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Earth observation satellites play a significant role in rapid responses to emergent events on the Earth’s surface, for example,
earthquakes. In this paper, we propose a robust satellite scheduling model to address a sequence of emergency tasks, in which both
the profit and robustness of the schedule are simultaneously maximized in each stage. Both the multiobjective genetic algorithm
NSGA2 and rule-based heuristic algorithm are employed to obtain solutions of the model. NSGA2 is used to obtain a flexible and
highly robust initial schedule.When every set of emergency tasks arrives, a combined algorithm calledHA-NSGA2 is used to adjust
the initial schedule. The heuristic algorithm (HA) is designed to insert these tasks dynamically to the waiting queue of the initial
schedule. Then the multiobjective genetic algorithm NSGA2 is employed to find the optimal solution that has maximum revenue
and robustness. Meanwhile, to improve the revenue and resource utilization, we adopt a compact taskmerging strategy considering
the duration of task execution in the heuristic algorithm. Several experiments are used to evaluate the performance of HA-NSGA2.
All simulation experiments show that the performance of HA-NSGA2 is significantly improved.

1. Introduction

Earth observing satellites (EOSs), orbiting the Earth, are able
to collect images of specified areas of the Earth’s surface at
the request of customers by using observation sensors [1].
EOSs not only play key roles in application for environ-
ment surveillance, reconnaissance, resource investigation,
and other fields, but also support many important services,
such as remote sensing, navigation, geodesy, and monitoring
[2]. As a result, many countries, especially China, tend to
increase their investments to develop associated techniques
and EOSs. For example, China plans to launch four small
optical satellites and four small SAR satellites to form a
natural disaster-monitoring constellation [3]. Although the
number of EOSs is continuously increasing, they are still
unable to satisfy the requirements of various customers [4].
Therefore, it is very important to develop effective methods
of satellites observation scheduling to make full use of scarce

satellite resources to better satisfy the demands of customers.
The satellite observation scheduling problem (SOSP) is to
reasonably assign satellite resources and time windows to
Earth observation tasks on the precondition of satisfying
complex constraints [5]. Additionally, SOSP can be seen as a
kind of multidimensional knapsack problem that is NP-hard
[6].

From the previous survey, the satellite observation tasks
scheduling problem can be divided into two classes, that is,
static tasks scheduling and dynamic tasks scheduling. Over
the past decades, the satellite scheduling imaging problemhas
been intensively investigated [7–10]. Regarding static single
satellite scheduling, Lin et al. employed mathematical pro-
grammingmethods such as Tabu search, Lagrange relaxation,
and liner search to solve the scheduling problem and acquired
a near-optimal schedule [11–13]. Wolfe and Sorensen pro-
posed three corresponding algorithms including a dispatch
algorithm, a look-ahead algorithm, and a genetic algorithm to
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model the imaging satellite scheduling problem [14]. Gabrel
and Murat presented two upper bound procedures based
on the graph theory and a column generation technique
[15]. Vasquez and Hao formulated the satellite observation
scheduling problem into a generalized version of the well-
known knapsack model and used the Tabu search method
to solve the problem [16]. Furthermore, they proposed a
partition-based approachUPPB to obtain tight upper bounds
to evaluate the TS search algorithm [17]. Several exact
methods, such as depth first branch and bound or Russian
dolls search and some approximate methods, such as greedy
search and Tabu search, were used by Bensana et al. to solve
the scheduling problem of the SPOT5 satellite. They viewed
the scheduling problem as a value constraint satisfaction
problem or an integer linear programming problem [6].

