) = (1 + (1/2)𝜉max𝜆max(𝐻

𝑇
𝐻)(𝜀
𝑖
+

max𝜋
4𝑖
(𝑒
𝑖
)))/𝑏(𝑤)𝜆min(𝑅)𝜆min(𝐻

𝑇
𝐻). Note that 𝑘

𝑖
(⋅) is a

positive smooth function. We will adopt the backstepping
method as follows.

Step 1. Consider the 𝑥
𝑖
-subsystem of (11) and treat the variable

𝑒
𝑖
as a virtual control input. Assume that there exist a feedback

control 𝑒
𝑖

= 𝜙
𝑖
(𝑥
𝑖
)𝑥
𝑖
stabilizing the 𝑥

𝑖
-subsystem and a

smooth and positive definite Lyapunov function candidate
𝑉
1𝑖
satisfying

𝑉̇
1𝑖
=

𝜕𝑉
1

𝜕𝑥
𝑖

𝑓
𝑖
≤ −Δ
𝑖
(𝑥
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2
. (23)

Step 2. Consider the (𝑥
𝑖
, 𝜂
𝑖
)-subsystem and treat the variable

𝑒
𝑖
as a virtual control input. Since𝑀

𝑖
is Hurwitz, there exists

a nonsingular matrix 𝑃
𝑖
satisfying𝑀𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝑀
𝑖
≤ −𝐼.

Now choose a smooth and positive definite function
𝑉
2𝑖
(𝑥
𝑖
, 𝜂
𝑖
) = 𝑙

𝑖
𝑉
1𝑖
(𝑥
𝑖
) + 2𝜂

𝑇

𝑖
𝑃
𝑖
𝜂
𝑖
as a Lyapunov function

candidate. Then, the derivation of 𝑉
2𝑖
along the trajectory of

(𝑥
𝑖
, 𝜂
𝑖
)-subsystem is given by the following:

𝑉̇
2𝑖
= 𝑙
𝑖
𝑉̇
1𝑖
(𝑥
𝑖
) + 2𝜂

𝑇

𝑖
(𝑀
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝑀
𝑖
) 𝜂
𝑖

+ 4𝜑
𝑇

𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) 𝑃
𝑖
𝜂
𝑖
≤ −𝑙
𝑖
Δ
𝑖
(𝑥
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2
− 2

󵄩
󵄩
󵄩
󵄩
𝜂
𝑖

󵄩
󵄩
󵄩
󵄩

2

+ 4
󵄩
󵄩
󵄩
󵄩
𝑃
𝑖

󵄩
󵄩
󵄩
󵄩

2
𝜑
2

𝑖
(𝑥
𝑖
, 𝑒
𝑖
, 𝜇) + 𝜂

2

𝑖
≤ −𝑙
𝑖
Δ
𝑖
(𝑥
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝜂
𝑖

󵄩
󵄩
󵄩
󵄩

2
+ 4𝑐
2

𝑖

󵄩
󵄩
󵄩
󵄩
𝑃
𝑖

󵄩
󵄩
󵄩
󵄩

2
[𝜋
2

1𝑖
(𝑥
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2
+ 𝜋
2

2𝑖
(𝑒
𝑖
) 𝑒
2

𝑖
]

≤ − {𝑙
𝑖
Δ
𝑖
(𝑥
𝑖
)

− 4𝑐
2

𝑖

󵄩
󵄩
󵄩
󵄩
𝑃
𝑖

󵄩
󵄩
󵄩
󵄩

2
[𝜋
2

1𝑖
(𝑥
𝑖
) + 𝜋
2

2𝑖
(𝜙
𝑖
(𝑥
𝑖
)) 𝜙
2

𝑖
(𝑥
𝑖
)]}

󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2

−
󵄩
󵄩
󵄩
󵄩
𝜂
𝑖

󵄩
󵄩
󵄩
󵄩

2
.

