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𝐻
∞
control problem for nonlinear system with time-varying delay is considered by using a set of improved Lyapunov-Krasovskii

functionals including some integral terms, and a matrix-based on quadratic convex, combined with Wirtinger’s inequalities and
some useful integral inequality.𝐻

∞
controller is designed via memoryless state feedback control and new sufficient conditions for

the existence of the𝐻
∞
state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples

are given to illustrate the effectiveness of the obtained result.

1. Introduction

Thephenomena of time delays are often encountered inmany
practical systems such as process control systems, manufac-
turing systems, networked control systems, and economic
systems. The existence of these delays may be the source
of instability and serious deterioration in the performance
of the closed-loop systems. In real world systems especially,
the delay should be assumed to be time-varying satisfying
0 ≤ 𝜏

1
≤ 𝜏(𝑡) ≤ 𝜏

2
and 𝜏

1
is not necessarily restricted to

be 0, namely, interval time-varying delay. Stability analysis
of time-delay system has been investigated extensively in the
past decades [1–25].

As of time delays, it is well known that the nonlinear
perturbations can also cause instability and poor perfor-
mance of practical systems.Therefore, the stability problemof
time-delay systemswith nonlinear perturbations has received
increasing attention; see [9, 13, 16] and the references cited
therein.

𝐻
∞

control problem has been widely used to minimize
the effects of the external disturbances. The purpose of the
problem is to design an𝐻

∞
controller to robustly stabilize the

systems while guaranteeing a prescribed level of disturbance
attenuation 𝛾 in the 𝐻

∞
sense for the systems with exter-

nal disturbances. A delay-dependent 𝐻
∞

controller ensures

asymptotic stability and a prescribed 𝐻
∞

performance level
of the closed-loop systems.The𝐻

∞
performance indexes and

the upper bound of the delay are usually two performance
indexes to be used to evaluate the conservatism of the
derived condition. The conservatism of the delay-dependent
𝐻
∞

control is measured by the allowable delay size or 𝐻
∞

performance level bound obtained.
Recently, an improved robust stability and 𝐻

∞
perfor-

mance analysis criterion has been reported [3–5, 7, 10–
12, 15, 17, 18]. In [17], 𝐻

∞
control problem for uncertain

linear system with state delay and parameter uncertainties
has been studied, but the time-varying delay is only bounded
above by a constant. 𝐻

∞
control problem for system with

interval time-varying delay has been considered in [7],
by employing free weighting matrices approach. However,
some useful terms in estimating the derivative of Lyapunov-
Krasovskii functional are ignored which might lead to some
conservatism. In [15], 𝐻

∞
control problem for nonlinear

systems with interval time-varying delay has been stud-
ied by using Jensen’s inequality to estimate some integral
terms of Lyapunov-Krasovskii functional and deriving delay-
dependent sufficient condition for the existence of 𝐻

∞

control by using reciprocally convex combination technique.
In the study of time-delay system, several approaches

have been proposed in order to reduce conservatism.
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For example, it is well known that choosing appropriate
Lyapunov-Krasovskii functional and using improved bound-
ing techniques to estimate time-derivative of Lyapunov-
Krasovskii functional lead to improvement of stability
region. Furthermore, free weightingmatrices approach; delay
decomposition approach; and convex optimization and recip-
rocally convex optimization techniques have been widely
used to reduce conservatism of stability criterion; see [3,
7, 8, 10, 11, 13, 14, 16]. Recently, the so-called matrix-based
quadratic convex approach has been introduced to derive
stability criterion for time-delay system which was shown to
reduce conservatism; for example, it gives better maximum
allowable upper bound for time-varying delay than some
other existing approaches; see [20–22].

Motivated by the above discussions, in this paper,
matrix-based quadratic convex approach will be used to
study 𝐻

∞
control problem for system with interval time-

varying delay and nonlinear perturbations. To the best of
our knowledge, this is one of the first reports of such
investigation. By introducing new augmented Lyapunov-
Krasovskii functional which has not been considered yet
in stability analysis of 𝐻

∞
control problem, a delay-

dependent stability criterion and 𝐻
∞

performance analysis
are derived in terms of linear matrix inequalities (LMIs).
This new Lyapunov-Krasovskii functional consists of integral
terms of the form ∫

𝑡

𝑡−ℎ

(ℎ − 𝑡 − 𝑠)
𝑗

𝑥̇
𝑇

(𝑠)𝑅
𝑗
𝑥̇(𝑠) 𝑑𝑠 (𝑗 =

1, 2) which allows us to use the matrix-based quadratic
convex approach introduced in [20–22]. With the use
of this new Lyapunov-Krasovskii functional, matrix-based
quadratic convex approach combined with some improved
bounding techniques for integral terms such as Wirtinger-
based integral inequality [14, 20], some new cross terms
will be introduced which enhance the feasible stability cri-
terion. Through two numerical examples, it is shown that
the obtained stability criterion may give a larger maximum
allowable upper bound of time-varying delay than some
existing results.

2. Mathematical Model and Preliminaries

The following notations will be used in this paper: R+
denotes the set of all nonnegative real numbers; R𝑛 denotes
the 𝑛-dimensional space with the Euclidean norm ‖ ⋅ ‖;M𝑛×𝑟
denotes the space of all matrices of (𝑛 × 𝑟)-dimensions.

𝐴
𝑇 denotes the transpose of matrix 𝐴; 𝐴 is symmetric if

𝐴 = 𝐴
𝑇; 𝐼 denotes the identity matrix; 𝜆(𝐴) denotes the set

of all eigenvalues of 𝐴; 𝜆max(𝐴) = max{Re 𝜆; 𝜆 ∈ 𝜆(𝐴)}.
𝑥
𝑡
:= {𝑥(𝑡 + 𝑠) : 𝑠 ∈ [−ℎ, 𝑡

0
]}, ‖𝑥
𝑡
‖ = sup

𝑠∈[−ℎ,𝑡0]
‖𝑥(𝑡 +

𝑠)‖;C([𝑡
0
, 𝑡],R𝑛) denotes the set of allR𝑛-valued continuous

functions on [𝑡
0
, 𝑡]; L

2
([𝑡
0
, 𝑡],R𝑚) denotes the set of all the

R𝑚-valued square integrable functions on [𝑡
0
, 𝑡].

Matrix 𝐴 is called semipositive definite (𝐴 ≥ 0) if
⟨𝐴𝑥, 𝑥⟩ ≥ 0, for all 𝑥 ∈ R𝑛; 𝐴 is positive definite (𝐴 > 0)

if ⟨𝐴𝑥, 𝑥⟩ > 0 for all 𝑥 ̸= 0; 𝐴 > 𝐵 means 𝐴 − 𝐵 > 0. The
symmetric term in a matrix is denoted by ∗.

Consider the following system with time-varying delays
and control input:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵𝑢 (𝑡)

+ 𝐶𝑤 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑢 (𝑡) , 𝑤 (𝑡)) ,

𝑧 (𝑡) = 𝐸𝑥 (𝑡) + 𝐺𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐹𝑢 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑢 (𝑡)) ,

(1)

𝑥 (𝑡
0
+ 𝜃) = 𝜙 (𝜃) ,

𝜃 ∈ [−𝜏
2
, 0] , (𝑡

0
, 𝜙) ∈R

+

×C ([−𝜏
2
, 𝑡
0
] ,R
𝑛

) ,

(2)

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑢(𝑡) ∈ R𝑚 is the control
input; 𝑤(𝑡) ∈ L

2
([0,∞],R𝑟) is a disturbance input; and

𝑧(𝑡) ∈ R𝑠 is the observation output. The delay 𝜏(𝑡) is time-
varying continuous function which satisfies

0 ≤ 𝜏
1
≤ 𝜏 (𝑡) ≤ 𝜏

2
, 𝜇

1
≤ ̇𝜏 (𝑡) ≤ 𝜇

2
. (3)

Let 𝑥𝜏 = 𝑥(𝑡−𝜏(𝑡)).The nonlinear functions𝑓(𝑡, 𝑥, 𝑥𝜏, 𝑢, 𝑤) :
R+ ×R𝑛 ×R𝑛 ×R𝑚 ×R𝑟 → R𝑛, 𝑔(𝑡, 𝑥, 𝑥𝜏, 𝑢) :R+ ×R𝑛 ×
R𝑛 ×R𝑚 → R𝑠 satisfy the following growth condition:

∃𝑎, 𝑏, 𝑐, 𝑑 > 0 :
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥, 𝑥

𝜏

, 𝑢, 𝑤)
󵄩
󵄩
󵄩
󵄩

≤ 𝑎 ‖𝑥‖ + 𝑏
󵄩
󵄩
󵄩
󵄩
𝑥
𝜏󵄩
󵄩
󵄩
󵄩
+ 𝑐 ‖𝑢‖ + 𝑑 ‖𝑤‖ ,

∀ (𝑥, 𝑥
𝜏

, 𝑢, 𝑤) ,

∃𝑎
1
, 𝑏
1
, 𝑐
1
> 0 :

󵄩
󵄩
󵄩
󵄩
𝑔 (𝑡, 𝑥, 𝑥

𝜏

, 𝑢)
󵄩
󵄩
󵄩
󵄩

2

≤ 𝑎
1
‖𝑥‖
2

+ 𝑏
1

󵄩
󵄩
󵄩
󵄩
𝑥
𝜏󵄩
󵄩
󵄩
󵄩

2

+ 𝑐
1
‖𝑢‖
2

,

∀ (𝑥, 𝑥
𝜏

, 𝑢) .