Although the single satellite scheduling problem can be
solved perfectly by the above methods, with the development
of the EOS system, these methods are unable to satisfy the
needs of multisatellite system scheduling. In later studies,
many researchers adopted a heuristic algorithm to solve the
multisatellite scheduling problem such as Zweben et al. [18],
Frank et al. [19], Bianchessi and Righini [20], Wang and
Reinelt [21], and Marinelli et al. [22]. Bianchessi and Righini
proposed a FIFO heuristic and a look-ahead insert heuristic
algorithm to solve the scheduling problem [20]. Frank et
al. used a constraint based interval planning framework to
model the problem and proposed a heuristic for guiding
this search procedure. Wang and Reinelt considered image
downloads and proposed a priority-based conflict-avoided
heuristic algorithm [21]. With the development of the intel-
ligent optimization algorithm, many researchers proposed
using intelligent algorithms to solve the complex scheduling
problem. The intelligent algorithms mainly include genetic
algorithm and ant colony optimization algorithm. Barbulescu
et al. [23], Wang et al. [24], Baek et al. [25], Chen et al. [26],
and Mansour and Dessouky [7] used the genetic algorithm
(GA) to address the satellite scheduling problem. Barbulescu
et al. proposed Genitor, a genetic algorithm, and proved
that it performs well for a broad range of problem instances
[23]. A multiobjective earth observation satellite scheduling
method called SPEA2, based on the strength of the Pareto
evolutionary algorithm, was proposed by Wang et al. [24].
Additionally, Mansour and Dessouky solved the satellite
scheduling problem by developing a genetic algorithm con-
sidering two objectives, that is, the profits and the number
of acquired photographs [7]. Ant colony optimization (ACO)
was also used to address this problem. Based on ant colony
optimization, Zhang et al. [27] and Liu et al. [28] considered
multisatellite resources and task merging, respectively. Wu
et al. presented a novel two-phase based scheduling method
with the consideration of task clustering [29]. Moreover, Qiu
et al. proposed the first finish first schedule with discard
task moving back (FFFS-DTMB) and accommodate discard
task predicting coexistence with task moving back (ADTPC-
DTMB) algorithms to solve the problem [30]. Globus et al.
developed an evolutionary algorithm to solve this problem
and compared it with existing algorithms [31, 32]. From the
survey of static tasks scheduling, we find that the heuristic
algorithm is shown to perform well for simple problems and

the genetic algorithm is proven to be suitable for large scale,
more complex problems [23].

Static scheduling assumes that all imaging tasks have
been submitted before scheduling and once the scheduling
scheme is produced, it is immutable until all tasks have
been finished. In practice, because emergent events usually
occur unexpectedly, with uncertainties of occurrence time
and number, traditional static scheduling cannot attend to
these emergent tasks in time. It is suggested that dynamic
scheduling copes with these unexpected factors.

Until now, there are a few research efforts towards the
dynamic scheduling on Earth observation satellites. Pem-
berton and Greenwald described the problem of dynamic
scheduling and discussed contingency conditions [33].
Kramer and Smith proposed a repair-based search method
for the oversubscribed scheduling problem [34]. Verfaillie
and Schiex developed an approach employing local adjust-
ment to solve the dynamic constraint satisfaction problem
(DCSP) [35]. Considering the tradeoff between the perfor-
mance and degree of adjustment,Wang et al. proposed a rule-
based heuristic algorithm to solve the dynamic scheduling
problem [36]. Also, Wang et al. established a multiobjective
mathematic programming model for the dynamic real-time
scheduling of EOSs and proposed a dynamic real-time
scheduling algorithm called DMTRH to solve the problem
[37]. Through analyzing the main constraints, Dishan et al.
constructed an integer programming model and proposed a
Rolling Horizon (RH) strategy with a mixed triggering mode
to schedule the dynamic tasks and common tasks together
[2].

To the best of our knowledge, EOSs play an important
role in the process of disaster relief. For example, when an
earthquake occurs, new emergency tasks will be submitted to
the satellite observation system to acquire images that contain
disaster information. According to the needs of disaster relief,
more and more different emergency tasks will arrive. So far,
just a few dynamic schedulingmethods consider dealing with
the emergency tasks. After analyzing the dynamic properties
of satellite scheduling, Wang et al. proposed an optimization
model and two heuristic algorithms to solve the problem [38].
However, they did not consider the task merging method in
the heuristic algorithms. Wu et al. adopted the ant colony
optimization plus iteration local search (ACO-ILS) approach
to resolve the multisatellite emergency tasks and common
tasks scheduling problem [4]. However, they did not account
for the uncertainty of emergency tasks. Moreover, Wang et
al. presented a dynamic scheduling algorithm called TMBSR-
DES, which comprehensively considers task merging, back-
ward shift, and rehabilitation [39]. The task merging strategy
in TMBSR-DES only combines new tasks. The robustness
of schedule has not been considered in all of the above
algorithms.

To sumup, the studies on dynamic emergency scheduling
mentioned above have the following shortages.

(1) Some dynamic schedulingmethods ignored the time-
liness of emergency tasks.

(2) The real-time scheduling method [2, 37, 38] took into
account the timeliness of dynamic emergency tasks,
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but it did not consider the influence of the common
tasks on satellites.

(3) Most of studies overlooked the robustness of dynamic
satellite scheduling.