(24)

If we choose Δ
𝑖
(𝑥
𝑖
) ≥ 1 + 𝜋

2

1
(𝑥
𝑖
) + 𝜋
2

2
(𝜙
𝑖
(𝑥
𝑖
))𝜙
2

𝑖
(𝑥
𝑖
) and 𝑙

𝑖
=

max{1, 4𝑐2
𝑖
‖𝑃
𝑖
‖
2
}, then

𝑉̇
2𝑖
≤ −

󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝜂
𝑖

󵄩
󵄩
󵄩
󵄩

2
. (25)
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Then, denote 𝑋 = col(𝑋
1
, . . . , 𝑋

𝑛
). Consider the 𝑋-

subsystem, and let𝑉
2
(𝑋) = ∑

𝑛

𝑖=1
𝑉
2𝑖
(𝑋
𝑖
).Then, the derivation

of 𝑉(𝑋) along the trajectory of 𝑋-subsystem is given by the
following:

𝑉̇
2 (
𝑋) =

𝑛

∑

𝑖=1

𝑉̇
2𝑖
(𝑋
𝑖
) ≤

𝑛

∑

𝑖=1

(−
󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2
−
󵄩
󵄩
󵄩
󵄩
𝜂
𝑖

󵄩
󵄩
󵄩
󵄩

2
)

≤ −

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑋
𝑖

󵄩
󵄩
󵄩
󵄩

2
≤ − ‖𝑋‖

2
.

(26)

Step 3. Consider the whole augmented system (11) and treat
the variable 𝑢

𝑖
as a control input. SinceG contains a directed

spanning tree with node 0 as the root, by Lemma 3, all the
eigenvalues of 𝐻 have a positive real part; that is, 𝐻 is a
nonsingular M-matrix. Then, by Lemma 2, there exists a
positive definite matrix 𝑄 = diag{𝜉

1
, . . . , 𝜉

𝑛
}, such that the

matrix 𝑅 = 𝐻
𝑇
𝑄+𝑄𝐻 is positive definite. Now, let𝑉(𝑋, 𝑒) =

𝑟𝑉
2
(𝑋) + (1/2)𝑒

𝑇

V𝑄𝑒V. Then, differentiating 𝑉(𝑋, 𝑒) along the
trajectory of system (11) yields

𝑉̇ (𝑋, 𝑒) = 𝑟𝑉̇
2
+ 𝑒
𝑇

V𝑄 ̇𝑒V = 𝑟𝑉̇
2
+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

V𝑖 ̇𝑒V𝑖

= 𝑟𝑉̇
2
+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

V𝑖

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
( ̇𝑒
𝑖
− ̇𝑒
𝑗
)

= 𝑟𝑉̇
2

+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

V𝑖

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
(𝑔
𝑖
+ 𝑏 (𝑤) 𝑢𝑖

− 𝑔
𝑗
− 𝑏 (𝑤) 𝑢𝑗

)

= 𝑟𝑉̇
2
+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

V𝑖

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
(𝑔
𝑖
− 𝑔
𝑗
)

+ 𝑏 (𝑤)

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

V𝑖

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
(𝑢
𝑖
− 𝑢
𝑗
) .

(27)

Now, define 𝛾
𝑖

= ∑
𝑛

𝑗=0
𝑎
𝑖𝑗
(𝑔
𝑖
− 𝑔
𝑗
), and denote 𝑔 =

col(𝑔
1
, . . . , 𝑔

𝑁
), 𝑢 = col(𝑢

1
, . . . , 𝑢

𝑁
) 𝛾 = col(𝛾

1
, . . . , 𝛾

𝑁
) =

𝐻𝑔, and then we can get 𝛾2 = 𝑔
𝑇
𝐻
𝑇
𝐻𝑔 ≤ 𝜆max(𝐻

𝑇
𝐻)𝑔
𝑇
𝑔.

