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We present an algorithm for approximating an eigensubspace of a spectral component of an analytic Fredholm valued function.
Our approach is based on numerical contour integration and the analytic Fredholm theorem. The presented method can be seen
as a variant of the FEAST algorithm for infinite dimensional nonlinear eigenvalue problems. Numerical experiments illustrate the

performance of the algorithm for polynomial and rational eigenvalue problems.

1. Introduction

In this paper we study analytic operator eigenvalue problems
defined on an open connected subset ) € C in a separable
Hilbert space 7. Throughout this paper we assume that S :
Q — ZL(H) is an analytic function with values in the
space Z(#) of bounded linear operators. A scalar A € Q
is called an eigenvalue of S if S(A) is not injective. Hence, the
eigenvalue problemisto find A € Qandu € %\ {0} such that

S(A)u=0. )

Such problems are, for example, used to study the dispersion
and damping properties of waves [1-3]. Given a closed
contour I', we would like to approximate all the eigenvalues
of S inside T to the sufficient degree of accuracy. In this
paper the numerical method is based on contour integrals of
the generalized resolvent S~'. The state-of-the-art results in
the contour integration based methods for solving nonlinear
matrix eigenvalue problems are presented in [4-6] including
the references therein. Results for contour integration based
solution methods for Fredholm valued eigenvalue problems
can be found in, for example, (7, 8].

The spectrum o(S) of the operator function S is the set of
all A € Q such that S(1) is not invertible in (%) and the
resolvent set is defined as the complement p(S) = Q \ o(S).
For F € L () we define the operator norm by the expression
IFIl = +/spr(F*F), where spr(:) denotes the spectral radius.
We call an operator F € Z (%) a Fredholm operator if the

dimensions of its null space Ker(F) and of the orthogonal
complement of its range CoKer(F) = Ran(F)" are finite. By
@ () we denote the set of all Fredholm operators on % and
the number ind(F) = dim Ker(F) — dim CoKer(F) is called
the index of F € ®(#’). In what follows we will assume that
S(A) € OF) for all A € Q. If in addition the resolvent
set of such S is nonempty, the analytic Fredholm theorem,
for example, [9, Theorem 1.3.1], implies that the generalized
resolvent z +— S(z)™! is finitely meromorphic. This in turn
implies that the spectrum o(S) is countable and the geometric
multiplicity of A, that is, dim(Ker S(1)), is finite. Moreover,
the associated Jordan chains of generalized eigenvectors have
finite length bounded by the algebraic multiplicity; see [9].
The results of this paper are a combination of matrix
techniques from [6] with the specialization of the results from
[7] to Hilbert spaces. In particular, we leverage the technique
of block operator matrix representation of Fredholm valued
operator functions and prove that the convergence rate for
the inexact subspace iteration algorithm depends primarily
on the spectral properties of the operator function. Also, we
make the case for the problem dependent determination of
the number of integration nodes depending on the clustering
of eigenvalues towards the contour of integration (cf. [6]),
where the use of 16 nodes of Gauss-Legendre integration
formula is recommended. To assess the quality of a computed
eigenpair, rank one perturbations of the operator function
are studied. In particular, we construct a perturbation based
on the residual functional and estimate the approximation



errors by estimating the norm of the residual by an auxiliary
subspace technique. Our algorithm consists of the inexact
subspace iteration for the zeroth moment of the resolvent
to construct the approximate eigenspace for the eigenvalues
contained inside a contour I'. We then use the moment
method of Beyn et al. [4, 7] to extract information on
eigenvalues from the computed approximate eigenspace. As
the convergence criterion we use a hierarchical residual
estimate. In the case in which the convergence criterion is
not satisfied the procedure is repeated. This structure of the
algorithm will be replicated directly in the structure of the
paper and is presented as Algorithm 2.

The paper is organized as follows. In Section 2 we estab-
lish a criterion based on the residual norm for assessing
approximations of simple eigenvalues. In Section 3 we present
inexact subspace iteration algorithm based on contour
integration and prove that its convergence rate essentially
depends on the properties of the operator function. It is
shown that the influence of the integration formula dimin-
ishes exponentially with the number of integration nodes.
Finally, in Section 4 we present numerical experiments.

2. Notation and Basic Analytic Results

In this section we present the machinery of quasi-matrices
from [10-12]. In particular we present basic results on the
angles between finite dimensional subspaces of a Hilbert
space in terms of quasi-matrix notation. Finally, we will
prove an error estimation result for simple eigenvalues of a
Fredholm valued function.

A quasi-matrix is a bounded linear operator V' from the
finite dimensional space C” to an (in general) infinite dimen-
sional Hilbert space . Then, the product V*V denotes the
Gram matrix:

(V*V)ij = (Vei’ Vej) , Lj=12,...,1, )

which depends on the inner product (-,-) of Z. Let P}, P,,
Q,, and Q, be orthogonal projections such that P, @ P, = I
and Q, ® Q, = I, where I is the identity operator on #.