In this paper, we propose a robust scheduling approach
oriented to both dynamic tasks and common tasks. We
establish a robust satellite scheduling model to maximize the
profit and robustness of the schedule. To solve the model, we
design a combined algorithm HA-NSGA2 that is made up
of multiobjective genetic algorithm NSGA2 and rule-based
heuristic algorithm. NSGA2 is to acquire a flexible and highly
robustness initial schedule in the scheduling of common
tasks. Then a heuristic algorithm is designed to insert more
emergency tasks dynamically. Meanwhile, to improve the
revenue and resource utilization, we adopt a compact task
merging strategy considering the duration of task execution
in the heuristic algorithm. Based on the heuristic algorithm,
NSGA2 is employed to optimize the solution so as to keep
high continuous robustness for new emergency tasks.

The major contributions of this paper are summarized as
follows. (1)The robustness is considered in the whole process
of common tasks and dynamic emergency tasks scheduling
to improve the scheduling ability of resisting disturbances. (2)

To leavemore opportunities for emergency tasks and improve
the revenue and resource utilization, a compact task merging
strategy is used. (3) Through considering the advantages
of the heuristic algorithm and NSGA2 comprehensively, we
propose an efficient solution to deal with the emergency tasks
dynamically.

The remainder of this paper is organized as follows. The
characteristics of emergency tasks and the solution frame-
work are described in Section 2. In Section 3, we present the
robust scheduling model. We introduce the corresponding
solution to the model including the multiobjective genetic
algorithm, rule-based heuristic algorithm, and neighborhood
operator in detail, in Section 4. The simulation results and
performance analysis, through comparison with other meth-
ods, are given in Section 5. Section 6 concludes the paperwith
some future research directions.

2. Problem Description

Earth observing satellites (EOSs), orbiting the Earth, collect
images of the Earth’s surface. As shown in Figure 1(a), a strip
of EOSs can be formed on the ground by the subsatellite
point of satellite and the field of view of the sensor, slew-
ing angle of the sensor, and observation duration. Satellite
mission scheduling allocates the limited satellite resources to
observing tasks efficiently and reasonably. Figure 1(b) shows
that each schedule is a sequence of tasks ordered in time for
an EOS.

The EOSs work in a complex environment in which there
exist many dynamic factors, as follows:

(i) The change in task properties: the change in user
requirements or the reasonable task attributes will
lead to a change in task priority. When the priority
of the task changes, we cancel the task before it is

performed. Then the task, which is viewed as an
emergency task, is added to the emergency task set.

(ii) The change in the state of satellites: sometimes,
certain satellites may be out of use because of mal-
function,memory, or energy shortage, and so on. As a
result, the initial schedule cannot be executed contin-
uously. These tasks which are affected by the satellites
can be seen as emergency tasks to be inserted.

(iii) The arrival of emergency tasks: according to the actual
requirement, users may insert some new tasks when
a scheduling scheme is executed. Specifically, there
are some new incoming emergency tasks caused by
emergent events, for example, earthquakes, fire, and
landslides. Take an earthquake as an example. There
is an urgent need to reasonably utilize the existing
satellites to rapidly image the affected area during
a short time period. Once the emergency tasks are
submitted and scheduled, EOSs can acquire remote
sensing images of disaster area quickly, which can
provide rapid and effective information for quick
investigation and assessment of earthquake damage.

(iv) Uncertainty of weather conditions: some imaging
tasks may not be completed because of a change
in weather conditions. To satisfy user requirements,
these tasks must be rearranged.

The four casesmentioned above can be seen as emergency
tasks to be inserted into a scheduling scheme. Thus, the
dynamic scheduling problem can be described as a unified
form of inserting new tasks. In this paper, we research
dynamic scheduling focus onnew incoming emergency tasks.
The general method is to produce a temporary schedule and
then to adjust the schedule as quickly as possible. When
dynamically adjusting the initial schedule, the solution stabil-
ity is an important problem. In fact, the satellite application is
a complex process and the orders can only be uploaded with
the special equipment within limited visible time windows,
so excessive changes may cause great operational trouble
[36]. Hence, we should not only consider arranging more
emergency tasks dynamically but also decrease the distur-
bances to the initial schedule as much as possible. Moreover,
the uncertainty of arrival time is an important property
of new tasks. Thus, we should consider the timeliness of
emergency tasks in dynamic scheduling. Therefore, the goal
of our research is to arrange emergency tasks as more as
possible in smaller disturbances, considering the timeliness of
the emergency tasks. As a result, the optimization objectives
in this paper are revenue and robustness.