Moreover, let 𝐾(𝑒V) = diag(𝑘
𝑖
(𝑒V𝑖)). Therefore,

𝑉̇ = 𝑟𝑉̇
2
+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

V𝑖

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
(𝑔
𝑖
− 𝑔
𝑗
)

+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

V𝑖

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
(𝑏 (𝑤) 𝑢𝑖

− 𝑏 (𝑤) 𝑢𝑗
)

≤ 𝑟𝑉̇
2
+

𝑛

∑

𝑖=1

𝜀
𝑖

2

𝜉
𝑖
𝑒
2

V𝑖 +

𝑛

∑

𝑖=1

1

2𝜀
𝑖

𝜉
𝑖
𝛾
2

𝑖
+ 𝑏 (𝑤) 𝑒

𝑇

V𝑄𝐻𝑢

≤ −𝑟 ‖𝑋‖
2
+

𝜀
𝑖

2

𝜉max𝑒
2

V +
1

2𝜀
𝑖

𝜉max𝜆max (𝐻
𝑇
𝐻)𝑔
2

− 𝑏 (𝑤) 𝑒
𝑇

V𝑄𝐻𝐾(𝑒V) 𝑒V

≤ −𝑟 ‖𝑋‖
2
+

𝜀
𝑖

2

𝜉max𝑒
2

V +
1

2𝜀
𝑖

𝜉max𝜆max (𝐻
𝑇
𝐻)

𝑛

∑

𝑖=1

𝑔
2

𝑖

− 𝑏 (𝑤) 𝑘min𝑒
𝑇

V𝑄𝐻𝑒V

≤ −𝑟 ‖𝑋‖
2
+

𝜀
𝑖

2

𝜉max𝑒
2

V +
1

2𝜀
𝑖

𝜉max𝜆max (𝐻
𝑇
𝐻)

−

1

2

𝑏 (𝑤) 𝑘min𝑒
𝑇

V (𝑄𝐻 +𝐻
𝑇
𝑄) 𝑒V

≤ −𝑟 ‖𝑋‖
2
+

𝜀
𝑖

2

𝜉max𝑒
2

V +
1

2𝜀
𝑖

𝜉max𝜆max (𝐻
𝑇
𝐻)

𝑛

∑

𝑖=1

𝑔
2

𝑖

− 𝑏 (𝑤) 𝑘min𝑒
𝑇

V 𝑅𝑒V

≤ −𝑟

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑋
𝑖

󵄩
󵄩
󵄩
󵄩

2
+

𝜀
𝑖

2

𝜉max𝑒
2

V

+

1

2𝜀
𝑖

𝜉max𝜆max (𝐻
𝑇
𝐻)

𝑛

∑

𝑖=1

𝑔
2

𝑖

− 𝑏 (𝑤) 𝑘min𝜆min (𝑅) 𝑒
2

V .

(28)

Since 𝑒V = 𝐻𝑒, then 𝜆min(𝐻
𝑇
𝐻)𝑒
2
≤ 𝑒V ≤ 𝜆max(𝐻

𝑇
𝐻)𝑒
2.

According to (21), we can obtain the following:

𝑉̇ ≤ −𝑟

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑋
𝑖

󵄩
󵄩
󵄩
󵄩

2
+

𝜀
𝑖

2

𝜉max𝑒
2

V +
1

2𝜀
𝑖

𝜉max𝜆max (𝐻
𝑇
𝐻)

⋅

𝑛

∑

𝑖=1

𝜀
𝑖
[𝜋
3𝑖
(𝑋
𝑖
)
󵄩
󵄩
󵄩
󵄩
𝑋
𝑖

󵄩
󵄩
󵄩
󵄩

2
+ 𝜋
4𝑖
(𝑒
𝑖
) 𝑒
2

𝑖
] − 𝑏 (𝑤)

⋅ 𝑘min (𝑒V𝑖) 𝜆min (𝑅) 𝑒
2

V ≤ −

𝑛

∑

𝑖=1

(𝑟

−

1

2

𝜉max𝜆max (𝐻
𝑇
𝐻)𝜋
3𝑖
(𝑋
𝑖
))

󵄩
󵄩
󵄩
󵄩
𝑋
𝑖

󵄩
󵄩
󵄩
󵄩

2

−

𝑛

∑

𝑖=1

(−

1

2

𝜉max𝜆max (𝐻
𝑇
𝐻) (𝜀
𝑖
+ 𝜋
4𝑖
(𝑒
𝑖
))

+ 𝑏 (𝑤) 𝑘min (𝑒V𝑖) 𝜆min (𝑅) 𝜆min (𝐻
𝑇
𝐻)) 𝑒

2

𝑖
.