Furthermore, let %, := P, #; = Q%,i = 1,2, and
identify # and the two spaces #; & #, and e, by
isomorphism. Let B € Z (') and take

u
u=[1]e%l@%2:=%. 3)
u

2

Then, Q;Bu = Bjju, + Bju,,i = 1,2, where B, : #; — Z,
is defined by restricting B;; := Q;BP; onto appropriate spaces.
Hence, the bounded operator B has a block operator matrix
representation B: %, ® %, — #,® I, in terms of Bjjand
Bu is computed following the rules of matrix algebra:

Bu = [Bu BIZ:| |:u1:| _ [311”1 +BIZMZ:|' (@)
By Byl lu, By 1y + Byu,

The multiplication of two block operator matrices also follows
the rules of matrix algebra. Represent, for example, A : # — Z
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byA=[A, A,|,where#Z = 0 H,and A, : H, >
and A, : #, — Z.Then, the operator AB : # — ¥ has
the block representation:

AB=[A By, + A;,B,; A B, +A,By]. (5)

Here we have exemplarily taken the trivial partition of unity
Q, = I'and Q, = 0 and we assume that both P, # 0 and
P, # 0. This illustrates the flexibility we have in choosing the
block operator matrix representations for bounded operators.
For more details on this construction see a recent book by C.
Tretter [13]. To make the paper more readable we will use I, to
denote the identity operator on the finite dimensional space
C" and I will denote the identity operator on 7.

Let P, ® P, = I be given such that dim Ran(P;) = r. Let V
be a unitary operator such that V = [V; V,] and Ran(P,) =
Ran(V,) and Ran(P,) = Ran(V,). Note that in this setting we
have P, = V| V;". For the quasi-matrix X : C" — J such that
X" X =1, we can write

X =V,C+V,S, (6)

where C = VX and § = V, X. With this notation we
compute

[,=X"X=C"C+S§"S, (7)

and so ||S|| < 1and ||C|| < 1. Furthermore, note that Q = XX~
is the orthogonal projection onto Ran(X) and so from [14,
Theorem 2] it follows that

.. |t -ccr -cs*
[P -Ql = [vivy - XX =

-sC* -S§*

(8)
=[ISI.

The last identity has been established by spectral calculus
using the fact that dimRan(P,) = r; see [15]. Let [|S|| < 1;
then we define the unique number 6 € [0, 77/2) such that

sinf = ||S]. 9)

We call 6 the maximal canonical angle between the spaces
Ran(X) and Ran(P;) = Ran(V;). Since ||S|| < 1 (7) implies
that C*C is a positive definite matrix, therefore C must be
invertible. By direct computation using spectral calculus, as
in [15], we establish that

cos6 = |C|,
(10)
tan 6 = HSC_IH .

When we are considering several pairs of quasi-matrices V;
and X we will write 8(V7, X) to denote the maximal canonical
angle between subspaces Ran(V;) and Ran(X).

This definition can be extended to subspaces of different
dimensions using pairs of orthogonal projections and their
singular value decomposition [14, 15]. In this case we call the
norm of the difference of the two projections the gap distance
between subspaces; see [14, 15].
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2.1. Application of Abstract Results to Operators Defined by
Sesquilinear Forms. The abstract Fredholm analytic theorem
is stated for bounded operators between Hilbert spaces.
Since we are interested in finite element computations,
our problems will always be stated in the variational form
which assumes working with unbounded sectorial operators.
See [16] for definitions and the terminology relating to
unbounded sectorial operators and forms. Below we will
formulate the Fredholm analytic theorem in this setting.

Let t, be a densely defined closed symmetric form in #
which is semibounded from below with a strictly positive
lower bound; see [16, Section VI1.2]. We will call such quad-
ratic forms positive definite forms and use Dom(t,) ¢ # to
denote its domain of definition. To simplify the notation we
will write 7 := Dom(t,) in the rest of the paper. Additionally,
let ¢;,; i = 1,...,d, be a sequence of sesquilinear (not
necessarily symmetric) forms which are relatively compact
[16] with regard to t,. Moreover, assume that f;(:), i =
1,...,d,isasequence of scalar analytic functions in Q. Define
the family of sesquilinear forms:

d
uawwLﬂJ¢w+ZﬁwquL W

byve?, zeQ.

In a variationally posed eigenvalue problem we are seeking a
scalar A € Q) and a vector ¢ € 7"\ {0} such that

t) [py]=0, ye7. (12)

To this variational formulation we construct a representation
by an operator-valued function T'(-) and then apply the
analytic Fredholm theorem to establish the structure of the
spectrum.

Let Ty, Dom(T, 12) = 7 be a self-adjoint positive definite
operator which represents the form t; in the sense of Kato’s
second representation theorem; see [16, Theorem VI1.2.23].
Let K; be defined by

(Kju,v) = ¢; [To_l/zu, To_l/zv] , uvex. (13)

The operators K;, i = 1,...,d, are obviously compact and for
z € Q\ o(T) the value of the generalized resolvent is the
operator:

d -1
T (z):To_l/2<I+ij (z)Kj> ;"2 (14)

i=1

Here T(z) is the unbounded sectorial operator with domain
Dom(T'(z)) such that

d
U@%W=%MM+Zﬁ@qMM)

(15)
¢ € Dom(T (2)), we 7.
Obviously the operator-valued function
d
S@2)=1+)f (@K, z€Q (16)
=1

satisfies the requirements of the analytic Fredholm theorem
and 0(S) = o(T). Let us note that we will use

d
(T'"@¢v) =) f @clpv],
el 17)

¢ € Dom (T' (2)), v € 7,

to define a derivative of an operator-valued analytic function.
We can now define the notion of a semisimple eigenvalue.