(4)

Definition 1. Given 𝛾 > 0, the 𝐻
∞

control problem for
system (1) is to seek if there exists amemoryless state feedback
controller 𝑢(𝑡) = 𝐾𝑥(𝑡) such that we have the following.

(i) The zero solution of the closed-loop system, where
𝑤(𝑡) = 0,

𝑥̇ = (𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑓 (𝑡, 𝑥, 𝑥
𝜏

, 𝑢, 0) , (5)

is asymptotically stable.
(ii) The𝐻

∞
performance

‖𝑧(𝑡)‖
2
< 𝛾 ‖𝑤(𝑡)‖

2
(6)

of the closed-loop system (5) is guaranteed for all
nonzero 𝑤(𝑡) ∈L

2
([0,∞],R𝑟) and a prescribed 𝛾 >

0 under the condition 𝑥(𝑡) = 0, ∀𝑡 ∈ [−𝜏
2
, 𝑡
0
]. In this

case, we say that the feedback control 𝑢(𝑡) = 𝐾𝑥(𝑡)

asymptotically stabilizes the system.

We introduce the following technical lemmas, which will
be used in the proof of our results.
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Lemma 2 (see [14]). For a given matrix 𝑅 > 0, the following
inequality holds for any continuously differentiable function𝑤 :
[𝑎, 𝑏] → R𝑛:

∫

𝑏

𝑎

𝜔̇
𝑇

(𝑢) 𝑅𝜔̇ (𝑢) 𝑑𝑢 ≥

1

𝑏 − 𝑎

(Γ
𝑇

1
𝑅Γ
1
+ 3Γ
𝑇

2
𝑅Γ
2
) , (7)

where

Γ
1
:= 𝜔 (𝑏) − 𝜔 (𝑎)

Γ
2
:= 𝜔 (𝑏) + 𝜔 (𝑎) −

2

𝑏 − 𝑎

∫

𝑏

𝑎

𝜔 (𝑢) 𝑑𝑢.

(8)

Remark 3. It is clear to see that the inequality in Lemma 2
provides a tighter lower bound for ∫𝑏

𝑎

𝜔̇
𝑇

(𝑢)𝑅𝜔̇(𝑢)𝑑𝑢 than
Jensen’s inequality since 3Γ𝑇

2
𝑅Γ
2
> 0 for Γ

2
̸= 0. Thus,

inequality (7) is an improvement over Jensen’s inequality.

Before we introduce some useful integral inequalities, we
denote

]
1
(𝑡) :=

1

𝜏
2
− 𝜏 (𝑡)

∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑦 (𝑠) 𝑑𝑠,

]
2
(𝑡) :=

1

𝜏 (𝑡) − 𝜏
1

∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑦 (𝑠) 𝑑𝑠,

]
3
(𝑡) :=

1

𝜏
1

∫

𝑡

𝑡−𝜏1

𝑦 (𝑠) 𝑑𝑠.

(9)

Lemma 4 (see [20]). For a given scalar 𝜏
1
≥ 0 and any 𝑛 × 𝑛

real matrices 𝑌
1
> 0 and 𝑌

2
> 0 and a vector ̇𝑦 : [−𝜏

1
, 0] →

R𝑛 such that the integration concerned below is well defined,
the following inequality holds for any vector-valued function
𝜋
1
(𝑡) : [0,∞) → R𝑘 and matrices 𝑀

1
∈ R𝑘×𝑘 and 𝑁

1
∈

R𝑘×𝑛 satisfying [𝑀1 𝑁1
𝑁
𝑇

1
𝑌1

] ≥ 0,

℘
1
:= ∫

𝑡

𝑡−𝜏1

(𝜏
1
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠) 𝑌
1
̇𝑦 (𝑠) 𝑑𝑠

≥ −

𝜏
2

1

2

𝜋
𝑇

1
(𝑡)𝑀
1
𝜋
1
(𝑡) − 2𝜏

1
𝜋
𝑇

1
𝑁
1
[𝑦 (𝑡) − ]

3
(𝑡)] ,

℘
2
:= ∫

𝑡

𝑡−𝜏1

(𝜏
1
− 𝑡 + 𝑠)

2

̇𝑦
𝑇

(𝑠) 𝑌
2
̇𝑦 (𝑠) 𝑑𝑠

≥ 𝜏
1
[𝑦 (𝑡) − ]

3
(𝑡)]
𝑇

𝑌
2
[𝑦 (𝑡) − ]

3
(𝑡)] ,

(10)

where ]
3
(𝑡) is defined in (9).

Lemma 5 (see [21]). Let 𝜏(𝑡) be a continuous function satis-
fying 0 ≤ 𝜏

1
≤ 𝜏(𝑡) ≤ 𝜏

2
. For any 𝑛 × 𝑛 real matrix 𝑅

2
> 0

and a vector ̇𝑦 : [−𝜏
2
, 0] → R𝑛 such that the integration

concerned below is well defined, the following inequality holds

for any 𝜙
𝑖1
∈ R𝑞 and real matrices 𝑍

𝑖
∈ R𝑞×𝑞, 𝐹

𝑖
∈ R𝑞×𝑛

satisfying [ 𝑍𝑖 𝐹𝑖
𝐹
𝑇

𝑖
𝑅2

] ≥ 0, (𝑖 = 1, 2),

− ∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠) 𝑅
2
̇𝑦 (𝑠) 𝑑𝑠

≤

1

2

(𝜏
2
− 𝜏 (𝑡))

2

𝜙
𝑇

11
𝑍
1
𝜙
11
+ 2 (𝜏

2
− 𝜏 (𝑡)) 𝜙

𝑇

11
𝐹
1
𝜙
12

+

1

2

[(𝜏
2
− 𝜏
1
)
2

− (𝜏
2
− 𝜏 (𝑡))

2

] 𝜙
𝑇

21
𝑍
2
𝜙
21

+ 2𝜙
𝑇

21
𝐹
2
[(𝜏
2
− 𝜏 (𝑡)) 𝜙

22
+ (𝜏 (𝑡) − 𝜏

1
) 𝜙
23
] ,

(11)

where
𝜙
12
:= 𝑦 (𝑡 − 𝜏 (𝑡)) − ]

1
(𝑡) ,

𝜙
22
:= 𝑦 (𝑡 − 𝜏

1
) − 𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝜙
23
:= 𝑦 (𝑡 − 𝜏

1
) − ]
2
(𝑡) ,

(12)

with ]
𝑖
(𝑡) (𝑖 = 1, 2) being defined in (9).

Lemma 6 (see [20]). Let 𝜏(𝑡) be a continuous function
satisfying 0 ≤ 𝜏

1
≤ 𝜏(𝑡) ≤ 𝜏

2
. For any 𝑛 × 𝑛 real matrix 𝑅

1
> 0

and a vector ̇𝑦 : [−𝜏
2
, 0] → R𝑛 such that the integration

concerned below is well defined, the following inequality holds
for any 2𝑛 × 2𝑛 real matrix 𝑆

1
satisfying [ 𝑅̃1 𝑆1

𝑆
𝑇

1
𝑅̃1

] ≥ 0,

− (𝜏
2
− 𝜏
1
) ∫

𝑡−𝜏1

𝑡−𝜏2

̇𝑦
𝑇

(𝑠) 𝑅
1
̇𝑦 (𝑠) 𝑑𝑠

≤ 2𝜓
𝑇

11
𝑆
1
𝜓
21
− 𝜓
𝑇

11
𝑅̃
1
𝜓
11
− 𝜓
𝑇

21
𝑅̃
1
𝜓
21
,

(13)

where 𝑅̃
1
:= diag{𝑅

1
, 3𝑅
1
} and

𝜓
11
:= [

𝑦 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏
2
)

𝑦 (𝑡 − 𝜏 (𝑡)) + 𝑦 (𝑡 − 𝜏
2
) − 2]

1
(𝑡)

] ,

𝜓
21
:= [

𝑦 (𝑡 − 𝜏
1
) − 𝑦 (𝑡 − 𝜏 (𝑡))

𝑦 (t − 𝜏
1
) + 𝑦 (𝑡 − 𝜏 (𝑡)) − 2]

2
(𝑡)

] ,

(14)

with ]
𝑖
(𝑡) (𝑖 = 1, 2) being defined in (9).

Remark 7. In Lemma 6, when 𝜏
1
= 0, the inequality reduces

to similar one in [14]. It contains slackmatrix variable 𝑆
1
with

dimension 2𝑛 × 2𝑛 comparing to slack matric variable with
dimension 2𝑛 × 5𝑛 introduced in [8].

Lemma 8 (see [20]). Let 𝜒
0
, 𝜒
1
, and 𝜒

2
be 𝑚 × 𝑚 real

symmetric matrices and a continuous function 𝜏 satisfy 𝜏
1
≤

𝜏 ≤ 𝜏
2
, where 𝜏

1
and 𝜏
2
are constants satisfying 0 ≤ 𝜏

1
≤ 𝜏
2
. If

𝜒
0
≥ 0, then

𝜏
2

𝜒
0
+ 𝜏𝜒
1
+ 𝜒
2
< 0 (≤ 0) , ∀𝜏 ∈ [𝜏

1
, 𝜏
2
] ,

⇐⇒ 𝜏
2

𝑖
𝜒
0
+ 𝜏
𝑖
𝜒
1
+ 𝜒
2
< 0 (≤ 0) , (𝑖 = 1, 2) ,

(15)

or
𝜏
2

𝜒
0
+ 𝜏𝜒
1
+ 𝜒
2
> 0 (≥ 0) , ∀𝜏 ∈ [𝜏

1
, 𝜏
2
]

⇐⇒ 𝜏
2

𝑖
𝜒
0
+ 𝜏
𝑖
𝜒
1
+ 𝜒
2
> 0 (≥ 0) , (𝑖 = 1, 2) .

