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For evaluating the stress gradient, a mathematical technique based on the stress field of lower-order 𝐶0 elements is developed in
this paper. With nodal stress results and location information, an overdetermined and inconsistent equation of stress gradient is
established and the minimum norm least squares solution is obtained by the Moore-Penrose pseudoinverse. This technique can be
applied to any element type in comparison with the superconvergent patch (SCP) recovery for the stress gradient, which requires
the quadratic elements at least and has to invert the Jacobi andHessianmatrices.The accuracy and validity of the presentedmethod
are demonstrated by two examples, especially itsmerit of achieving high accuracy with lower-order linear𝐶0 elements.Thismethod
can be conveniently introduced into the general finite element analysis programs as a postprocessing module.

1. Introduction

Effects and evaluations of the stress gradient have always
been important to the design of an engineering structure.
As nowadays the stress is usually calculated with a finite
element method (FEM), the calculation technique of the
stress gradient has been the effort of many research works.

The size effect on the stress/strain gradient has already
beenmanifested inmany experiments [1–4]. To overcome the
problem of the conventional elasticity theory in describing
the effect of size, the couple stress [5–7] and strain gradient
plasticity [8, 9] theories have been developed and proved
effective in introducing strain gradient terms into constitutive
equations and yield functions. However, according to these
theories, the element should be at least 𝐶1 continuity. This
complicates the element construction. Dasgupta and Sen-
gupta [10] developed an 18-DOF (degree-of-freedom) trian-
gular plate bending element, whose displacement function
is fifth-order polynomial in the area coordinates. Zervos et
al. [11] proposed a 𝐶1 continuity elastoplasticity triangular
element with assumption that the stress increment consists
of both the strain increment and its Laplacian. Chen and
Li [12] put forward a 24-DOF quadrilateral spline element
for the couple stress/strain gradient elasticity, which can pass

the 𝐶0-1 enhanced patch test of a convergence condition. In
addition to the reason that only a few types of 𝐶1 elements
are successful and effective, the limitation in the element
shape and the number of DOFs all impede the practical
applications.

In order to circumvent problems of the 𝐶1 element,
a mixed or coupled formulation using lower-order ele-
ments (𝐶0) is implemented. Zhao et al. [13] proposed a
mixed quadrilateral element (CQ12 + RDKQ) for the couple
stress/strain gradient elasticity, in which one satisfies 𝐶0
continuity to compute strains and the other one satisfies weak
𝐶
1 continuity to calculate strain gradients. Amanatidou and

Aravas [14] developed an alternative mixed finite element
formulation and studied the Mindlin [15] strain gradient
elasticity theories in detail. The 𝐶1 continuous Hermitian
shape functions for the plastic and damage multipliers and
the 𝐶0 continuous interpolation functions for displacement
field were employed by Dorgan and Voyiadjis [16]. For
reasons such as the additional and inevitable computational
cost and only a few available element types, the mixed
elements are inconvenient to practical applications.

Another motivation for the stress gradient analysis is the
fatigue life calculation and the fatigue behavior prediction.
Neuber [17] developed awidely adoptedmethod in predicting
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the notch fatigue life; nevertheless, the method only focuses
on the stress of dangerous point but without considering
the influence of stress gradient and multiaxial effects. Even
if the stresses of dangerous points for various structures
are the same, the fatigue life and behavior are different
because of different stress gradient distribution [18]. Taking
into account the stress gradient for assessing the fatigue
strength [19], the stress field intensity method [20] and the
advanced volumetricmethod [21] are two of themost popular
techniques. Although the stress field intensity method is
simple, it needs experiment to provide the size of notch
damaged zone. The advanced volumetric method requires
the accurate calculation of stress gradients near notch roots;
however, it is usually difficult to guarantee the calculation
accuracy.