Definition 1. Let T be as in (15) and let y € o(T) be an
eigenvalue. The eigenvalue y is semisimple if for each v €
Ker(T(p)) \ {0} there is a y € Ker(T*(u)) such that

(T' () g, y) # 0. (18)
If dim Ker(T'(¢)) = 1, then u is called a simple eigenvalue.

Note that in the quasi-matrix notation we will freely write

(T" (W ¢ v) = 9T (1) ¢. (19)

To this end we identify the vectors with a mappingy : C —
x.

With these conventions we state, informally, the general-
ized argument principle proved by Gohberg and Sigal in [17-
19]. It states that for the closed contour I' ¢ p(T') the number

M(T,T) = tr (L T @) ' (2) dz)
(20)
—tr <L T ()T (2)"" dz)

satisfies M(T,T) € N and it equals the total multiplicity of
the eigenvalues enclosed by I'. We also have the following
consequence of [9, Theorem 1.3.1].

Proposition 2. Let us assume that we have a variational
eigenvalue problem (12) with the operator representation T :
Q — K given by (15). Then the spectrum o(T) consists of
a countable collection of eigenvalues with finite multiplicity.
Further, let the component of o(T) inside a contour T' consist
only of semisimple eigenvalues A, i = 1,...,r, such that
ny = dimKer(T(A,)). Then there are quasi-matrices X;,Y; :
C™ — J,i=1,...,r, such that Ran(X;) ¢ Ker(T(A,))
and Ran(Y;) ¢ Ker(T*(A;)), i = 1,...,r, and an open once
connected neighborhood % containing A;, i = 1,...,7r and T
and an operator-valued function H which is analytic on % and
taking values in L(I) such that

T (2) = iinYﬂ‘ +H(z),

1
Sz-A

ze%  (21)

and Y:(T'(AQX) = Im,-’ i=1,...,r

Proof. Forz € Q\ o(T) write

d -1
T (2) =T, <1 +3 fi(2) Kj> ;' (22)
j=1



and define the Fredholm valued function:
d
S(z)=1+) f;(2)K;, z€Q. (23)
=

Recall that Dom(T(} / %) = 7 and that T; 2 maps 7" one to one
on . Now apply [9, Theorem 1.3.1] on S. O

2.2. Estimating Eigenvalues inside a Contour. To count the
semisimple eigenvalues inside a contour we will use the
approach of [20]. We will limit our consideration on the
case of semisimple eigenvalues and rank one perturbations.
First we will present results for Fredholm valued operator
functions and then formulate the result for operators defined
by sesquilinear forms.

Lemma 3. Let S : QO — O(X) be an analytic function
and let E be a bounded operator such that dim Ran(E) = 1.
Assume that T C p(S) is a simple closed contour such that the
component of 0(S) inside I consists solely of a simple eigenvalue
A If S(z) + TE is invertible for all z € T and all T € [0, 1], then

T + E has a simple eigenvalue X inside T and
|A-1] <ClEl, (24)

where C essentially depends on maxzerIIS(z)fllRan(E)ll and
maxZEFIIS(z)_*IRan(E*)ll and the length of the the integration
curve I.

Proof. Recall that (S(z) + E)' = §'(z) and define the function:

flo) = %mtrqr S @@+ ). ()

By the generalized argument principle—see [17-19]—the
value of f(7) equals the total multiplicity of the eigenvalues
inside I'. In particular, by Proposition 2 we have that there are
vectors x and y such that (§'(A)x, y) = y*S'(A)x = 1 and

FO=tr(SWxy)=tr(y"SMx)=1,  (26)

where we used the circularity of the trace. By the assumptions
of the theorem S(z) is invertible for all z € T’ and E is a rank

A-1| =
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one bounded operator. Therefore, there are vectors v and u
so that E = uv* and using Sherman-Morrison formula (see
[21-23] and the references therein), we write

(S(z) + 7E)*

T (27)

_ -1 _ -1 * -1
=S(2) T s @n uS(z) (wv*)S(z)",

and so it follows that

(S(z) +1,E)" = (S(2) + ,E) "

=270 5 (w")S(2) !

1+v*St(2)u (28)

-1

=—2 L (s@@)7"'u) (S 7).

1+v*S1(2)u
And in particular f is a smooth function. Since f, due
to Rouche’s theorem, conclude that f takes values only in
natural numbers, it must be constant for all 7 € [0, 1]. Let us
denote this eigenvalue of S = S + E by A. Define the operators

A9 = J- 2187 (2) dz,
r

AW = J 2157 (2) dz, (29)
r
q=0,1

Proposition 2 implies A = Axy”, AL - 12)7*, where
S(M)x = 0, S(\)*y = 0, SAW)X = 0, and S(1)*7 = 0 and so
there exists a vector ¢ such that * A¥¢ # 0 and ¢* A¥¢ # 0.
‘We now compute

¢ (25" (2)dz) ¢
A= ,

¢* ([.$7 (2)dz) ¢
¢ (25" (2)dz) ¢
¢*([:5 @ dz)¢

and so the second assertion follows by the following compu-
tation:

(30)
A=

¢ ([, S (2)dz) ¢

<

1
w@w@ww[

¢* ([, 25" (2) dz) ¢>|
+ =
¢* ([, 5" (@) dz) ¢

1
Swmﬁwwwﬂ

¢ (L 25 (2) - 25 (2) dz) ¢‘ + 7]

¢ (fr 287 (2) dz) ) ) ¢* (Jr 2§57 (2) dz) ¢>!
¢* ([, 5" () dz) ¢

¢ (L 25 (2) dz) $-¢" (L 5 () dz) ¢’

¢ (L 5 (2)dz) g - ¢° (L 5 (2)dz) ¢|]

¢ (L 512 -5 (2) dz> ¢|]
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1
o (.57 (2)dz) 9| [

+ ]

The claim on the constant C follows from the observation
that Ran(E) = span{u} and Ran(E") = span{v}. O

With this result we can now formulate the main result of
this section. It will be used to assess the quality of a given
approximation, regardless of its origin.