(16)
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3. Main Results

In this section, we give a design of memoryless𝐻
∞
feedback

control for system (1). First, we present delay-dependent
asymptotical stabilizability analysis conditions for the non-
linear system with time-varying delay (1). Now, we operate
thematrix-based quadratic convex approachwith the integral
inequalities in [20] to formulate a new stability criterion for
system (1). For our goal, we choose the following Lyapunov-
Krasovskii functional:

𝑉 (𝑡, 𝑥
𝑡
, 𝑥̇
𝑡
) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (17)

where 𝑥
𝑡
denotes the function 𝑥(𝑡) defined on the interval [𝑡−

𝜏
2
, 𝑡]. Set 𝑃

1
= 𝑃
−1, 𝑦(𝑡) = 𝑃

1
𝑥(𝑡), 𝜏

21
:= 𝜏
2
− 𝜏
1
, and

𝑉
1
(𝑡) := 𝑦

𝑇

(𝑡) 𝑃𝑦 (𝑡) + ∫

𝑡

𝑡−𝜏1

̇𝑦
𝑇

(𝑠) 𝑄
0
̇𝑦 (𝑠) 𝑑𝑠,

𝑉
2
(𝑡) := ∫

𝑡

𝑡−𝜏1

[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
1
[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)]

𝑇

𝑑𝑠

+ ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
2
[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)]

𝑇

𝑑𝑠

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
3
[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)]

𝑇

𝑑𝑠,

𝑉
3
(𝑡) := ∫

𝑡

𝑡−𝜏1

[𝜏
1
(𝜏
1
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠)𝑊
1
̇𝑦 (𝑠)

+ (𝜏
1
− 𝑡 + 𝑠)

2

̇𝑦
𝑇

(𝑠)𝑊
2
̇𝑦 (𝑠)] 𝑑𝑠

+ ∫

𝑡−𝜏1

𝑡−𝜏2

[𝜏
21
(𝜏
2
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠) 𝑅
1
̇𝑦 (𝑠)

+ (𝜏
2
− 𝑡 + 𝑠)

2

̇𝑦
𝑇

(𝑠) 𝑅
2
̇𝑦 (𝑠)] 𝑑𝑠,

(18)

where𝑄
𝑗
> 0, (𝑗 = 0, 1, 2, 3),𝑊

1
> 0,𝑊

2
> 0, 𝑅

1
> 0, 𝑅

2
> 0,

and 𝑃 are real matrices to be determined. Before introducing
the main theorem, for simplicity, we set

𝜀 = 𝑎 + 𝑏 + 𝑐 +

4𝑑
2

𝛾

. (19)

Theorem 9. Given 𝛾 > 0, then system (1) is asymptotically
stabilizable and satisfies ‖𝑧(𝑡)‖

2
< 𝛾‖𝑤(𝑡)‖

2
for all nonzero𝑤 ∈

L
2
[0,∞) if there exist positive definite matrices 𝑃, 𝑄

𝑗
> 0,

(𝑗 = 0, 1, 2, 3),𝑊
1
,𝑊
2
, 𝑅
1
, 𝑅
2
, 𝑆
1
,𝑍
1
,𝑍
2
,𝑍
3
,𝑁
1
,𝑁
2
,𝑁
3
, and

𝑌 such that the following 𝐿𝑀𝐼𝑠 hold:

[

𝑅̃
1
𝑆
1

𝑆
𝑇

1
𝑅̃
1

] ≥ 0, [

𝑍
𝑖
𝑁
𝑖

𝑁
𝑇

𝑖
𝑅
2

] ≥ 0, (𝑖 = 1, 2) ,

[

𝑍
3
𝑁
3

𝑁
𝑇

3
𝑊
2

] ≥ 0, 𝑍
1
≥ 𝑍
2
,

(20)

Ξ
2
(𝜏
1
, 𝜇
1
) + Ξ
3
(𝜏
1
) + Ξ̂
4
< 0,

Ξ
2
(𝜏
1
, 𝜇
2
) + Ξ
3
(𝜏
1
) + Ξ̂
4
< 0,

Ξ
2
(𝜏
2
, 𝜇
1
) + Ξ
3
(𝜏
2
) + Ξ̂
4
< 0,

Ξ
2
(𝜏
2
, 𝜇
2
) + Ξ
3
(𝜏
2
) + Ξ̂
4
< 0,

(21)

where 𝑅̃
1
= diag{𝑅

1
, 3𝑅
1
} and

Ξ
2
(𝜏 (𝑡) , ̇𝜏 (𝑡)) := Ξ

20
+ [𝜏 (𝑡) − 𝜏

1
] Ξ
21
+ [𝜏
2
− 𝜏 (𝑡)] Ξ

22
,

(22)

Ξ
3
(𝜏 (𝑡)) := 𝜑

𝑇

1
𝑆
1
𝜑
2
+ 𝜑
𝑇

2
𝑆
𝑇

1
𝜑
1
− 𝜑
𝑇

1
𝑅̃
𝑇

1
𝜑
1

+ (𝜏
2
− 𝜏 (𝑡))

2

(𝑍
1
− 𝑍
2
) + (𝜏
2
− 𝜏 (𝑡)) Ξ

31

+ (𝜏 (𝑡) − 𝜏
1
) Ξ
32
+ 𝜏
2

21
𝑍
2
− 𝜑
𝑇

2
𝑅̃
1
𝜑
2
,

(23)

Ξ̂
4
:= 𝜏
2

1
𝑍
3
− 𝜑
𝑇

3
𝑊̃
1
𝜑
3

+ 𝑒
𝑇

9
(𝜏
2

1
𝑊
1
+ 𝜏
2

1
𝑊
2
) 𝑒
9
+ 2𝜏
1
𝑁
3
(𝑒
1
− 𝑒
7
)

+ 𝑒
𝑇

8
(𝜏
𝑇

21
𝑅
1
+ 𝜏
𝑇

21
𝑅
2
) 𝑒
8
+ 2𝜏
1
(𝑒
1
− 𝑒
7
)
𝑇

𝑁
𝑇

3

+ 𝑒
𝑇

1
(𝐴𝑃 + 𝑃𝐴

𝑇

+ (𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

) +

4

𝛾

𝐶𝐶
𝑇

+ 𝜀𝐼) 𝑒
1

+ 𝑒
𝑇

1
(𝑃𝐷) 𝑒

2
+ 𝑒
𝑇

2
(𝐷
𝑇

𝑃) 𝑒
1
+ 𝑒
𝑇

1
(𝐴𝑃 + 𝑌𝐵

𝑇

) 𝑒
9

+ 𝑒
𝑇

9
(𝑃𝐴
𝑇

+ 𝑌
𝑇

𝐵) 𝑒
1
+ 𝑒
𝑇

2
(𝐷𝑃) 𝑒

9
+ 𝑒
𝑇

9
(𝑃𝐷
𝑇

) 𝑒
2

+ 𝑒
𝑇

8
(𝑄
0
) 𝑒
8
+ 𝑒
𝑇

9
(−2𝑃 +

4

𝛾

𝐶𝐶
𝑇

+ 𝜀𝐼 + 𝑄
0
) 𝑒
9

+ 𝑒
𝑇

1
(𝑃) 𝑒
10
+ 𝑒
𝑇

10
(𝑃) 𝑒
1
+ 𝑒
𝑇

1
(𝑌
𝑇

) 𝑒
11
+ 𝑒
𝑇

11
(𝑌) 𝑒
1

+ 𝑒
𝑇

1
(𝑃𝐸
𝑇

) 𝑒
12
+ 𝑒
𝑇

12
(𝐸𝑃) 𝑒

1

+ 𝑒
𝑇

2
(𝑃𝐺
𝑇

) 𝑒
13
+ 𝑒
𝑇

13
(𝐺𝑃) 𝑒

2

+ 𝑒
𝑇

2
(𝑃) 𝑒
14
+ 𝑒
𝑇

14
(𝑃) 𝑒
2
+ 𝑒
𝑇

10
(−

1

2𝑎 + 4𝑎
1

𝐼) 𝑒
10

+ 𝑒
𝑇

11
(−

1

2 + 2𝑐 + 4𝑐
1

𝐼) 𝑒
11
+ 𝑒
𝑇

12
(−

𝐼

3

) 𝑒
12

+ 𝑒
𝑇

13
(−

𝐼

3

) 𝑒
13
+ 𝑒
𝑇

14
(−

1

2𝑏 + 4𝑏
1

𝐼) 𝑒
14
,

(24)
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with 𝑒
𝑖
∈ R𝑛×14𝑛 (𝑖 = 1, 2, . . . , 14) denoting the 𝑖th row-block

vector of the 14𝑛 × 14𝑛 identity matrix 𝑊̃
1
= diag{𝑊

1
, 3𝑊
1
}

and

Ξ
20
:= [𝑒
𝑇

1
𝑒
𝑇

3
] (𝑄
2
− 𝑄
1
) [𝑒
𝑇

1
𝑒
𝑇

3
]

𝑇

+ 𝜏
1
[𝑒
𝑇

9
0]𝑄
1
[𝑒
𝑇

1
𝑒
𝑇

7
]

𝑇

+ 𝜏
1
[𝑒
𝑇

1
𝑒
𝑇

7
]𝑄
1
[𝑒
𝑇

9
0]