The technique of finite element postprocessing is another
approach to calculating continuous stress and its gradient.
The superconvergent patch (SCP) recovery is known as
the most effective technique [22], which can obtain higher
accuracy than any other points at the Gauss integration
point within an element. Utilizing the patches of elements
in FEM, Zienkiewicz and Zhu [23, 24] obtained continu-
ous stress field with data at the superconvergent points. A
detailed analysis of the SCP recovery technique and error
estimation was presented in [25, 26]. Since then, Wiberg
and Abdulwahab [27], Wiberg et al. [28], and Park and Shin
[29] improved the SCP approach using the method of least
square for fitting the residuals of the equilibrium equation
and applying the principle of virtual work. Recently, the SCP
technique has been extended to recover the higher-order
derivatives. Using Q8 (8-node quadratic, 9-point quadrature)
quadrilateral element, T6 (6-node quadratic, 4-point quadra-
ture) triangular element, and the mixed mesh of Q8 and
T6, Gan and Akin [30] developed an element patch based
superconvergent second derivative recovery technique for a
lower-order strain gradient plasticity model. Bank et al. [31]
proposed a superconvergent derivative recovery scheme with
the Lagrange triangular element and the superconvergence
estimation of the 𝑝th derivatives. Nevertheless, the higher-
order derivatives such as stress gradients also need higher-
order element shape functions, which lead to additional
DOFs and calculation cost, especially for complex structures
or large systems.

Therefore, the effort is still required to enhance tech-
niques for calculating stress gradient in such aspects as
reducing computation cost, developing more element types,
and providing codes for engineering applications. In the
rest of this paper, a mathematical technique based on the
stress field results of general finite element analysis pro-
grams (FEAP) is proposed to calculate the stress gradient.
Because it works with the stress field results, this method
can be considered as a stress field gradient (SFG) analysis
technique. As no transformation from parametric coordinate
to physical coordinate is required, this technique does not
involve Jacobi and Hessian matrices and hence does not
need to calculate their inverses. With the location and
stress information of the central node and its surrounding
sample nodes, an overdetermined and inconsistent equation
of the stress gradient at the central node is established.

The Moore-Penrose pseudoinverse, which is computed with
the singular value decomposition, is employed to obtain the
minimum norm least squares solution [32, 33] of the stress
gradient. A popular 2D example demonstrates its satisfactory
accuracy in comparisonwith the SCP recovery.Thepresented
method especially can also achieve high accuracy with lower-
order linear𝐶0 elements. Another 3D example shows that the
method can be easily introduced into general FEAP (such
as ANSYS, PATRAN, and ABUQUS) as a postprocessing
module.

This paper is organized as follows. First, the super-
convergent patch recovery method is briefly introduced in
Section 2. Then, the stress filed gradient analysis technique
and the error estimation are presented in Section 3. In
Section 4, two numerical examples are employed to evaluate
the performance of the presented method.The last section of
the paper is the conclusions.

2. SCP Stress Gradient Recovery

2.1. Second Derivatives in FEM. Taking the isotropic normal
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where 𝑔
𝑥
and 𝑔

𝑦
are the components of the stress gradient,

𝑁
𝑖
is the shape function, 𝑛 is the number of element nodes,

and (𝑢
𝑖
, V
𝑖
) is the nodal displacement vector; 𝐸

0
= 𝐸, 𝜇

0
= 𝜇

for the plane stress, 𝐸
0
= 𝐸/(1 − 𝜇

2
), 𝜇
0
= 𝜇/(1 − 𝜇) for the

plane strain; 𝐸 and 𝜇 are Young’s modulus and Poisson’s ratio,
respectively.

Firstly, the second derivatives of the shape functions are
necessary for evaluating the stress gradient, but they are all
equal to zero for lower-order linear 𝐶0 elements, such as
Q4 (4-node quadrilateral element) and T3 (3-node triangular
element).

Assuming using parametric elements, the first derivative
transformations from the parametric coordinate to the phys-
ical coordinate are
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where 𝜉 and 𝜂 are the parametric coordinates, and the matrix
is the so-called Jacobi matrix.
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Figure 1: Construction of 2D patches with quadrilateral and triangular elements.

The relationship between the second parametric deriva-
tives and the second physical derivatives can be written as
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where the second square matrix on the right hand side is the
Hessianmatrix. From (3), the physical second derivatives can
be expressed by the first and second parametric derivatives
and the inverse of the Jacobi and Hessian matrices.