Proposition 4. Let t(-) denote the family of sesquilinear forms
(11) with operator representation T(-) : Q — I given by
(15). Assume that a contour I' C p(T') encloses only a simple
eigenvalue A and pu € C but no other points of 6(T). Letu € 7/,
with |lul| = 1. Then there is A € o(T') such that

[t (u) [ 9]
to [¢. ]

The constant C does not depend on p and u but on contour I'
and the restriction ofIIT_l(-)II and |[T"* ()| toT.

[A—u|<C sup

$e7'\{0} (32)

Proof. We will now constructa particular operator E,, , which
will be used to assess the quality of the pair y, u. Define the
sesquilinear forme, , : 7"x 7" — C by the formula

euu [V ¢] = =t (1) [w$] (you), y. 7. (33)

It is obviously relatively compact with respect to t, and so we
can define the Fredholm valued operator function Q > z —

T(z), where T(z) is the operator defined by the form
F) [y o] =t ) [y, o] + e [w, 9] (34)

Further,
(T(Wwd)=t(w) [u¢] + e, [u.¢]
=t (p) [, 8] - t () [, 0] (1, 00)

=t () [w o] - t(p) [we] =0,
be7,

(35)

and so u € o(T). We construct the operator E,, as the
operator defined by

(Buudo¥) = € [T 015 y] gy ez (0)
Now recall that (22) and (35) imply

j=1

4 -1
T'(2) =T, (1 +Y fi @K, + EW> T, (37)

([ s

¢ <L ms (2) " ES()” dz) ¢

S(z) 'ES(2)! dz) ¢>|

]SCIIEII-

(31)

By construction the operator function $:Q0 - XX

d
S()=1+)f;(2)K;+E,, =S(2)+E,, (38)
j=1

satisfies the assumption of Lemma 3. Finally, note that

e @] ) g

¢es;{){o}m ) ¢»e%\{o}m (39)
=ty (@) 1],
and so from (36) it follows that
B = [t @) 1], - (40)

Now recall the definition of C from Lemma 3 to conclude the
proof. O

2.3. A Sketch for a Practical Algorithm for Error Estimation.
Proposition 4 will be the basis for practical error estimation.
Let 7" > @), h > 0 be a family of finite dimensional spaces
such that the orthogonal projections Q) onto @, converge
strongly to [ ash — oo. Let further @, < @, for h; < h,.
Assume that ¢ € @), and y € C are given. For h,, h, > h
define

It (¢) [, ']“@hz,to,—l = sup M (41)

<60 [ty [9,9]

Obviously it holds, recalling the definition from (39), that

It () g, oo < Jtuu @ )], - (42)

However, in the case in which @), h > 0 satisfies the standard

saturation property, for example, ||(I—Qh2)¢>|| < qII(I—Qh1 ol
for fixed g, 0 < g < 1 and some ¢, we can also prove

”t (#) [u, ']"@hz,to,—l S "t (u) [u, ']"tg,—l

(43)
<C ”t (w) [u, ‘]||@h2,t0,—1'
The constant C essentially depends on g which in turn
depends on h, — h; but not on the magnitude of h;; for more
details see [24, 25].



3. Contour Integration Based
Subspace Iteration

In the following section we will present the inexact subspace
iteration algorithm based on contour integration and prove
basic convergence results using quasi-matrix notation. We
consider the spectral transform functions from [5, 6, 26, 27]
in the context of eigenvalues of operator-valued analytic
functions. Let T'(-) be given and let I' ¢ Q be a closed curve
which encloses either a set of r simple eigenvalues or a single
semisimple eigenvalue whose multiplicity is 7.
Let us consider the operators

A9 = L J 21T (2) " dz,
r

- 2mi
1 _
B9 = —,J AT () T' (2) dz, (44)
2mi Jr
q=0,1,
and their approximations:
(@) & -1
AIZ = ZwkZZT (Zk) 5
k=1
N (45)
(q) 1 !
BY¥ = ZwkzZT (ze) T (2)»
k=1
q=0,1.
Here w; and z; € I, i = 1,..., N, are integration weights and

integration nodes. Based on Theorem 4.7 in [4] we establish,
for w; and z; € T defined by the N node trapeze integration
formula for the contour integral (44), the following estimates:

“A(q) _ A(I?]) “ < Cld (T)fk e*Csz(T))
(46)
B9~ B9 < Cyd (ry* e NI,

Here T is simple closed contour in Q such that o(T) N T = 0,
d(T) = min,,pdist(A, ), and « is the maximum order of
poles for the inverse of T'. The constants in (46) are in general
different and depend on the maximum of the integrand on
the contour I'. For more details see [4, 7]. Subsequently we
conclude that A(f]) — A9 and B§\q,) — B9, 4 =0,1in the
norm resolvent sense.