𝑇

− (1 − ̇𝜏 (𝑡)) [𝑒
𝑇

1
𝑒
𝑇

2
] (𝑄
2
− 𝑄
3
) [𝑒
𝑇

1
𝑒
𝑇

2
]

𝑇

− [𝑒
𝑇

1
𝑒
𝑇

4
]𝑄
3
[𝑒
𝑇

1
𝑒
𝑇

4
]

𝑇

+ [𝑒
𝑇

1
𝑒
𝑇

1
]𝑄
1
[𝑒
𝑇

1
𝑒
𝑇

1
]

𝑇

,

Ξ
21
:= [𝑒
𝑇

1
𝑒
𝑇

6
]𝑄
2
[𝑒
𝑇

9
0]

𝑇

+ [𝑒
𝑇

9
0]𝑄
2
[𝑒
𝑇

1
𝑒
𝑇

6
]

𝑇

,

Ξ
22
:= [𝑒
𝑇

1
𝑒
𝑇

5
]𝑄
3
[𝑒
𝑇

9
0]

𝑇

+ [𝑒
𝑇

9
0]𝑄
3
[𝑒
𝑇

1
𝑒
𝑇

5
]

𝑇

,

Ξ
31
:= 2𝑁

1
(𝑒
2
− 𝑒
5
) + 2𝑁

2
(𝑒
3
− 𝑒
2
)

+ 2 (𝑒
3
− 𝑒
2
)
𝑇

𝑁
𝑇

2
+ 2 (𝑒

2
− 𝑒
5
)
𝑇

𝑁
𝑇

1
,

Ξ
32
:= 2𝑁

1
(𝑒
3
− 𝑒
6
) + 2 (𝑒

3
− 𝑒
6
)
𝑇

𝑁
𝑇

1
,

𝜑
1
:= 𝑐𝑜𝑙 {𝑒

2
− 𝑒
4
, 𝑒
2
+ 𝑒
4
− 2𝑒
5
} ,

𝜑
2
:= 𝑐𝑜𝑙 {𝑒

3
− 𝑒
2
, 𝑒
3
+ 𝑒
2
− 2𝑒
6
} ,

𝜑
3
:= 𝑐𝑜𝑙 {𝑒

1
− 𝑒
3
, 𝑒
1
+ 𝑒
3
− 2𝑒
7
} .

(25)

Moreover, the feedback control is given by

𝑢 (𝑡) = 𝑌𝑃
−1

𝑥 (𝑡) , 𝑡 ≥ 0. (26)

Proof. Taking the derivative of𝑉 along the solution of system
(1), we obtain

𝑉̇
1
= 2𝑦
𝑇

(𝑡) 𝑃 ̇𝑦 (𝑡) + ̇𝑦
𝑇

(𝑡) 𝑄
0
̇𝑦 (𝑡)

− ̇𝑦
𝑇

(𝑡 − 𝜏
1
) 𝑄
0
̇𝑦 (𝑡 − 𝜏

1
) ,

(27)

𝑉̇
2
= [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡)] 𝑄
1
[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡)]

𝑇

− [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏
1
)]𝑄
1
[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏
1
)]

𝑇

+ ∫

𝑡

𝑡−𝜏1

2 [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
1
[ ̇𝑦 (𝑡)
𝑇

0]

𝑇

𝑑𝑠

+ [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏
1
)]𝑄
2

⋅ [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏
1
)]

𝑇

− (1 − ̇𝜏 (𝑡)) [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡))] 𝑄
2

⋅ [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡))]

𝑇

+ 2∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
2
[ ̇𝑦
𝑇

(𝑡) 0]

𝑇

𝑑𝑠

− [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏
2
)]𝑄
3
[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏
2
)]

𝑇

+ (1 − ̇𝜏 (𝑡)) [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡))] 𝑄
3

⋅ [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − 𝜏 (𝑡))]

𝑇

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

2 [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
2
[ ̇𝑦
𝑇

(𝑡) 0]

𝑇

𝑑𝑠,

𝑉̇
3
= 𝜏
1
̇𝑦
𝑇

(𝑡) 𝜏
1
𝑊
1
̇𝑦 (𝑡) + 𝜏

2

1
̇𝑦
𝑇

(𝑡)𝑊
2
̇𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏1

̇𝑦
𝑇

(𝑠) 𝜏
1
𝑊
1
̇𝑦 (𝑠) 𝑑𝑠

− 2∫

𝑡

𝑡−𝜏1

(𝜏
1
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠)𝑊
2
̇𝑦 (𝑠) 𝑑𝑠

+ 𝜏
21
̇𝑦
𝑇

(𝑡 − 𝜏
1
) 𝜏
21
𝑅
1
̇𝑦 (𝑡 − 𝜏

1
)

+ 𝜏
2

21
̇𝑦
𝑇

(𝑡 − 𝜏
1
) 𝑅
2
̇𝑦 (𝑡 − 𝜏

1
)

− 𝜏
21
∫

𝑡−𝜏1

𝑡−𝜏2

̇𝑦
𝑇

(𝑠) 𝑅
1
̇𝑦 (𝑠) 𝑑𝑠

− 2∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠) 𝑅
2
̇𝑦 (𝑠) 𝑑𝑠.

(28)

From (4) andCauchy inequality, we get the following inequal-
ities:

2𝑥
𝑇

𝑃
1
𝑓 (𝑡, 𝑥, 𝑥

ℎ
, 𝑢, 𝑤)

≤ 2
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥, 𝑥

ℎ
, 𝑢, 𝑤)

󵄩
󵄩
󵄩
󵄩

≤ 2
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
󵄩
󵄩
󵄩
󵄩
(𝑎 ‖𝑥‖ + 𝑏

󵄩
󵄩
󵄩
󵄩
𝑥
ℎ

󵄩
󵄩
󵄩
󵄩
+ 𝑐 ‖𝑢‖ + 𝑑 ‖𝑤‖)

≤ 𝑎
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
󵄩
󵄩
󵄩
󵄩

2

+ 𝑎 ‖𝑥‖
2

+ 𝑏
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
󵄩
󵄩
󵄩
󵄩

2

+ 𝑏
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
ℎ

󵄩
󵄩
󵄩
󵄩

2

+ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
󵄩
󵄩
󵄩
󵄩

2

+ 𝑐 ‖𝑢‖
2

+

4𝑑
2

𝛾

󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
󵄩
󵄩
󵄩
󵄩

2

+

𝛾

4

‖𝑤‖
2

= 𝑎 ‖𝑥‖
2

+ 𝑏
󵄩
󵄩
󵄩
󵄩
𝑥
ℎ

󵄩
󵄩
󵄩
󵄩

2

+ 𝑐 ‖𝑢‖
2

+

𝛾

4

‖𝑤‖
2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥
󵄩
󵄩
󵄩
󵄩

2

.

(29)

Similarly,

2𝑥̇
𝑇

𝑃
1
𝑓 (𝑡, 𝑥, 𝑥

𝜏
, 𝑢, 𝑤)

≤ 𝑎 ‖𝑥‖
2

+ 𝑏
󵄩
󵄩
󵄩
󵄩
𝑥
𝜏

󵄩
󵄩
󵄩
󵄩

2

+ 𝑐 ‖𝑢‖
2

+

𝛾

4

‖𝑤‖
2

+ 𝜀
󵄩
󵄩
󵄩
󵄩
𝑃
1
𝑥̇
󵄩
󵄩
󵄩
󵄩

2

,

2𝑥 (𝑡)
𝑇

𝑃
1
𝐶𝑤 ≤

𝛾

4

‖𝑤‖
2

+

4

𝛾

𝑥 (𝑡)
𝑇

𝑃
1
𝐶𝐶
𝑇

𝑃
1
𝑥 (𝑡) ,

2𝑥̇ (𝑡)
𝑇

𝑃
1
𝐶𝑤 ≤

𝛾

4

‖𝑤‖
2

+

4

𝛾

𝑥̇ (𝑡)
𝑇

𝑃
1
𝐶𝐶
𝑇

𝑃
1
𝑥̇ (𝑡) .

(30)
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By using the following identity relation:

−2𝑥̇
𝑇

(𝑡) 𝑃
1
[𝑥̇ (𝑡) − 𝐴𝑥 (𝑡) − 𝐷𝑥 (𝑡 − 𝜏 (𝑡))

−𝐵𝑢 (𝑡) − 𝐶𝑤 (𝑡) − 𝑓 (⋅)] = 0,

(31)

we obtain the following:

0 = −2𝑥̇
𝑇

(𝑡) 𝑃
1
[𝑥̇ (𝑡) − 𝐴𝑥 (𝑡) − 𝐷𝑥 (𝑡 − 𝜏 (𝑡))

−𝐵𝑢 (𝑡) − 𝐶𝑤 (𝑡) − 𝑓 (⋅)]

≤ −2𝑥̇
𝑇

(𝑡) 𝑃
1
[𝑥̇ (𝑡) − 𝐴𝑥 (𝑡) − 𝐷𝑥 (𝑡 − 𝜏 (𝑡))

− 𝐵𝑌𝑃
1
𝑥 (𝑡)]

+ 2𝑥̇
𝑇

(𝑡) 𝑃
1
𝐶𝑤 (𝑡) + 2𝑥̇

𝑇

(𝑡) 𝑃
1
𝑓 (⋅)

≤ −2 ̇𝑦
𝑇

(𝑡) 𝑃 ̇𝑦 (𝑡) + 2 ̇𝑦
𝑇

(𝑡) 𝐴𝑃𝑦 (𝑡)

+ 2 ̇𝑦
𝑇

(𝑡) 𝐷𝑃𝑦 (𝑡 − 𝜏 (𝑡)) + 2 ̇𝑦
𝑇

(𝑡) 𝐵𝑌𝑦 (𝑡)

+

4

𝛾

̇𝑦 (𝑡)
𝑇

𝐶𝐶
𝑇

̇𝑦 (𝑡) + 𝑎𝑦 (𝑡)
𝑇

𝑃
2

𝑦 (𝑡)

+ 𝑏𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃
2

𝑦 (𝑡 − 𝜏 (𝑡)) + 𝑐𝑦
𝑇

(𝑡) 𝑌
𝑇

𝑌𝑦 (𝑡)

+

𝛾

2

𝑤 (𝑡)
𝑇

𝑤 (𝑡) + 𝜀 ̇𝑦
𝑇

(𝑡) ̇𝑦 (𝑡) .