2.2. SCP Recovery and Error Estimation. The Gauss integra-
tion points are also the superconvergent points for the stress
gradient, and the superconvergent patches can be built as
shown in Figures 1(b) and 1(d). The element shape functions
must satisfy quadratic at least in the SCP stress gradient
recovery because of the requirement on the existence of the
second derivatives.

With the SCP recovery, the recovered stress gradient 𝑔∗
𝑥,𝑦

can be expressed as

𝑔
∗

𝑥,𝑦
= Pa, (4)

where P is the polynomial vector and a is the coefficient
column vector to be determined.

For quadratic elements like Q8 and T6, P is assumed as

P = [1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2] , (5)

where the recovered stress gradient has the same order of
displacement filed [29], and then a = [𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎6]

𝑇.
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The functional integral of the difference between the
stress gradient calculated from the SCP recovery 𝑔∗
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and the

stress gradient obtained by the FEM 𝑔
𝑥,𝑦

can be expressed as
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where𝑚 is the number of patch elements and 𝑆
𝑒
is the element

area.
The assumed coefficient vector a can be obtained by

minimizing the functional integral in (6), which yields
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where superscript 𝑇 denotes the transpose, and both sides of
(7) can be calculated by the Gauss integral:
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where 𝑛 = 𝑚 ⋅ 𝑛
𝑔
, 𝑛
𝑔
is the number of Gauss points per

element,𝑤
𝑖
is the weight coefficient of each integration point,

and (𝑥
𝑖
, 𝑦
𝑖
) is the global coordinates of each Gauss point.

Finally, there is

a = C−1D, (9)

in which

C =
𝑛

∑

𝑖=1

P𝑇 (𝑥
𝑖
, 𝑦
𝑖
)P (𝑥

𝑖
, 𝑦
𝑖
) 𝑤
𝑖
,

D =
𝑛

∑

𝑒=1

P𝑇 (𝑥
𝑖
, 𝑦
𝑖
) 𝑔
𝑥,𝑦
(𝑥
𝑖
, 𝑦
𝑖
) 𝑤
𝑖
.

(10)

In [25, 26], utilizing the quadratic completeness polyno-
mial, the SCP recovery for stress gradient has the order of
accuracy 𝑂(ℎ3) (ℎ is the element characteristic length). And
then, it is easy to verify that the error of the stress gradient
recovery is of order𝑂(ℎ2) by the same procedure. It has been
found that the recovered variable field is more accurate at
node points.

3. Stress Field Gradient Analysis

It is known that the SCP recovery for the stress gradient
needs quadratic elements at least, and the shape functions
should be determined beforehand to compute the second
derivatives of the displacement field. All of this leads to
an additional calculation cost and difficulty, especially to
those engineers who are used to work with commercial finite
element software, and providing the preliminary analysis by
lower-order linear elements, where the SCP technique cannot
be implemented yet.

Central points

Stress sample points

x
z

y

Figure 2: Construction of 3D patch with hexahedral element.

In this section, a simple and convenient mathematical
technique for calculating the stress gradient will be devel-
oped. This method is suitable for any element types and only
needs the information of nodal location and stress.

3.1. General Formulation. As shown in Figure 1 for 2D prob-
lem, the central point 𝑃

𝑐
(𝑥
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where �̃�
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is the stress result of commercial finite element

software. The limit can be approximately written as
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Substituting (12) into (11) yields
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For all sample points, the stress gradient equation can be
written as

A ⋅ G
𝑃
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= b, (14)
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Figure 3: An infinite plate with a central hole subjected to a remotely uniform tension: (a) theory model, (b) finite element model.

(a) Quadrilateral coarse mesh 400 elements:
441 nodes (Q4), 1281 nodes (Q8)

(b) Quadrilateral fine mesh 1600 elements:
1681 nodes (Q4), 4961 nodes (Q8)

(c) Quadrilateral double-fine mesh 6400 ele-
ments: 6561 nodes (Q4), 19521 nodes (Q8)

(d) Triangle coarse mesh 564 elements: 323
nodes (T3), 1209 nodes (T6)

(e) Triangle fine mesh 2220 elements: 1191
nodes (T3), 4601 nodes (T6)

(f) Triangle double-fine mesh 9040 ele-
ments: 4681 nodes (T3), 18401 nodes (T6)

Figure 4: Meshes of quadrilateral and triangular elements.

where
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[
[
[
[

[

n
𝑐1

n
𝑐2

.