3.1. Extracting Information on Eigenvalues Enclosed by a
Contour. Based on Proposition 2 we see that operators A
and B are finite rank operators such that Ran(A?) =
Ran(B?) is the space spanned by linearly independent
eigenvectors associated with semisimple eigenvalues which
are enclosed by I'. Rather than providing a technical proof
of these claims, which will be a subject of subsequent reports,
we will present numerical evidence on two judiciously chosen
examples. Further, we see that based on [7] we can establish
the following technical result for the operators A" and B,
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Proposition 5. Let T' be the operator-valued function from
(15) and let T be the contour which encloses solely the r, counting
according to algebraic multiplicity, semisimple eigenvalues of T'.
Define the matrices AV and BD, q = 0,1, as in (44) and let
Q:C" — #,Q*Q = I, be a quasi-matrix such that Q* A¥Q
and Q*BYQ are invertible. Then the eigenvalues of the
matrix pairs Q*AYQ,Q* AYQ) and (Q* BYQ, Q* BYQ) are
precisely the eigenvalues A, i = 1,...,r, where we count
according to multiplicity. Furthermore, if a,b; € C' satisfy
Q*A"Qa; = 1,Q"AVQb, and Q*BVQa; = 1,Q*BYQb,
then Qa; and QU; are eigenvectors of T associated with A;,
i=1,...,r.

Proof. We will prove the statement for the matrix pair
(Q*BYQ,Q*B”Q) and note that the proof for the matrix
pair (Q” AVQ,Q*AVQ)is equivalent. Based on Proposition 2
we see that there are quasi-matrices X : C° — % and
Y:C" — % and a neighborhood % of T such that

T(2)
(z-A)" 0~ 0
=X 0 k)T 0 Y* (47)
0 0 (z-1,)"
+H(z), ze¥

Here H is an analytic operator-valued function. Now we
compute

Ay 0--- 0

A, - 0 .

Q'BYQ=(Q'X)
0 -~ 0 A
Q*'BYQ = (Q'X) (v*Q).

Based on the assumptions of the theorem we conclude that
(Q*X) and (Y Q) have to be invertible and so the conclusion
readily follows. O

Before we proceed, note that norm resolvent convergence
of A(g,) and B%) implies the convergence of spectra and
associated spaces to those of A? and B?, g = 0,1. In
particular, this means that A(I(\)]) and ng), for N large enough,
will have two well separated components in the spectrum and
so we are motivated to use subspace iteration on the operator
level to improve the quality of the approximate eigenvalues.
Note that for a vector v the vectors A(;?v and ng)v can
be computed using formula (45) without ever forming a
representation for the underlying operator.

3.2. Inexact Subspace Iteration Based on Quadrature Formula.
We have the following algorithm for a generic bounded
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Pick a random quasi-matrix Q, = [q; ¢, -
Setn=1
repeat

Compute Y,,,, = ByQ,

Compute criterion=Q,,; - Q,(Q;Q,., )l
n:i=n+1
until criterion < tol

return Q,,

7,),Q,: C" — L*(Q)

Compute an orthogonal quasi-matrix Q,,,;, Q;,,Q,,; = I using Gram-Schmidt so that Ran(Q

) = Ran(Y,,,,)-

n+l1

ArGoriTHM 1: Contour based inexact subspace iteration for B, tol, and N.

Compute Z, = Bg\l,)Q and Z, = BﬁS)Q.
Form W@ = Q" Z;q=0,1

Compute [[t(A;)[v;, ] ”@szxto"l
Form the index set {i,, ...
SetV =[v, v ]

Require Q, : C" — #,Q;Q, =I,, tol, and N.
Compute Q as output from Algorithm 1 with tolerance tol, and Q, as starting value.

Compute v; and A, so that Wy, = AWQu,i=1,...,r
Compute eigenvectors v; = Q,, u;, i = 1,...

iy = 1 IO Mg,y < B01,)

return V: C? — %and/\ij,j: L...,n

s,

ALGORITHM 2: Approximating eigenvectors and eigenvalues with tolerance tol,.

operator B of type (44) which has a component of 7, r € N
dominant eigenvalues and whose action on a vector can be
represented by a formula (45).

For Algorithm 1 we present standard convergence results
in Theorems 6 and 8. First we consider a special case in which
B is a Hermitian (bounded self-adjoint) operator. We will
see that a possible presence of singularities in the operator
function will not pollute the convergence rate.

Theorem 6. Let B be a bounded Hermitian operator such that
o(B) ={A,,..., A} UZ, where A, i = 1,...,r, are eigenvalues
of finite multiplicity and [A;| = --- = [A,| > 7> 0,and T > |A],
A € X. Then for the sequence V"™V .= BV™, where V©
C - % (VO vO = I, we have

Tn

tanG(V("+1),U) < T tanG(V(O),U), (49)
where U : C° — %, U'U = 1, is such that U =
[u, u, -+ u]and Bu, = Au,i=1,...,r.

Proof. Let P, = UU" and represent U : C" — Z with
respect to the partition of unity P, ® P, = I by U = [U; U,],
with Ran(P;) = Ran(U,). Since B is self-adjoint it can be
represented by the block operator matrix:

B= B 0 50
'[0 Bzz]' G

Let us represent, with respect to the same partition of unity,
the quasi-matrix V(@ as

v

Ve = (0)
V2

(51)

Without reducing the level of generality we may assume that
VI(O) is invertible, since otherwise Ran(V”) would contain
eigenvectors of B. This corresponds to the trivial situation and
will not be further discussed.