(32)

From (27) and (29), (32), 𝑉̇
1
is estimated as

𝑉̇
1
≤ 𝑦
𝑇

(𝑡) [𝐴𝑃 + 𝑃𝐴
𝑇

+ (𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

)

+

4

𝛾

𝐶𝐶
𝑇

+ 𝑎𝑃
2

+ 𝑐𝑌
𝑇

𝑌 + 𝜀] 𝑦 (𝑡)

+

𝛾

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑤 (𝑡)
2
󵄩
󵄩
󵄩
󵄩
󵄩
+ 2𝑦
𝑇

(𝑡) [𝐷𝑃] 𝑦
𝑇

(𝑡 − 𝜏 (𝑡))

+ 𝑏𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃
2

𝑦

⋅ (𝑡 − 𝜏 (𝑡) − 2 ̇𝑦
𝑇

(𝑡) 𝑃 ̇𝑦 (𝑡)

+ 2 ̇𝑦
𝑇

(𝑡) 𝐴𝑃𝑦 (𝑡) + 2 ̇𝑦
𝑇

(𝑡) 𝐷𝑃𝑦 (𝑡 − 𝜏 (𝑡))

+2 ̇𝑦
𝑇

(𝑡) 𝐵𝑌𝑦 (𝑡))

+

4

𝛾

̇𝑦 (𝑡)
𝑇

𝐶𝐶
𝑇

̇𝑦 (𝑡) + 𝑎𝑦 (𝑡)
𝑇

𝑃
2

𝑦 (𝑡)

+ 𝑏𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃
2

𝑦 (𝑡 − 𝜏 (𝑡)) + 𝑐𝑦
𝑇

(𝑡) 𝑌
𝑇

𝑌𝑦 (𝑡)

+

𝛾

2

𝑤 (𝑡)
𝑇

𝑤 (𝑡) + 𝜀 ̇𝑦
𝑇

(𝑡) ̇𝑦 (𝑡)

+ ̇𝑦
𝑇

(𝑡) 𝑄
0
̇𝑦 (𝑡) − ̇𝑦

𝑇

(𝑡 − 𝜏
1
) 𝑄
0
̇𝑦 (𝑡 − 𝜏

1
)

= 𝜉
𝑇

(𝑡) Ξ
1
𝜉 (𝑡) ,

(33)

where

𝜉 (𝑡) := col {𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡)) , 𝑦 (𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

2
) ,

]
1
(𝑡) , ]
2
(𝑡) , ]
3
(𝑡) , ̇𝑦 (𝑡 − 𝜏

1
) , ̇𝑦 (𝑡)} ,

Ξ
1
:= 𝑒
𝑇

1
(𝐴𝑃 + 𝑃𝐴

𝑇

+ (𝐵𝑌 + 𝑌
𝑇

𝐵
𝑇

)

+

4

𝛾

𝐶𝐶
𝑇

+ 2𝑎𝑃
2

+ 2𝑐𝑌
𝑇

𝑌 + 𝜀𝐼) 𝑒
1

+ 𝑒
𝑇

1
(𝑃𝐷) 𝑒

2
+ 𝑒
𝑇

2
(𝐷
𝑇

𝑃) 𝑒
1
+ 𝑒
𝑇

1
(𝐴𝑃 + 𝑌𝐵

𝑇

) 𝑒
9

+ 𝑒
𝑇

9
(𝑃𝐴
𝑇

+ 𝑌
𝑇

𝐵) 𝑒
1
+ 𝑒
𝑇

2
(𝐷𝑃) 𝑒

9
+ 𝑒
𝑇

9
(𝑃𝐷
𝑇

) 𝑒
2

+ 𝑒
𝑇

9
(−2𝑃 +

4

𝛾

𝐶𝐶
𝑇

+ 𝜀𝐼 + 𝑄
0
) 𝑒
9

+ 𝑒
𝑇

2
(2𝑏𝑃
2

) 𝑒
2
+ 𝑒
𝑇

8
(−𝑄
0
) 𝑒
8
.

(34)

With the consideration of the three terms of 𝑉̇
2
(𝑡), we

obtained the following inequality:

∫

𝑡

𝑡−𝜏1

2 [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
1
[ ̇𝑦 (𝑡)
𝑇

0]

𝑇

𝑑𝑠

≤ 2 [∫

𝑡

𝑡−𝜏1

𝑦
𝑇

(𝑡) 𝑑𝑠 ∫

𝑡

𝑡−𝜏1

𝑦
𝑇

(𝑠) 𝑑𝑠]𝑄
1
[ ̇𝑦
𝑇

(𝑡) 0]

𝑇

= 2𝜏
1
[𝑦
𝑇

(𝑡) ]𝑇
3
]𝑄
1
[ ̇𝑦
𝑇

(𝑡) 0]

𝑇

,

∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

2 [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
2
[ ̇𝑦 (𝑡)
𝑇

0]

𝑇

𝑑𝑠

≤ 2 [∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑡) 𝑑𝑠 ∫

𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑦
𝑇

(𝑠) 𝑑𝑠]𝑄
2
[ ̇𝑦
𝑇

(𝑡) 0]

𝑇

= 2 (𝜏 (𝑡) − 𝜏
1
) [𝑦
𝑇

(𝑡) ]𝑇
2
]𝑄
2
[ ̇𝑦
𝑇

(𝑡) 0]

𝑇

,

∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

2 [𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑠)] 𝑄
3
[ ̇𝑦 (𝑡)
𝑇

0]

𝑇

𝑑𝑠

≤ 2 [∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

𝑦
𝑇

(𝑡) 𝑑𝑠 ∫

𝑡−𝑑(𝑡)

𝑡−𝜏2

𝑦
𝑇

(𝑠) 𝑑𝑠]𝑄
3
[ ̇𝑦
𝑇

(𝑡) 0]

𝑇

= 2 (𝜏
2
− 𝜏 (𝑡)) [𝑦

𝑇

(𝑡) ]𝑇
1
]𝑄
3
[ ̇𝑦
𝑇

(𝑡) 0] .

(35)

Therefore, the estimation of 𝑉̇
2
(𝑡) is as follows:

𝑉̇
2
(𝑡) ≤ Ξ

20
+ (𝜏 (𝑡) − 𝜏

1
) Ξ
21
+ (𝜏
2
− 𝜏 (𝑡)) Ξ

22

= 𝜉
𝑇

(𝑡) Ξ
2
(𝜏 (𝑡) , ̇𝜏 (𝑡)) 𝜉 (𝑡) ,

(36)

where Ξ
2
is defined in (22). Similarly, 𝑉̇

3
(𝑡) is estimated as

𝑉̇
3
(𝑡) = 𝜉

𝑇

(𝑡) Ξ
30
𝜉 (𝑡) + 𝛿

1
(𝑡) + 𝛿

2
(𝑡) , (37)
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where

Ξ
30
:= 𝑒
𝑇

9
(𝜏
2

1
𝑊
1
+ 𝜏
2

1
𝑊
2
) 𝑒
9
+ 𝑒
𝑇

8
(𝜏
2

21
𝑅
1
+ 𝜏
2

21
𝑅
2
) 𝑒
8
,

𝛿
1
(𝑡) = − 𝜏

21
∫

𝑡−𝜏1

𝑡−𝜏2

̇𝑦
𝑇

(𝑠) 𝑅
1
̇𝑦 (𝑠) 𝑑𝑠

− 2∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠) 𝑅
2
̇𝑦 (𝑠) 𝑑𝑠,

𝛿
2
(𝑡) = − 𝜏

1
∫

𝑡

𝑡−𝜏1

̇𝑦
𝑇

(𝑠)𝑊
1
̇𝑦 (𝑠) 𝑑𝑠

− 2∫

𝑡

𝑡−𝜏1

(𝜏
1
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠)𝑊
2
̇𝑦 (𝑠) 𝑑𝑠.