.

.

n
𝑐𝑛
𝑠

]
]
]
]

]

, b =
[
[
[
[
[
[

[

�̃�
𝑃
1

𝑥
− �̃�
𝑃
𝑐

𝑥

�̃�
𝑃
2

𝑥
− �̃�
𝑃
𝑐

𝑥

.

.

.

�̃�
𝑃
𝑛𝑠

𝑥 − �̃�
𝑃
𝑐

𝑥

]
]
]
]
]
]

]
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In general, 𝑛
𝑠
> 2; hence, the coefficient matrix A is

not square and (14) is overdetermined and inconsistent. An
effective way to solve the equation is to employ the Moore-
Penrose pseudoinverse ofA𝑛𝑠×2.The pseudoinverseM2×𝑛𝑠 can
be calculated by the singular value decomposition of A𝑛𝑠×2;
that is,

A = UΣV𝑇, (16)
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Figure 5: Stress gradients of sample lines with quadrilateral elements.

where U ∈ 𝑅𝑛𝑠×𝑛𝑠 and V ∈ 𝑅2×2 are orthogonal matrices, Σ ∈
𝑅
𝑛
𝑠
×2 is a diagonalmatrixwith nonnegative real numbers, and

the diagonal entries are known as the singular values. Then,

M = VΣ†U𝑇, (17)

where Σ† is the transpose of Σ and its diagonal entries are the
inverses of those nonzero diagonal elements of Σ.

Finally, the stress gradient at the central point 𝑃
𝑐
can be

expressed by

G
𝑃
𝑐

(�̃�
𝑥
)
𝑇
= M ⋅ b. (18)

As the same procedure as 2D problem, the stress gradient
equation of 3D problem can also be written as (14), in which
the direction vector and stress gradient vector are n

𝑐𝑗
= (𝑥
𝑗
−

𝑥
0
, 𝑦
𝑗
− 𝑦
0
, 𝑧
𝑗
− 𝑧
0
) and G

𝑃
𝑐

(�̃�
𝑥
) = (𝜕�̃�

𝑥
/𝜕𝑥, 𝜕�̃�

𝑥
/𝜕𝑦, 𝜕�̃�

𝑥
/𝜕𝑧),

respectively. As an example, the 3D element patch is shown
in Figure 2 with 8-node linear hexahedral elements.

3.2. Error Estimation. The Moore-Penrose pseudoinverse
M𝑛0×𝑛𝑠 (𝑛

0
= 2 or 3 for 2D or 3D case) of A𝑛𝑠×𝑛0 ∈ 𝑅𝑛𝑠×𝑛0

is unique and satisfies all of the following four criteria:

AMA = A,

MAM = M,

(AM)𝑇 = AM,

(MA)𝑇 = MA,

(19)

which yields

(AMA)𝑇 = A𝑇(AM)𝑇 = A𝑇AM = A𝑇,

(MAM)𝑇 = M𝑇(MA)𝑇 = M𝑇MA = M𝑇.
(20)
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Figure 6: Stress gradients of sample lines with triangular elements.
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Table 1: Stress gradients at point 𝑃 with different meshes and methods.

Mesh-Method-Element Numerical solution Exact solution Error
𝑆
𝑥𝑥
/108 𝑆

𝑥𝑦
/108 𝑆

𝑥𝑥
/108 𝑆

𝑥𝑦
/108 𝑆

𝑥𝑥
𝑆
𝑥𝑦

Average
C-SFG-Q4 −10.3667 4.0309

−10.1284 3.7238

2.3524% 8.2482% 5.3003%
C-SCP-Q8 −8.7140 3.3071 −13.9646% −11.1893% 12.5769%
C-SFG-Q8 −1.0908 4.1159 7.6936% 10.5311% 9.1123%
C-SFG-T3 −9.2718 4.8073 −8.4575% 29.0992% 18.7783%
C-SCP-T6 −10.1010 3.9277 −0.2813% 5.4765% 2.8789%
C-SFG-T6 −10.2858 3.6292 1.5533% −2.5402% 2.0467%
F-SFG-Q4 −10.1920 3.6648