Since (V@)*v©® = I, it follows from (6) that

an6 (U, V) = v (vi) . (52)

The assumption of the separation of the spectra of B implies
that B;; must also be invertible, and so

I
= | g

for F™ = B VIO (V%)™ B" which implies that

(0)
BT1V1

V=BV =l
BZZVZ

B VY (53)

o I
v (V) B = [ U, +U,F".  (54)

F(”)

And so from the optimality of the canonical angles (see [15]),
it follows that

tan6 (V",U) < |[F*|. (55)



Consequently, it follows that

tan 6 (V(”),U) < "F(")

<[5l [F ] 1B:7

n (56)
<t 5 tan0 (V(O),Ul) .
2
Now the conclusion of the theorem readily follows. O

Remark 7. Note that from (8) and (9) it is clear that (V™ U)
does not depend on the quasi-matrices V™ and U, but rather
on the orthogonal projections onto Ran(V(">) and Ran(U) =
Ran(P,). In Theorem 6 we have stated the convergence result
for the angle O(V™,U). Here we have ignored the choice
of a basis of Ran(V™) which is a very important part of
Algorithm 1. Note that in practical computations the choice

of the basis is crucial to achieve an efficient implementation;
see [28].

In the case in which the operator B is not Hermitian
but has clearly separated invariant subspace associated with
the finite collection, counting according to the algebraic
multiplicity of dominant eigenvalues we have the theorem
below.

Theorem 8. Let B be a bounded operator such that its spec-
trum has two disjoint components £, and %, so that o0(B) =
2, U Z,. Let further X, = {A,A,,...,A,}, where we have
counted A; € o(B) according to the algebraic multiplicity of
an eigenvalue. Further let a partition of unity P, @ P, = I exist
such that r = dim(Ran(P,)) and

B,, B
B |1 P ’ (57)
0 B,

and let further sep(By,, B,,) > 1 and ||B,, || ||BI11 | < 1. Then for
a quasi-matrix V: C" — F we have

tan6 (B"V, P,)
n (58)
< (IBo] |B22])" @ + IGI) tan® (v, ).

Here G is the solution of the Sylvester equation GB,, — B;,G =
By, and sep(B,,, B,,) = inf”G":1IIGB22 - B;Gll.

Proof. For B such that ¢(B) = X, U X, with ¥; =
{A, A, .., A} satisfying the assumptions of the theorem
choose P, as the orthogonal projection onto the maximal
invariant subspace associated with {A;,1,,...,4,} and P, =
I-P,; then Bhas the block operator representation as claimed
in the theorem. We note that

B, B I -G][B 0 IG

0 By,] [0 1]lo BylloT
where GB,, — B;;G = By,. Operator G, such that GB,, —
B,,G = By, exists and is unique, for example, [29, Lemma

Al], providing the spectra of B, and B,,, are disjoint. The
rest of the proof follows analogously as in Theorem 6. O
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Remark 9. In [29, Lemma A.1] there is also an estimate of
sep(By;, By,) in terms of the pseudospectra distances.

This result implies that the convergence rate for the
subspace iteration essentially depends on the properties of the
operator and not on the subspace which is iterated. Further,
the dependence on the number of integration nodes N
diminishes exponentially. To extract eigenvalues and eigen-
vectors we use the method from [7] and apply Proposition 5
on the quasi-matrix Q,,,; which is returned by Algorithm 1.
More precisely we have the following. For simplicity we write
B=BY.

Theorem 10. Let the conditions of Theorem 8 be satisfied and
also assume the same notation conventions. For a quasi-matrix
V:C' — %, wesetQ, =V and apply Algorithm 1 with fixed
N € N. Then

sinf (Ran (Q,),P,)

< (IBy] |Bi | + Csd (1) & ANADY”

: (1 + |Gl + Cd (T)" e_csz(T)) tan 6 (Q,, P,) 0
+Cyd (T) ™ & &ND,
Proof. Recall that
|B - By| < Cd (T)™ e N0, (61)

From standard results on norm convergence of bounded
operators (see [16]) we conclude that

sinf (P, (Py);) = [P, = (Px), |
(62)
< Cod (T) e NI,

Here (Py); + (Py), = I is the partition of unity in which By
has a block triangular form:

=[Pl (B)a]

(63)
0 (BN)zz

Assumption on the spectral separation from Theorem 8
implies that By, is invertible and obviously

1B = (B, | < Gy (1) e M0 (64)
B2 = (Ba)s |l < Crd (1) e =0 (65)
Norm convergence (64) implies that for N large enough

(By);; must also be invertible; for details see [30]. For such
N we have

1Bi ~ (B < |(Bi) ™ (Bry — (By)yy) (B
< "(Bu)_l" "(BN);1 " "Bu - (BN)u" (66)

< Cyd (T) NI,
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Triangle inequality implies that

|Bx)asll < [Baa] +[(Bry)ss = Baa

. » O (67)
Byl = Bl + By - B
and so
[Ba) | (B | < 18220 B4
(68)
+Cyd (T) e GNID),
Let us now assume that N is large enough so that

IBos | Bii || + Cad (1) e &N < 1. (69)

Then we can apply Theorem 8 to By and conclude that

sinf (B V, (Py),) < tan6 (ByV, (Py),)

< (1Bl B )" (1 + Gl (70)
~tan 0 (V; (Py),).