(29)

Choose 𝑟 ≥ (1/2𝜀
𝑖
)𝜉max𝜆max(𝐻

𝑇
𝐻)𝜋
3𝑖
(𝑧
𝑖
) + 1, 𝑘

𝑖
(𝑒V𝑖) =

(1 + (1/2)𝜉max𝜆max(𝐻
𝑇
𝐻)(𝜀
𝑖

+ max𝜋
4𝑖
(𝑒
𝑖
)))/

𝑏(𝑤)𝜆min(𝑅)𝜆min(𝐻
𝑇
𝐻); then, finally we can obtain the

following:

𝑉̇

󵄨
󵄨
󵄨
󵄨
󵄨26

≤ −

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
𝑋
𝑖

󵄩
󵄩
󵄩
󵄩

2
−

𝑛

∑

𝑖=1

𝑒
2

𝑖
= − ‖𝑋‖

2
− 𝑒
2
. (30)

The proof is thus completed.

Then, by Theorems 12 and 14, we can give our results of
the following theorem.
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Theorem 15. Suppose G is a directed graph which contains a
directed spanning tree with node 0 as the root. Then, under
Assumptions 6–8, the cooperative output regulation problem of
system (2) can be solved by the following:

𝑢
𝑖

= −

1 + (1/2) 𝜉max𝜆max (𝐻
𝑇
𝐻) (𝜀
𝑖
+max𝜋

4𝑖
(𝑒
𝑖
))

𝑏 (𝑤) 𝜆min (𝑅) 𝜆min (𝐻
𝑇
𝐻)

𝑒V𝑖

+ Γ
𝑖
𝑇
−1

𝑖
𝜂
𝑖
,

̇𝜂
𝑖
= 𝑀
𝑖
𝜂
𝑖
+ 𝑁
𝑖
𝑢
𝑖
,

𝑖 = 1, . . . , 𝑁.

(31)

Proof. According to Theorem 14, the augmented system
can be stabilized by controller (22). Further, according to
Theorem 12, the cooperative output regulation problem can
be solved by controller (31).This proof is thus concluded.

Remark 16. A special case is that the communication topol-
ogy among the followers is bidirected. In this case, we can
get 𝐻𝑒 = 𝐻

𝑇
𝑒 = 𝑒V; then, controller (31) can be rewritten as

follows:

𝑢
𝑖
= −

1 + (1/2) 𝜉max𝜆max (𝐻
2
) (𝜀
𝑖
+max𝜋

4𝑖
(𝑒
𝑖
))

𝑏 (𝑤) 𝜆min (𝑅) 𝜆min (𝐻
2
)

𝑒V𝑖

+ Γ
𝑖
𝑇
−1

𝑖
𝜂
𝑖
,

̇𝜂
𝑖
= 𝑀
𝑖
𝜂
𝑖
+ 𝑁
𝑖
𝑢
𝑖
,

𝑖 = 1, . . . , 𝑁,

(32)

which can also solve the cooperative output regulation
problem of system (2).

4. Simulation Results

In this section, numerical simulations are given to illustrate
our design. In our simulation, the time step is fixed for 0.001,
and the initial values are randomly taken from −8, 8. In
particular, consider a group of five followers described as van
der Pol oscillators [22]:

𝑥̇
1𝑖
= 𝑥
2𝑖
,

𝑥̇
2𝑖
= −𝑎
1𝑖
𝑥
1𝑖
+ 𝑎
2𝑖
𝑥
2𝑖
− 𝑎
2𝑖
𝑥
2

1𝑖
𝑥
2𝑖
+ 𝑏
𝑖
𝑢
𝑖
,

𝑦
𝑖
= 𝑥
2𝑖
,

𝑒
𝑖
= 𝑦
𝑖
− V
1
,

𝑖 = 1, . . . , 5,

(33)

where 𝑎
1𝑖

> 0, 𝑎
2𝑖

> 0, and 𝑏
𝑖

> 0 are some constant
parameters and V

1
is generated by the leader system V̇

1
= 𝜎V
2
,

V̇
2

= −𝜎V
1
, 𝜎 = 0.8. Let 𝑎

𝑖
= (𝑎
1𝑖
, 𝑎
2𝑖
, 𝑏
𝑖
)
𝑇

= 𝑎
𝑖
+ Δ𝑎
𝑖
,

where 𝑎
𝑖
andΔ𝑎

𝑖
denote the nominal value and the perturbed

values of 𝑎
𝑖
, respectively. Assume that 𝑎

𝑖
= [1, 1, 1]