−9.9690 3.6431

2.2362% 0.5960% 1.4161%
F-SCP-Q8 −9.54347 3.2959 −4.2689% −9.5305% 6.8997%
F-SFG-Q8 −10.4925 3.8314 5.2506% 5.1685% 5.2096%
F-SFG-T3 −10.1635 3.7822 1.9511% 3.8174% 2.8842%
F-SCP-T6 −10.2152 3.6521 2.4697% 0.2479% 1.3588%
F-SFG-T6 −10.1343 3.5049 1.6575% −3.7928% 2.7251%
DF-SFG-Q4 −10.1587 3.6648

−9.8932 3.6050

2.6837% 1.6590% 2.1714%
DF-SCP-Q8 −9.8485 3.3578 −0.4519% −6.8582% 3.6551%
DF-SFG-Q8 −10.2297 3.5939 3.4010% −0.3094% 1.8552%
DF-SFG-T3 −9.9612 3.7442 0.6875% 3.8603% 2.2739%
DF-SCP-T6 −10.1757 3.5357 2.8555% −1.9237% 2.3896%
DF-SFG-T6 −10.1554 3.5479 2.6497% −1.5834% 2.1166%
Meshes: C: coarse; F: fine; DF: double-fine.
Methods: SFG: stress field gradient; SCP: superconvergent patch.

For all g ∈ 𝑅𝑛0×1, there is
󵄩󵄩󵄩󵄩Ag − b

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩Ag − b + AMb − AMb󵄩󵄩󵄩󵄩

= ‖AMb − b + Aw‖

= ‖(AM − I) b + Aw‖ ,

(21)

where w = g−Mb ∈ 𝑅𝑛0×1. With the first equation of (20),
A𝑇(AM−I) = O and thus there is a relationship. Consider

⟨(AM − I) b,Aw⟩ = 0, (22)

in which ⟨, ⟩ denotes the inner product. With this relation-
ship, we can have

‖(AM − I) b + Aw‖ = ‖(AM − I) b‖ + ‖Aw‖

≥ ‖(AM − I) b‖ ,
(23)

or

‖AMb − b‖ ≤ 󵄩󵄩󵄩󵄩Ag − b
󵄩󵄩󵄩󵄩 , (24)

whichmeans thatMoore-Penrose pseudoinverse provides the
linear least squares solution.

The least squares solution is usually not unique, and the
general solution can be expressed as

ĝ = M̂b + (I−M̂A) z, ∀z ∈ R𝑛0×1, M̂ ∈ R𝑛0×𝑛𝑠 (25)

in which AM̂A = A and (AM̂)𝑇 = AM̂.
Similarly, it can be verified that if M̂AM̂ = M̂, (M̂A)𝑇 =

M̂A, then
󵄩󵄩󵄩󵄩󵄩
M̂b󵄩󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
M̂b + (I − M̂A) z󵄩󵄩󵄩󵄩󵄩 . (26)

It indicates this solution has the minimum norm.

Apparently, the constraint conditions of (25) and (26) are
the same as the four criteria listed in (19), so that thematrix M̂
must be the Moore-Penrose pseudoinverseM. In this way, it
is shown that the Moore-Penrose pseudoinverse can provide
the unique minimum norm least squares solution of (14).

The error of (14) consists of two parts, one is the
limit approximation of order 𝑂(ℎ) in (12) and the other
one is the stress field �̃�

𝑥
. The stress calculated with FEM

is not continuous across elements, and the general FEAP
commonly calculates the continuous stress by the method of
nodal stress weighted average:

�̃�
𝑥
=
𝑤
1
𝜎
𝑥1
+ 𝑤
2
𝜎
𝑥2
+ ⋅ ⋅ ⋅ + 𝑤

𝑚
𝜎
𝑥𝑚

(𝑤
1
+ 𝑤
2
+ ⋅ ⋅ ⋅ + 𝑤

𝑚
)