(38)

By Lemmas 5 and 6, we obtain the following:

− (𝜏
2
− 𝜏
1
) ∫

𝑡−𝜏1

𝑡−𝜏2

̇𝑦
𝑇

(𝑠) 𝑅
1
̇𝑦 (𝑠) 𝑑𝑠

≤ 2𝜓
𝑇

11
𝑆
1
𝜓
21
− 𝜓
𝑇

11
𝑅̃
1
𝜓
11
− 𝜓
𝑇

21
𝑅̃
1
𝜓
21
,

(39)

where 𝑅̃
1
:= diag{𝑅

1
, 3𝑅
1
} and

𝜓
11
:= [

𝑦 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏
2
)

𝑦 (𝑡 − 𝜏 (𝑡)) + 𝑦 (𝑡 − 𝜏
2
) − 2]

1
(𝑡)

] ,

𝜓
21
:= [

𝑦 (𝑡 − 𝜏
1
) − 𝑦 (𝑡 − 𝜏 (𝑡))

𝑦 (𝑡 − 𝜏
1
) + 𝑦 (𝑡 − 𝜏 (𝑡)) − 2]

2
(𝑡)

] ,

− 2∫

𝑡−𝜏1

𝑡−𝜏2

(𝜏
2
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠) 𝑅
2
̇𝑦 (𝑠) 𝑑𝑠

≤ −2 {

1

2

(𝜏
2
− 𝜏 (𝑡))

2

𝜉
𝑇

(𝑡) 𝑍
1
𝜉 (𝑡)

+ 2 (𝜏
2
− 𝜏 (𝑡)) 𝜉

𝑇

(𝑡)𝑁
1
[𝑦 (𝑡 − 𝜏 (𝑡)) − ]

1
]

+

1

2

[𝜏
2

21
(𝜏
2
− 𝜏 (𝑡))

2

] 𝜉
𝑇

(𝑡) 𝑍
2
𝜉 (𝑡) + 2𝜉

𝑇

(𝑡)𝑁
2

⋅ [(𝜏
2
− 𝜏 (𝑡)) [𝑦 (𝑡 − 𝜏

1
) − 𝑦 (𝑡 − 𝜏 (𝑡))]

+ (𝜏 (𝑡) − 𝜏
1
) [𝑦 (𝑡 − 𝜏

1
) − ]
2
]]} .

(40)

Thus,

𝛿
1
(𝑡) ≤ 2𝜓

𝑇

11
𝑆
1
𝜓
21
− 𝜓
𝑇

11
𝑅̃
1
𝜓
11
− 𝜓
𝑇

21
𝑅̃
1
𝜓
21

− 2 {

1

2

(𝜏
2
− 𝜏 (𝑡))

2

𝜉
𝑇

(𝑡) 𝑍
1
𝜉 (𝑡)

+ 2 (𝜏
2
− 𝜏 (𝑡)) 𝜉

𝑇

(𝑡)𝑁
1
[𝑦 (𝑡 − 𝜏 (𝑡)) − ]

1
]

+

1

2

[𝜏
2

21
(𝜏
2
− 𝜏 (𝑡))

2

] 𝜉
𝑇

(𝑡) 𝑍
2
𝜉 (𝑡) + 2𝜉

𝑇

(𝑡)𝑁
2

⋅ [(𝜏
2
− 𝜏 (𝑡)) [𝑦 (𝑡 − 𝜏

1
) − 𝑦 (𝑡 − 𝜏 (𝑡))]

+ (𝜏 (𝑡) − 𝜏
1
) [𝑦 (𝑡 − 𝜏

1
) − ]
2
]]} .

= 𝜉
𝑇

(𝑡) Ξ
3
(𝜏 (𝑡)) 𝜉 (𝑡) ,

(41)

where Ξ
3
(𝜏(𝑡)) is given in (23). From Lemmas 2 and 4, we

obtain

− 𝜏
1
∫

𝑡

𝑡−𝜏1

̇𝑦
𝑇

(𝑠)𝑊
1
̇𝑦 (𝑠) 𝑑𝑠

≤ [𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏
1
)]
𝑇

𝑊
1
[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏

1
)]

+ 3Ω̃
𝑇

1
𝑊
1
Ω̃
1
,

− 2∫

𝑡

𝑡−𝜏1

(𝜏
1
− 𝑡 + 𝑠) ̇𝑦

𝑇

(𝑠)𝑊
2
̇𝑦 (𝑠) 𝑑𝑠

≤ −𝜏
2

1
𝜉
𝑇

(𝑡) 𝑍
3
𝜉 (𝑡) − 2𝜏

1
𝜉
𝑇

(𝑡)𝑁
3
[𝑦 (𝑡) − ]

3
] ,

(42)

from which it follows that

𝛿
2
(𝑡) ≤ [𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏

1
)]
𝑇

𝑊
1
[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏

1
)]

+ 3Ω̃
𝑇

1
𝑊
1
Ω̃
1
− 𝜏
2

1
𝜉
𝑇

(𝑡) 𝑍
3
𝜉 (𝑡)

− 2𝜏
1
𝜉
𝑇

(𝑡)𝑁
3
[𝑦 (𝑡) − ]

3
] ,

= 𝜉
𝑇

(𝑡) Ξ
33
𝜉 (𝑡) ,

(43)

where

Ω̃
1
= 𝑦 (𝑡) + 𝑦 (𝑡 − 𝜏

1
) − 2]

3
,

Ω̃
2
= 𝑦 (𝑡 − 𝜏 (𝑡)) + 𝑦 (𝑡 + 𝜏

2
) − ]
1
,

Ω̃
3
= 𝑦 (𝑡 − 𝜏

1
) + 𝑦 (𝑡 − 𝜏 (𝑡)) − ]

2
,

Ξ
33
:= − 𝜑

𝑇

3
diag {𝑊

1
, 3𝑊
1
} 𝜑
3
+ 𝜏
2

1
𝑍
3

+ 2𝜏
1
𝑁
3
(𝑒
1
− 𝑒
7
) + 2𝜏

1
(𝑒
1
− 𝑒
7
)
𝑇

𝑁
𝑇

3
.

(44)

Hence, from (41) and (43), we obtain

𝑉̇
3
≤ 𝜉
𝑇

(𝑡) [Ξ
3
(𝜏 (𝑡)) + Ξ

4
] 𝜉 (𝑡) , (45)

where Ξ
4
:= Ξ
30
+ Ξ
33
. From (33), (36), and (45), we obtain

𝑉̇(𝑡, 𝑦
𝑡
, ̇𝑦
𝑡
) along the solution of system (1) as

𝑉̇ (𝑡, 𝑥
𝑡
) ≤ 𝜉
𝑇

Δ (𝜏 (𝑡) , ̇𝜏 (𝑡)) 𝜉 (𝑡) , (46)

where

Δ (𝜏 (𝑡) , ̇𝜏 (𝑡)) = Ξ
2
(𝜏 (𝑡) , ̇𝜏 (𝑡)) + Ξ

3
(𝜏 (𝑡)) + (Ξ

1
+ Ξ
4
) .

(47)
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Therefore, we have

𝑉̇ (𝑡, 𝑥
𝑡
) ≤ 𝜉
𝑇

(𝑡) Δ (𝜏 (𝑡) , ̇𝜏 (𝑡)) 𝜉 (𝑡) + 𝛾 ‖𝑤 (𝑡)‖
2

+ 𝑦
𝑇

(𝑡) [3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
𝑃
2

+ (2 + 4𝑐
1
) 𝑌
𝑇

𝑌] 𝑦 (𝑡)

− 𝑦
𝑇

(𝑡) [3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
𝑃
2

+ (2 + 4𝑐
1
) 𝑌
𝑇

𝑌] 𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [3𝑃𝐺
𝑇

𝐺𝑃 + 4𝑏
1
𝑃
2

] 𝑦 (𝑡 − 𝜏 (𝑡))

− 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [3𝑃𝐺
𝑇

𝐺𝑃 + 4𝑏
1
𝑃
2

] 𝑦 (𝑡 − 𝜏 (𝑡))

= 𝜉
𝑇

(𝑡) Δ̂ (𝜏 (𝑡) , ̇𝜏 (𝑡)) 𝜉 (𝑡) + 𝛾 ‖𝑤 (𝑡)‖
2

− 𝑦
𝑇

(𝑡) [3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
𝑃
2

+ (2 + 4𝑐
1
) 𝑌
𝑇

𝑌] 𝑦 (𝑡)

− 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [3𝑃𝐺
𝑇

𝐺𝑃 + 4𝑏
1
𝑃
2

] 𝑦 (𝑡 − 𝜏 (𝑡)) ,

(48)

where

Δ̂ (𝜏 (𝑡) , ̇𝜏 (𝑡)) = Ξ
2
(𝜏 (𝑡) , ̇𝜏 (𝑡)) + Ξ

3
(𝜏 (𝑡)) + (Ξ̂

1
+ Ξ
4
)

= Ξ
2
(𝜏 (𝑡) , ̇𝜏 (𝑡)) + Ξ

3
(𝜏 (𝑡)) + Ξ̂

4
,

Ξ̂
1
= Ξ
1
+ 𝑒
𝑇

1
((2 + 4𝑐

1
) 𝑌
𝑇

𝑌 + 3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
) 𝑒
1

+ 𝑒
𝑇

2
(3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑏
1
𝑃
2

) 𝑒
2
,

(49)

and Ξ̂
4
= Ξ̂
1
+Ξ
4
is defined in (24). Observe that Δ̂(𝜏(𝑡), ̇𝜏(𝑡))

may be rewritten as

Δ̂ (𝜏 (𝑡) , ̇𝜏 (𝑡)) = 𝜏
2

(𝑡) Δ
0
+ 𝜏 (𝑡) Δ

1
+ Δ
2
, (50)

where Δ
0
= 𝑍
1
− 𝑍
2
and Δ

1
, Δ
2
are 𝜏(𝑡)-independent real

matrices. By Lemma 8, if 𝑍
1
− 𝑍
2
≥ 0 and the inequalities

in (21) hold, then Δ̂(𝜏(𝑡), ̇𝜏(𝑡)) < 0, ∀𝜏(𝑡) ∈ [𝜏
1
, 𝜏
2
], ∀ ̇𝜏(𝑡) ∈

[𝜇
1
, 𝜇
2
]. Moreover, Δ̂(𝜏(𝑡), ̇𝜏(𝑡))may be rewritten as a convex

combination of ̇𝜏(𝑡) as follows:

Δ̂ (𝜏 (𝑡) , ̇𝜏 (𝑡)) = (1 − ̇𝜏 (𝑡)) ◻
0
+ ̇𝜏 (𝑡) ◻

1
+ ◻
2
, (51)

where ◻
0
= 𝑄
2
− 𝑄
3
and ◻

1
, ◻
2
are ̇𝜏(𝑡)-independent

real matrices. By utilizing the Schur complement lemma, it
follows from (21), (50), and (51) that Δ̂(𝜏(𝑡), ̇𝜏(𝑡)) < 0 holds,
from which it follows from inequality (48) that

𝑉̇ (𝑡, 𝑥
𝑡
) ≤ 𝛾𝑤 (𝑡)

𝑇

𝑤 (𝑡)

− 𝑦
𝑇

(𝑡) [3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
𝑃
2

+ (2 + 4𝑐
1
) 𝑌
𝑇

𝑌]𝑦 (𝑡)

− 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [3𝑃𝐺
𝑇

𝐺𝑃 + 4𝑏
1
𝑃
2

] 𝑦 (𝑡 − 𝜏 (𝑡)) .