𝑇,

V(0) = [0, 2]
𝑇, Δ𝑎

1
= [0.2, −0.1, 0.01]

𝑇, Δ𝑎
2

=

[0.1, 0.1, −0.02]
𝑇, Δ𝑎

3
= [−0.03, −0.05, 0]

𝑇, Δ𝑎
4

=

[−0.05, 0.08, 0.05]
𝑇, and Δ𝑎

5
= [0.02, 0.1, −0.06]

𝑇.
We can denote x

𝑖
(V, 𝑤, 𝜎) = −(1/𝜎)V

2
, and thenu

𝑖
(V, 𝑤, 𝜎)

has the following properties:

u
𝑖 (
V, 𝑤, 𝜎) = 𝑏

−1

𝑖
(−𝑎
2𝑖
V
1
+ (𝜎 −

𝑎
1𝑖

𝜎

) V
2
−

𝑎
2𝑖

𝜎

V
1
V2
2
) ,

𝑑u
𝑖 (
V, 𝑤, 𝜎)

𝑑𝑡

= 𝑏
−1

𝑖
(−𝑎
2𝑖
𝜎V
2
− (𝜎
2
− 𝑎
1𝑖
) V
1

+ 2𝑎
2𝑖
V2
1
V
2
− 𝑎
2𝑖
V3
2
) ,

𝑑
2u
𝑖 (
V, 𝑤, 𝜎)

𝑑𝑡
2

= 𝑏
−1

𝑖
(𝑎
2𝑖
𝜎
2V
1
− (𝜎
2
− 𝑎
1𝑖
) 𝜎V
2

+ 7𝑎
2𝑖
𝜎V
1
V2
2
− 2𝑎
2𝑖
𝜎V3
1
) ,

𝑑
3u
𝑖 (
V, 𝑤, 𝜎)

𝑑𝑡
3

= 𝑏
−1

𝑖
(𝑎
2𝑖
𝜎
3V
2
+ 𝜎
2
(𝜎
2
− 𝑎
1𝑖
) V
1

− 20𝑎
2𝑖
𝜎
2V2
1
V
2
+ 7𝑎
2𝑖
𝜎
2V3
2
) ,

𝑑
4u
𝑖 (
V, 𝑤, 𝜎)

𝑑𝑡
4

= 𝑏
−1

𝑖
(−𝑎
2𝑖
𝜎
4V
1
+ 𝜎
3
(𝜎
2
− 𝑎
1𝑖
) V
2

− 61𝑎
2𝑖
𝜎
3V
1
V2
2
+ 20𝑎
2𝑖
𝜎
3V3
1
) .

(34)

It can be verified that u
𝑖
(V, 𝑤, 𝜎) satisfies that

𝑑
4u
𝑖
(V, 𝑤, 𝜎)/𝑑𝑡

4
= −9𝜎

4u
𝑖
(V, 𝑤, 𝜎)−10𝜎

2
(𝑑
2u
𝑖
(V, 𝑤, 𝜎)/𝑑𝑡

2
).

Therefore, we can choose that

Φ
𝑖 (
𝜎) =

[

[

[

[

[

[

0 1 0 0

0 0 1 0

0 0 0 1

−9𝜎
4

0 −10𝜎
2

0

]

]

]

]

]

]

,

Γ
𝑖
=

[

[

[

[

[

[

[

1

0

.

.

.

0

]

]

]

]

]

]

]

𝑇

.

(35)

And let

𝑀
𝑖
=

[

[

[

[

[

[

0 1 0 0

0 0 1 0

0 0 0 1

−4 −12 −13 −6

]

]

]

]

]

]

,

𝑁
𝑖
=

[

[

[

[

[

[

0

0

0

1

]

]

]

]

]

]

.

(36)
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Figure 1: The network topology of a multiagent system.