, (27)

in which 𝑚 is the number of surrounding elements for one
node, 𝑤

𝑖
(𝑖 = 1, 2, . . . , 𝑚) is the weight (element area or

volume), and 𝜎
𝑥𝑖
(𝑖 = 1, 2, . . . , 𝑚) is the stress calculated by

the node displacements of each element. The stress field �̃�
𝑥

evaluated by (27) has the order of accuracy 𝑂(ℎ) at least.
Therefore, the order of the minimum norm least squares
solution of (14) is of 𝑂(ℎ) at least. Moreover, it should not
be ignored that the least squares processing has the strong
ability to improve the accuracy.The following example shows
that the accuracy of the suggested method, even employing
the lower-order linear elements, is equal to or higher than the
SCP recovery using quadratic elements.
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Start

ANSYS APDL files input
(Including model, mesh, load, and solve) 

Output

(1) Nodes location and nodal Von-Mises stress
(2) Elements information (types and nodes)

Stress field gradient analysis (Matlab)

(1) Import ANSYS output files
(2) Confirm nodes and elements information
(3) Find the surrounding elements for each node
(4) Identify the sample nodes for each node
(5) Solve the stress gradient equation
(6) Output the nodal location and stress gradient

Contour figures (Tecplot)

(import the Matlab output files and plot)

End

Figure 8: The flowchart of postprocessing using the presented
method.

4. Numerical Example and Discussions

4.1. Example 1: 2D Problem. For existing exact solution
and exhibiting strong stress concentration phenomenon, the
infinite plate with a center hole under unidirectional tensile
stress as shown in Figure 3 becomes a classic and popular
two-dimensional example used in previous papers [13–15, 24,
29].

In this case, the normal stress 𝜎
𝑥
is dominant and the

exact solution is given as

𝜎
𝑥
= 𝑃
0
[1 −

𝑟
2

0

𝑟2
(
3

2
cos 2𝜃 + cos 4𝜃) + 3

2

𝑟
4

0

𝑟4
cos 4𝜃] , (28)

where 𝑟 and 𝜃 are the polar coordinates.
Due to the symmetry in the geometry, only a quarter

area is modeled using quadrilateral and triangular elements,
such as T3, Q4, T6, and Q8 elements. Three different meshes

are shown in Figure 4, including the numbers of nodes and
elements.

Firstly, a checking point 𝑃 around (2.2𝑟
0
, 2.2𝑟
0
) is used

to compare the results of different methods as shown
in Figure 4. The exact locations are (2.212𝑟

0
, 2.212𝑟

0
),

(2.225𝑟
0
, 2.225𝑟

0
), and (2.232𝑟

0
, 2.232𝑟

0
) for coarse, fine, and

double-fine meshes, respectively. Results from the proposed
stress field gradient (SFG) analysis technique and the SCP
recovery method with various element types and meshes
are compared in Table 1. The average error is the root sum
square of 𝑥-direction gradient (𝑆

𝑥𝑥
) error and 𝑦-direction

gradient (𝑆
𝑥𝑦
) error. The accuracy of these methods is all

improvedwith themesh refinement nomatter which element
is employed, especially for quadrilateral elements. Except
fine mesh T6 element (F-T6) only, the presented method
is always more accurate than the SCP recovery technique.
For lower-order linear elements Q4, it is clear that the SFG
technique can still provide a better result than the SCP
method in all the mesh types. On the other hand, using T3
element, results of the SFG get closer to those of the SCP
with the mesh refinement, and finally a higher accurate stress
gradient can be obtained in the double-fine mesh. In the
stress field gradient (SFG) analysis, higher-order elements
do not always correspond to higher accuracy because of
the treatment of minimum norm least squares solution. In
other words, a lower-order element, which generally means
low computation cost, can provide almost the same accuracy
as a higher-order element. This is particularly important to
practical applications.

Furthermore, results from the two methods along two
checking lines, 𝜃 = 45∘ and 𝜃 = 90∘, are shown in Figures
5 and 6, respectively. Both figures indicate that they have the
uniform accuracy inmost areas, including the SFGprocedure
employing linear T3 and Q4 elements. Although the results
at the edge of the hole have the lowest precision for all cases,
the accuracy is very high once not at the edge. Specifically,
at the edge of the hole, the SFG method using linear 𝐶0
elements provides the worst stress gradient for line 𝜃 = 45∘
(Line-45∘) as well as the SCP method using quadratic Q8
element for line 𝜃 = 90

∘ (Line-𝑌). Utilizing quadrilateral
elements, the two approaches have almost identical stability
for each mesh. On the other hand, the SCP recovery method
with triangular elements works better in the stability and
convergence comparing with the SFG method.