Equivalently since sep((By),2> (Bn)11) — sep(B,y, Byy)
and (By);, — Bj, in norm we conclude that

Gyl < IGI + Csd (T) ™ e NID), 71)
5

We now apply the triangle inequality for the sine of the
maximal canonical angle to conclude the proof. O

Using Theorem 10 we will define the effective convergence
rate of the inexact contour based subspace iteration. Recall
that

B- L J T T (2)dz,
2mi Jr

(72)

N
-1
BN = Z(UkZZT (Zk) T’ (Zk) .
k=1

Starting from (63) we define the effective convergence rate for
the inexact subspace iteration for B as

(T N) = |(Br) o | Ba)ia |- 73)

Remark 11. We will project By, on carefully constructed finite
dimensional spaces, for example, finite element spaces, to
experimentally estimate #(I', N) in the following section. We
will not further elaborate on this procedure but solely present
the results of experiments for illustration purposes.

3.3. Auxiliary Subspace Error Estimates and the Conver-
gence Criterion. In this paper we will use the inequality
IIt((/t)[u,-]II%JO’_1 < ||f((«i)[u,']||¢0,_1 to filter the eigenpairs
which have been extracted using Proposition 5 from the
subspace returned by Algorithm 1. More precisely, eigenpairs
for which [|t(g)[u, -]l Gy b1 is too large will be discarded. We
will indicate the importance of this step of the algorithm in
the experiments section.

In the case in which the number of eigenvalues returned
by Algorithm 2 is not satisfactory, the procedure can be
extended as an innerouter iteration scheme by setting Q; =
V and repeating the procedure. One further possibility to
improve performance is to modify Algorithm I so that at the
beginning of the repeat loop we remove all those directions
from Q, which are identified by Algorithm 2 as converged
and then proceed as in the original versions of Algorithm 1.

4. Numerical Experiments

For the finite element discretizations, we use the space of
piecewise linear and continuous finite elements on a given
subdivision §;, of an interval [a, b]. We denote this space by
7 ,(a, b). For our computations we set the tolerance tol so as
to balance the error when solving the source problem by finite
element approximation with the error in the integration. For
the contour I' we chose a circle and as integration nodes
and weights we use the trapeze formula from [7] and Gauss-
Legendre nodes and weights from [5].

To estimate the approximation errors in our experiments
we will use an auxiliary subspace error estimation technique.
To this end we use @), (a,b) to denote the space of piecewise
quadratic and continuous function on the same subdivision
of the interval [a,b] which was used to define the space
7 1,(a, b). To estimate the error E o from (39) for the function
u € 7,(a,b) and u € C we use the formula; see [24] for
further information:

t bl
) 0 Ul e, = sup WA
<asano [t 59

Example 12. We study the quadratic eigenvalue problem:

O = A(y0u+0u) + \Vu
u(-2)=u2)=0

(75)

for y = 0.05and & = 0.3. As a benchmark we use the
eigenvalue computed with a spectral discretization using
the chebfun system; see [10]. The timings are 2.5 seconds
for chebfun and 1.6 seconds for subspace iteration. We used
the trapeze formula to define the operator By with N = 25
and achieved the residuals as small as 1e-12. The results are
presented in Figure 1. From Figure 1 we see that the spectrum
of (75) is well separated, and so the sufficient separation
of the spectra of (By);; and (By),, can be achieved with
few integration nodes N: for example, N = 25. Figure 2(a)
depicts the dependence of the effective convergence rate for
the inexact subspace iteration #(I', N) = [[(By)2ll ||(BN);11 [l on
the number of integration nodes N for the trapeze formula.
The contour was a circle which enclosed the five eigenvalues
marked by crosses.

Remark 13. Note that in [5, 6] it was shown that Gauss-
Legendre and trapeze integration require similar number
of integration nodes to be applicable in inexact subspace
iteration algorithm. A slight experimental advantage was
noticed in favor of Gauss-Legendre, but both approaches
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(a) Quadratic eigenvalue problem with well-separated spectrum from
Example 12 and T as in Figure 1

(b) Rational eigenvalue problem with tightly clustered eigenvalues from
Example 14 and T as in Figure 4

FIGURE 2: The dependence of the effective convergence rate 7(I', N) as defined in (73) on the number of integration nodes N. This illustrates

the negative effect of the distance to I' on the convergence rate.

can be used in competitive algorithms depending on the
particular context of the application.

Example 14. We will now consider the following rational
eigenvalue problem:

2

A
D 2t T Nixl=oro " ¥+ 33 Xixi<oyio " U

+A (X|x|s9/1o” + 10)(|x|>9/10“) =0 (76)

ue H' (-1,1) with periodic b.c.,

where
JE8)
10° 10

-5
1. xe|-——,—
10 10

is the characteristic function of the interval [-9/10,9/10].

Xix|<9/10 * X V= (77)

This eigenvalue problem has a singularity at A = 1 and
A = 3. The eigenvalues below the singularity A = 1 and those
in (1, 3) are discrete (finite multiplicity) and they accumulate
at A = 1 and at A = 3 from below [31].
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FIGURE 4: Eigenvectors for eigenvalues in (1, 3).