Then, the unique solution of the Sylvester equation (14) is
obtained

𝑇
𝑖
=

[

[

[

[

[

[

−0.0749 0.1592 −0.0115 0.0285

0.1052 0.0749 0.0234 0.0115

0.0424 −0.1052 −0.0013 −0.0234

−0.0864 −0.0424 −0.0449 0.0013

]

]

]

]

]

]

. (37)

By the coordinate and input transformation, we can get the
augmented system:

𝑧
𝑖
= 𝑒
𝑖
,

̇
𝜂̃ = 𝑀

𝑖
𝜂 + 𝑏
−1

𝑖
𝑀
𝑖
𝑁
𝑖
𝑒
𝑖
− 𝑏
−1

𝑖
𝑁
𝑖
𝜛 (𝑧
𝑖
, 𝑒
𝑖
, 𝜇) ,

̇𝑒
𝑖
= 𝜛 (𝑧

𝑖
, 𝑒
𝑖
, 𝜇) + 𝑏

𝑖
Ψ
𝜎

𝑖
𝜂
𝑖
+ Ψ
𝜎

𝑖
𝑁
𝑖
𝑒
𝑖
+ 𝑏
𝑖
(𝑢
𝑖
− Ψ
𝜎

𝑖
𝜂
𝑖
) ,

(38)

where𝜛(𝑧
𝑖
, 𝑒
𝑖
, 𝜇) = −𝑎

1𝑖
𝑧
𝑖
+𝑎
2𝑖
𝑒
𝑖
−𝑎
2𝑖
(𝑧
𝑖
+z
𝑖
)
2
(𝑒
𝑖
+V
1
)+𝑎
2𝑖
𝑧
2

𝑖
V
1
.

Figure 1 shows the directed graph G with six agents,
labeled from 0 to 5, where node 0 represents the leader and
nodes 1–5 represent the followers. Obviously, the directed
graph has a directed spanning tree with node 0 being the root.
The correspondingweighted adjacencymatrix is described by

𝐻 =

[

[

[

[

[

[

[

[

[

2 0 0 −1 0

0 1 0 0 0

−1 0 1 0 0

0 −1 −1 2 0

0 −1 0 0 1

]

]

]

]

]

]

]

]

]

. (39)

Then, we can get 𝜆min(𝐻
𝑇
𝐻) = 0.2127 and 𝜆max(𝐻

𝑇
𝐻) =

7.8299. Take 𝑄 = diag(0.1592, 0.5308, 0.1393, 0.0910,
0.0796), and by 𝐻𝑄 + 𝑄𝐻

𝑇
= 𝑅, we can obtain 𝜆min(𝑅) =

0.1325. It can be verified that 𝑅 is positive definite. Thus, we
can design the distributed feedback controllers of form (31) by
Theorem 15 with 𝜉max = 0.5308, 𝜀 = 1, and 𝜋

𝑖
(𝑒V𝑖) = 5(𝑒

2

V𝑖+1).
In the simulation, the results about the tracking perfor-

mance for the nonlinear multiagent systems are shown in
Figures 2 and 3. Figure 2 shows the outputs of the leader
and all the followers, while Figure 3 shows the response of
the regulated errors 𝑒

𝑖
(𝑡). It is observed that, with parameter

perturbations, the outputs of all the followers asymptotically
approach that of the leader, and the regulated errors of all
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Figure 2: The outputs 𝑦
𝑖
of the leader and all the followers with

topology graphG.
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Figure 3:The regulated errors 𝑒
𝑖
(𝑡) of all the followers with topology

graphG.

the followers asymptotically converge to zero. The coop-
erative output regulation problem of nonlinear multiagent
systems under a general directed graph is solved with satis-
factory tracking performance of our design.

5. Summary

In this paper, the cooperative output regulation problem
of nonlinear multiagent systems with a general directed
topology graph has been considered. Based on the internal
model, distributed feedback controller has been proposed by
using the backstepping technique for tracking trajectory and
rejecting disturbance. However, the followers in this paper
are considered as homogeneous agents while in reality the
followers may have different dynamics. In the future work,
we have to seek a new controller to cope with the case
for heterogeneous multiagent systems in a general directed
graph.
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