4.2. Example 2: 3D Problem. A three-dimensional cantilever
beam with a groove under vertical end load is modeled
using 8-node hexahedral elements, and its geometry, loading
condition, and mesh are shown in Figure 7. All DOFs on the
𝑥 = 0 surface are fixed.

Based on the software platform ANSYS, the flowchart
of postprocessing with the proposed method is shown in
Figure 8. The code of the stress field gradient analysis is
developed by Matlab language and the contour figures are
generated using software Tecplot. The general finite element
analysis program (FEAP), which provides the preliminary
analysis of the stress field, is not just limited to ANSYS, and
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Figure 9: Von-Mises stress and its gradients of 3D problem: (a) Von-Mises stress, (b) Von-Mises stress gradient-total, (c) stress gradient
slices-total, (d) stress gradient-𝑋, (e) stress gradient-𝑌, and (f) stress gradient-𝑍.

Table 2: Maximal Von-Mises stresses and gradients of different
groove widths and depths.

ℎ/mm 𝑑/mm Max-Von-Mises/Pa Max Total gradient
5 5 1.4339E + 08 4.1542E + 10
10 5 1.2381E + 08 2.4833E + 10
20 5 1.1546E + 08 2.5172E + 10
4 4 1.3163E + 08 4.0531E + 10
4 8 2.3143E + 08 9.2233E + 10
4 12 4.6672E + 08 2.3719E + 11

the proposed method can also be applied to other software
platforms as PATRAN and ABUQUS, and so forth.

Details of the stress gradients are shown in Figure 9 for
ℎ = 4mm and 𝑑 = 5mm, in which the total gradient
𝐺(�̃�)Total =

2

√(𝜕�̃�/𝜕𝑥)
2
+ (𝜕�̃�/𝜕𝑦)

2
+ (𝜕�̃�/𝜕𝑧)

2. It can be seen
that the stress gradient in Figure 9(b) is more powerful in
characterizing and identifying the stress concentration than
the stress itself in Figure 9(a). The gradient slices show that
the stress gradientmaximumappears around the surfaces and
corners of the groove, which are the sensitive or dangerous
areas to the fatigue failure and the plastic deformation.

Results of different groove widths and depths obtained by
the SFG technique are compared in Figure 10 andTable 2.The
high-gradient zonemoves to the fixed endwith the increase of

the width, and the maximum of the stress gradient is reduced
from 4.15𝐸 + 10 to 2.52𝐸 + 10. The distribution of stress
gradient becomes more and more uniform and smooth with
the width increasing, which is beneficial to prevent structural
failure. As the depth increases, the total stress gradient goes
up from 4.0531𝐸 + 10 to 2.3719𝐸 + 11 and the high-gradient
zone in the bottom of the groove becomes more and more
concentrated. More details are shown in Figure 11, in which
themiddle lines cross the bottom surfaces of the grooves with
different widths and depths along the 𝑥-direction.

5. Conclusions

An FEAP-based mathematical technique is developed for
accurately extracting stress gradient. Comparing with the
SCP recovery method, which needs the quadratic elements
at least and must invert the Jacobi and Hessian matrices, this
method only requires nodal stress results as well as location
information and can be implemented to any element types.

The classic plane example shows that the suggested
method can achieve more accurate stress gradient than the
SCP recovery technique with the same elements. In addition,
its performance in calculating the stress gradient with the
linear 𝐶0 elements is proved better than the SCP recovery
method. It is also observed that with this method the quadri-
lateral elements can provide better stability than the trian-
gular elements. Besides, based on the proposed technique, a
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Figure 10: Von-Mises total stress gradients for different groove widths and depths: (a) ℎ = 5mm, 𝑑 = 5mm; (b) ℎ = 10mm, 𝑑 = 5mm; (c)
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three-dimensional example has presented the postprocessing
analysis with commercial finite element software, and the
method should be very convenient to be introduced into
FEAP as a code module.
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