(52)

Letting 𝑤(𝑡) = 0 and from

− 𝑦
𝑇

(𝑡) [3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
𝑃
2

+ (2 + 4𝑐
1
) 𝑌
𝑇

𝑌]𝑦 (𝑡) ≤ 0,

− 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [3𝑃𝐺
𝑇

𝐺𝑃 + 4𝑏
1
𝑃
2

] 𝑦 (𝑡 − 𝜏 (𝑡)) ≤ 0,

(53)

there exists a scalar 𝜀
3
> 0 such that

𝑉̇ (𝑡, 𝑥
𝑡
) ≤ −𝜀

3
‖𝑥(𝑡)‖

2

< 0, ∀𝑡 ≥ 0. (54)

Therefore, system (1) with 𝑤(𝑡) ≡ 0 is asymptotically stable.
To complete the proof of theorem, next we consider the𝐻

∞

performance ‖𝑧‖
2
< 𝛾‖𝑤‖

2
. By assuming that 𝑥(𝑡) = 0, 𝑡 ∈

[−𝜏
2
, 𝑡
0
], it follows from definition of 𝑧(𝑡) that

‖𝑧‖
2

≤ ‖𝐸 (𝑥)‖
2

+ ‖𝐺𝑥 (𝑡 − 𝜏 (𝑡))‖
2

+ ‖𝑢 (𝑡)‖
𝑇

+ 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐺𝑥 (𝑡 − 𝜏 (𝑡)) + 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑔 (⋅)

+ 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐸
𝑇

𝑔 (⋅) + 2𝑢
𝑇

(𝑡) 𝐹
𝑇

𝑔 (⋅) +
󵄩
󵄩
󵄩
󵄩
𝑔 (⋅)

󵄩
󵄩
󵄩
󵄩

2

≤ 3 ‖𝐸𝑥 (𝑡)‖
2

+ 3 ‖𝐺𝑥 (𝑡 − 𝜏 (𝑡))‖
2

+ 2 ‖𝑢 (𝑡)‖
2

+ 4
󵄩
󵄩
󵄩
󵄩
𝑔 (⋅)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑥
𝑇

(𝑡) [3𝐸
𝑇

𝐸 + 4𝑎
1
] 𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝜏 (𝑡))

⋅ [3𝐺
𝑇

𝐺 + 4𝑏
1
] 𝑥 (𝑡 − 𝜏 (𝑡)) + [2 + 4𝑐

1
] ‖𝑢 (𝑡)‖

2

= 𝑦
𝑇

(𝑡) [3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
𝑃
2

+ (2 + 4𝑐
1
) 𝑌
𝑇

𝑌]𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [3𝑃𝐺
𝑇

𝐺𝑃 + 4𝑏
1
𝑃
2

] 𝑦 (𝑡 − 𝜏 (𝑡)) .

(55)

From (52), we obtain

𝑉̇ (𝑡, 𝑥
𝑡
) ≤ 𝛾𝑤 (𝑡)

𝑇

𝑤 (𝑡)

− 𝑦
𝑇

(𝑡) [3𝑃𝐸
𝑇

𝐸𝑃 + 4𝑎
1
𝑃
2

+ (2 + 4𝑐
1
) 𝑌
𝑇

𝑌] 𝑦 (𝑡)

− 𝑦
𝑇

(𝑡 − 𝜏 (𝑡)) [3𝑃𝐺
𝑇

𝐺𝑃 + 4𝑏
1
𝑃
2

] 𝑦 (𝑡 − 𝜏 (𝑡)) .

(56)

From estimations of 𝑉̇(𝑡, 𝑥
𝑡
) and ‖𝑧(𝑡)‖2 in (48) and (55), we

obtain

𝑉̇ (𝑡, 𝑥
𝑡
) + 𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡) < 0. (57)

Integrating both sides of the above equation from 𝑡
0
to 𝑡, we

get

∫

𝑡

𝑡0

[𝑉̇ (𝑡, 𝑥
𝑡
) + 𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡)] 𝑑𝑡 < 0. (58)

It follows that

∫

𝑡

𝑡0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡)] 𝑑𝑡

≤ 𝑉 (𝑡
0
, 𝑥
𝑡0
) − 𝑉 (𝑡, 𝑥

𝑡
)

≤ 0.

(59)

Therefore, under zero initial condition 𝑥(𝑡) = 0, 𝑡 ∈ [−𝜏
2
, 𝑡
0
],

by letting 𝑡 → +∞ in (59), we get

∫

∞

𝑡0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 < 𝛾
2

∫

∞

𝑡0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡, (60)

which gives ‖𝑧‖
2
< 𝛾‖𝑤‖

2
. This completes the proof.
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When 𝜏
1
= 0, 𝐵 = 0, and 𝐶 = 0, the nonlinear function is

𝑓(𝑡, 𝑥, 𝑥
𝜏

), and (1) reduces to

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) ,

(61)

where 0 ≤ 𝜏(𝑡) ≤ 𝜏
2
, 𝜇
1
≤ ̇𝜏(𝑡) ≤ 𝜇

2
. In the following,

we present a stability criterion for the case when 𝜏
1
= 0.

We consider the following Lyapunov-Krasovskii functional
candidate:

𝑉̂ (𝑡, 𝑥
𝑡
, 𝑥̇
𝑡
)

= 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝜏(𝑡)

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)] 𝑄
2
[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)]

𝑇

𝑑𝑠

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏2

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)] 𝑄
3
[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)]

𝑇

𝑑𝑠

+ ∫

𝑡

𝑡−𝜏2

{𝜏
2
(𝜏
2
− 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ (𝜏
2
− 𝑡 + 𝑠)

2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)} 𝑑𝑠.

(62)

Corollary 10. For given scalars 𝜏
2
, 𝜇
1
, 𝜇
2
, 𝑎, and 𝑏, (61) is

asymptotically stable if there exist symmetric positive definite
matrices 𝑃, 𝑅

1
, 𝑅
2
, 𝑁
1
, 𝑁
2
, 𝑍
1
, 𝑍
2
, 𝑄
2
, 𝑄
3
, and 𝑆

1
, such that

the following LMIs hold:

𝜏
2
Υ
1
+ (1 − 𝜇

1
) Υ
3
+ Υ
4
< 0,

𝜏
2
Υ
1
+ (1 − 𝜇

2
) Υ
3
+ Υ
4
< 0,

𝜏
2
Υ
2
+ (1 − 𝜇

1
) Υ
3
+ Υ
4
< 0,

𝜏
2
Υ
2
+ (1 − 𝜇

2
) Υ
3
+ Υ
4
< 0.

[

𝑅̃
1
𝑆
1

𝑆
𝑇

1
𝑅̃
1

] ≥ 0, 𝑍
1
≥ 𝑍
2
,

[

𝑍
𝑖
𝑁
𝑖

𝑁
𝑇

𝑖
𝑅
2

] ≥ 0, (𝑖 = 1, 2) ,

𝑄
𝑗
= [

𝑄
𝑗1
𝑄
𝑗2

∗ 𝑄
𝑗3

] ≥ 0, (𝑖 = 2, 3) ,

(63)

where 𝑅̃
1
≜ diag{𝑅

1
, 3𝑅
1
}

Υ
1
:= [𝑒
𝑇

1
𝑒
𝑇

4
]𝑄
3
[𝑒
𝑇

6
0]

𝑇

+ [𝑒
𝑇

6
0]𝑄
3
[𝑒
𝑇

1
𝑒
𝑇

4
]

𝑇

+ 𝜏
2
(𝑍
1
− 𝑍
2
) + 2𝑁

1
[𝑒
2
− 𝑒
4
]

+ 2 [𝑒
2
− 𝑒
4
]
𝑇

𝑁
𝑇

1
+ 2𝑁
2
[𝑒
1
− 𝑒
2
]

+ 2 [𝑒
1
− 𝑒
2
]
𝑇

𝑁
𝑇

2
,

Υ
2
:= [𝑒
𝑇

1
𝑒
𝑇

5
]𝑄
2
[𝑒
𝑇

6
0]

𝑇

+ [𝑒
𝑇

6
0]𝑄
2
[𝑒
𝑇

1
𝑒
𝑇

5
]

𝑇

+ 2𝑁
2
[𝑒
1
− 𝑒
5
] + 2 [𝑒

1
− 𝑒
5
]
𝑇

𝑁
𝑇

2
,

Υ
3
:= [𝑒
1
𝑒
2
] (𝑄
3
− 𝑄
2
) [𝑒
1
𝑒
2
]