The results in Figures 3 and 4 are presented solely for
benchmark purposes. They were computed using trapeze for-
mula with 4500 nodes and validated using the approach from
[8]. Looking at Figures 3 and 4 we see that in general there
are two classes of eigenfunctions: those that are confined to
the interval [-9/10,9/10] and those that are not. Further
discussion of the qualitative properties of eigenfunctions is
outside the scope of this paper. We will address the modeling
aspects elsewhere.

As a first experiment in Table 1 we present the empirical
study of the convergence of the residual measures and
the relative eigenvalue error computed from the sequence
v = g v® v . €* — 7, where N = 16 and w; and
z; are Gauss-Legendre integration nodes and weights from
[5]. We have used the contour which encloses only two well-
separated eigenvalues, two left most crosses, in Figure 3.

TaBLE 1: Convergence history for the rational eigenvalue problem
Example 14 and the two leftmost eigenvalues from Figure 3.

. Maximal Maximal residual
Iteration number n . ‘
eigenvalue error estimate
1 2.0880e — 008 1.2607e — 009
2 4.9292e - 009 1.3579¢ — 010
3 4.9282¢ — 009 1.3580e — 010

The convergence rate for the well-separated eigenvalues
and the standard choice of the integration nodes from [6]
seem satisfactory. However, the eigenvalues of (76) cluster
towards z = 1. In Figure 2(b) we see that many more
integration nodes are necessary to achieve a similar estimate
of the effective convergence rate #(I', N) compared to the
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(b) Decay of [|Q,,; — Q,(Q;Q, 1)l for the rational eigenvalue problem
and N = 350

F1GURE 5: We display [|Q,.,; — Q,(Q;Q,. )l forn=1,...,10.

quadratic eigenvalue problem in Figure 2(a). To this end we
will compare below the measured convergence rates for the
criterion in Algorithm 1 on Examples (76) and (75).

Remark 15. Results presented in Figure 5 show that, unlike
what was suggested in [6], the number of integration nodes
might have to be adaptively adjusted for some contours T.
Also we emphasize that the residual criterion

"t (M) [u’ ] ”@h(u;b)vtofl < t012 (78)

in Algorithm 2 is particularly important in the case of the
clustering of eigenvalues towards I' like in Figures 3 and 4.
In comparison with benchmark results from Figures 3 and 4
three spurious eigenvalues, which would otherwise have been
declared as converged, were discarded because their residuals
were larger than a threshold. With this in mind we justify the
application of the modified algorithm from [7]. The algorithm
in [7] had residual error control but controlled the accuracy
solely by increasing the number of integration nodes (e.g., we
used 4500 nodes for benchmark results in Figures 3 and 4). In
our modification we combine subspace iteration with contour
integration with problem adapted number of nodes (e.g., with
N =16 and 3 steps of inexact subspace iteration acceleration
we reach the same accuracy (see Table 1) as a priori predicted
for N = 4500 based on [8]). Finally, we note that performance
issues are outside the scope of this paper. As is indicated in
[6] the algorithm offers large potential to leverage parallel
processing. This will be the topic of further research.

4.1. Stability of Convergence Rate of Inexact Subspace Iteration.
From Figure 2 we see that the convergence rate for the sub-
space iteration essentially depends on || B,, || ||Bl_11 | = n(I,N).
We will now see that this convergence rate is relatively robust

Im(A)

O
O
%9
3t &
Q
&
©)

— T

FIGURE 6: Eigenvalues for the eigenvalue problem (79).

to perturbations as long as the distance from the curve I and
o(T) is not too small. To this end we consider the problem

Ot = A (y0 . u + 0u) + Vu + 4—11 exp (—1) 79)

u(=2)=u)=0

as a perturbation of (75). Its eigenvalues are presented on
Figure 6. We see that both the eigenvalues of (75) and (79)
are equally well separated from I' and so the convergence
rates, as measured by the decay rate of [|Q,,,; — Q,(Q;Q,..)ll
in Algorithm 1, are similar. However, when comparing the
results from Figure 7(c) with those from Figure 7(a) we
see that we need more iterations to achieve a comparable
reduction in the convergence criterion for Algorithm 1 in the
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(c) Problem (76) and N = 350

FIGURE 7: We display [|Q,,,; — Q,(Q;,Q,.,)l forn = 1,...,10. For T we have used the contours as in Figures 1, 6, and 5(a), respectively.

case of eigenvalue clustering towards I'. On the other hand,
Figure 7(b) indicates that the nonlinear perturbation did
not change the convergence rate significantly. This justifies
the consideration of the adaptivity both in the choice of
integration nodes and in representing the operators.

5. Conclusion

We have shown that the subspace iteration nonlinear eigen-
solver based on spectral transformation of the analytic
Fredholm valued function converges at rates that depend pri-
marily on the problem and not on the discretization. Further,
we have seen that the distance from the contour and the
spectrum does limit the accuracy of the approximation based
on numerical integration of the resolvent. Also, residual norm
is a reliable estimator of the approximation error even in
the presence of poles. In comparison, the convergence in the

case of the quadratic eigenvalue problem which had a more
pronounced spectral gap than the rational problem was much
faster and more robust. This suggests that a subspace iteration
algorithm that increases the number of integration nodes
based on a posteriori computable criterion is promising for
nonlinear eigenvalue problems.
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