𝑇

,

Υ
4
:= 𝑒
𝑇

1
(𝐴
𝑇

𝑃 + 𝑃𝐴) 𝑒
1
+ 𝑒
𝑇

1
(𝑎 + 𝑏) 𝐼𝑒

1
,

+ 𝑒
𝑇

1
(𝑃𝐷) 𝑒

2
+ 𝑒
𝑇

2
(𝐷
𝑇

𝑃) 𝑒
1

+ 𝑒
𝑇

1
(𝑃𝐴) 𝑒

6
+ 𝑒
𝑇

6
(𝐴
𝑇

𝑃) 𝑒
1

+ 𝑒
𝑇

1
(𝑃
𝑇

) 𝑒
7
+ 𝑒
𝑇

7
(𝑃) 𝑒
1

+ 𝑒
𝑇

2
(𝑃𝐷) 𝑒

6
+ 𝑒
𝑇

6
(𝐷
𝑇

𝑃) 𝑒
2

+ 𝑒
𝑇

2
(𝑃
𝑇

) 𝑒
8
+ 𝑒
𝑇

8
(𝑃) 𝑒
2

+ 𝑒
𝑇

6
(−2𝑃) 𝑒

6
+ 𝑒
𝑇

6
(𝑎 + 𝑏) 𝐼𝑒

6

+ 𝑒
𝑇

7
(

−1

2𝑎

) 𝐼𝑒
7
+ 𝑒
𝑇

8
(

−1

2𝑏

) 𝐼𝑒
8

+ [𝑒
𝑇

1
𝑒
𝑇

1
]𝑄
2
[𝑒
𝑇

1
𝑒
𝑇

1
]

𝑇

− [𝑒
𝑇

1
𝑒
𝑇

3
]𝑄
3
[𝑒
𝑇

1
𝑒
𝑇

3
]

𝑇

+ 𝜏
2

2
𝑒
𝑇

6
(𝑅
1
+ 𝑅
2
) 𝑒
6

+ Θ
𝑇

1
𝑆
1
Θ
2
+ Θ
𝑇

2
𝑆
𝑇

1
Θ
1
− Θ
𝑇

1
𝑅̃
1
Θ
1
− Θ
𝑇

2
𝑅̃
1
Θ
2

+ 𝜏
2

2
𝑍
2
,

Θ
1
:= 𝑐𝑜𝑙 {(𝑒

2
− 𝑒
3
) , (𝑒
2
+ 𝑒
3
− 2𝑒
4
)} ,

Θ
2
:= 𝑐𝑜𝑙 {(𝑒

1
− 𝑒
2
) , (𝑒
1
+ 𝑒
2
− 2𝑒
5
)}

(64)

with 𝑒
1

= [𝐼 0 0 0 0 0 0 0], . . . , 𝑒
8

=

[0 0 0 0 0 0 0 𝐼].

Proof. The proof is the same as in Theorem 9 by using
Lyapunov-Krasovskii functional (62). The proof is omit-
ted.

4. Numerical Examples

In this section, we provide numerical examples to show the
effectiveness of theoretical results.

Example 1. Consider the nonlinear system with interval
time-varying delays (1) which was considered in [15], where

𝐴 = [

−1.3 0.3

0.5 0.1

] , 𝐷 = [

−0.01 0.02

0.03 −0.04

] ,

𝐵 = [

0.2 0

0.3 0

] , 𝐶 = [

−0.02 0.01

0.02 −0.03

] ,

𝐸 = 𝐺 = [

0.06 −0.06

−0.08 0.08

] , 𝐹 = [

0.8 0

0.6 0

] ,

𝑓 (⋅) = 𝑔 (⋅) = 0.01
[

[

√𝑥
2

1
(𝑡) + 𝑥

2

2
(𝑡 − 𝜏 (𝑡))

√𝑥
2

2
(𝑡) + 𝑥

2

1
(𝑡 − 𝜏 (𝑡))

]

]

,

(65)



10 Mathematical Problems in Engineering

0 2 4 6 8 10
−4

−2

0

2

4

6

8

10
×10

17

x1(t)
x2(t)

Figure 1: The trajectories of 𝑥
1
(𝑡) and 𝑥

2
(𝑡) of (1) in Example 1

without feedback control.

Table 1:Theminimum allowable value of disturbance attenuation 𝛾
with 𝜇

1
= −0.1 and 𝜇

2
= 0.1.

𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑎
1
= 𝑏
1
= 𝑐
1
= 0.01

Method 𝜏
1

𝜏
2

min 𝛾

Theorem 9 0.1 0.3 0.2377
0.1 0.5 0.2474

𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑎
1
= 𝑏
1
= 𝑐
1
= 0.05

Method 𝜏
1

𝜏
2

min 𝛾

Theorem 9 0.1 0.3 0.8991
0.1 0.5 0.9643

𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑎
1
= 𝑏
1
= 𝑐
1
= 0.01, 𝜏

1
= 0.3, 𝜏

2
= 0.5,

𝜇
1
= −0.1, 𝜇

2
= 0.1, and 𝛾 = 4. By using LMI Toolbox in

MATLAB, the LMIs inTheorem 9 are feasible. From (26) the
𝐻
∞

controller feedback gain can be computed as

𝐾 = 𝑌𝑃
−1

= [

−3.4638 −6.8069

−4.3243 −4.1846

] . (66)

For simulation, we choose 𝜏(𝑡) = 0.4 + 0.1 cos(𝑡), 𝜙(𝑡) =
[−5 cos(𝑡), 3 cos(𝑡)], ∀𝑡 ∈ [0, 10], and 𝑤(𝑡) is the Gaussian
noise which is the set of random numbers with fluctuation
range between −1 and 1. Figure 1 shows the trajectories of
solutions 𝑥

1
(𝑡) and 𝑥

2
(𝑡) of system (1) without feedback

control (𝑢(𝑡) = 0) and Figure 2 shows the trajectories of
solutions 𝑥

1
(𝑡) and 𝑥

2
(𝑡) of the system with feedback control

𝑢(𝑡). Moreover, in Tables 1 and 2, by usingTheorem 9, we give
the minimum allowable value 𝛾 with 𝜇

1
= −0.1, 𝜇

2
= 0.1

and with 𝜇
1
= 0.05, 𝜇

2
= 0.1, for some given 𝜏

1
and 𝜏

2
,

respectively.

Example 2. Consider the following nonlinear system with
interval time-varying delays which was considered in [18]:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) ,

(67)

0 2 4 6 8 10
−2

0

2

4

6

8

10
×10

16

x1(t)
x2(t)

Figure 2:The trajectories of 𝑥
1
(𝑡) and 𝑥

2
(𝑡) of (1) in Example 1 with

feedback control.

Table 2: The minimum allowable value of disturbance attenuation
𝛾 with 𝜇

1
= 0.05 and 𝜇

2
= 0.1.

𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑎
1
= 𝑏
1
= 𝑐
1
= 0.01

Method 𝜏
1

𝜏
2

min 𝛾
Theorem 9 0.1 0.5 0.2487

Table 3:Themaximumallowable upper bound 𝜏
2
in Example 2 with

𝜏
1
= 0.

𝑎 = 0.1 𝑏 = 0.1

Method 𝜇
1

𝜇
2

max 𝜏
2

By Corollary 10

−0.1 0.1 2.1443
−0.3 0.3 2.1126
−0.5 0.5 2.0833
−0.8 0.8 2.0473
−1 1 2.0332

where

𝐴 = [

−2 0

0 −1

] , 𝐷 = [

−1 0

−1 −1

] , (68)

𝑎 = 𝑏 = 0.1, and 0 ≤ 𝜏(𝑡) ≤ 𝜏
2
, 𝜇
1
≤ ̇𝜏(𝑡) ≤ 𝜇

2
. By using LMI

Toolbox in MATLAB, the LMIs in Corollary 10 are feasible.
Table 3 shows the maximum allowable upper bound 𝜏

2
with

different values of 𝜇
1
and 𝜇

2
.

Example 3. Consider the following nonlinear system with
interval time-varying delays which was considered in [13]:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) ,

(69)
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Table 4: Comparison of maximum allowable upper bound 𝜏
2
in

Example 3 with 𝜏
1
= 0.

𝑎 = 0.1 𝑏 = 0.1

Method 𝜇 = 0.5 𝜇 = 0.9

[25] 1.009 0.714
[23] 1.284 1.209
[13] 1.287 1.279
Corollary 10 1.7706 1.7355

where

𝐴 = [

−1.2 0.1

−0.1 −1

] , 𝐷 = [

−0.6 0.7

−1 −0.8

] , (70)

𝑎 = 𝑏 = 0.1, and 0 ≤ 𝜏(𝑡) ≤ 𝜏
2
, 𝜇
1
≤ ̇𝜏(𝑡) ≤ 𝜇

2
. By using LMI

Toolbox in MATLAB, the LMIs in Corollary 10 are feasible.
For comparison with other existing results, we now calculate
the admissible maximum allowable upper bounds of 𝜏

2
by

setting 𝜇 = 𝜇
2
= −𝜇
1
for various values of 𝜇. Table 4 shows

that the maximum allowable upper bounds of 𝜏
2
with given

𝜏
1
= 0 obtained from Corollary 10 are greater than the upper

bounds obtained in [13, 23, 25].

5. Conclusions

In this paper, we have investigated the 𝐻
∞

control problem
for a class of nonlinear systems with interval time-varying
delay. A new Lyapunov-Krasovskii functional is constructed
to obtain new delay-dependent sufficient condition for the
𝐻
∞

control and asymptotic stability condition in terms
of LMIs. Numerical examples are given to illustrate the
effectiveness of the theoretical results.
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