In this paper, we propose a dynamic scheduling approach
that can deal with the emergency tasks in real time dynami-
cally. It is actually a two-stagemethod to produce a temporary
schedule and then to adjust the schedule as quickly as possible
as is shown in Figure 2. The robust scheduling approach
proposed in the paper is oriented to both dynamic emergency
tasks and common tasks. We describe the flowchart of
the solution in Figure 3. Before scheduling, pretreatment is
conducted to compute the available opportunities for each
task. Then we establish a robust satellite scheduling model
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Figure 1: Illustration of satellite observing activity.
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Figure 2: The framework of solution to the dynamic scheduling problem.
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Figure 3: The flowchart of the dynamic scheduling approach.

with two objectives considering both revenue and robustness.
To optimize objectives of the model, the multiobjective
genetic algorithm NSGA2 is used to obtain robust solutions.

We can acquire an initial schedule with high revenue and
stronger ability to accept emergency tasks. With the arrival
of emergency tasks, we update the state of the tasks in the
current executing schedule. To arrange the emergency tasks
dynamically, the rule-based heuristic algorithmwith compact
task merging strategy is designed. Thus, we can get some
temporary adjusted schedule. Lastly, NSGA2 is adopted to
further improve the solution by searching the global space. It
is worth mentioning that we design a neighborhood operator
to initialize the population in NSGA2.

3. Model

The satellite scheduling amounts to a reasonable arrangement
of satellites, sensors, time windows, and sensor slewing angle
for observation tasks to maximize one or more objectives, for
example, the overall observation profit, while being subject to
related constraints. As a result, the satellite scheduling prob-
lem usually consists of five parts: tasks, satellite resources,
opportunities, objectives, and constraints. A detailed intro-
duction of the model is as follows.

3.1. Tasks. In this paper, we concentrate on two types of tasks:
the common task and emergency task. Common imaging
tasks are usually submitted to the planning system in advance.
The characteristics of emergency tasks are different from
those of common tasks. Emergency events usually occur
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unexpectedly, with uncertainties of occurrence time and
number. Thus, the emergency task number and arrival times
are not known a priori. Moreover, dynamic tasks need to be
completed in time, because users want to obtain observation
results within certain time limits.

(i) Common task: let 𝑇 = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁
} be the common

task set, where 𝑁 is the number of common tasks.
We assume that all tasks are independent, aperiodic,
and nonpreemptive. Each task is associated with the
weight, 𝑝

𝑖
, and the indispensable duration of task

execution 𝑑
𝑖
.

(ii) Emergency task: let 𝑇𝐸 = {𝑡
𝑁+1

, 𝑡
𝑁+2

, . . . , 𝑡
𝑁+𝑁

𝐸}

be the emergency task set. Each emergency task is
presented by 𝑡

𝑛
= (𝑝
𝑛
, 𝑑
𝑛
, at
𝑛
, dt
𝑛
), where 𝑝

𝑛
is the

weight, 𝑑
𝑛
is the duration, at

𝑛
is the arrival time, and

dt
𝑛
is the deadline.

In addition, to make the denotation of common tasks
consistent with that of emergency tasks, we assume that each
common task has an arrival time at

𝑛
= 0 and a deadline

dt
𝑛

= 𝑡
𝑓

𝑆
.

Considering that many tasks are commonly submitted
together, thus we assume in this paper that the new tasks
arrive in batch style. Let 𝑇

𝑆
= {𝑡0
𝑆
, 𝑡1
𝑆
, . . . , 𝑡𝑒

𝑆
, 𝑡
𝑓

𝑆
} be the

scheduling time set, where 𝑡𝑖
𝑆
(𝑖 ≥ 1) is the 𝑖th dynamic

scheduling time, 𝑡0
𝑆
is the initial scheduling time, 𝑒 is the

total batch of emergency tasks, and 𝑡
𝑓

𝑆
is the end time of

scheduling.
Imaging tasks can be divided into two types: point target

and area target.The type depends on the size of the target area
and the attributes of the satellite, such as the field of view and
height of satellite. The point target is small so that it can be
observed by single observations trip. The area target, which
covers a wide geographical area, cannot be photographed in
a scene. Usually, the area target can be segmented into several
point targets to be imaged. In this paper, we focus on dealing
with point targets.

3.2. Satellite Resources. As for the resources, we consider a
set 𝑆 = {𝑠

1, 𝑠2, . . . , 𝑠𝑀}, where 𝑀 is the satellite number. We
assume that the sensors of the satellites considered in our
study are able to slew laterally. Each resource 𝑠𝑗 ∈ 𝑆 is denoted
by 𝑠𝑗 = (Δ𝜃𝑗, Δ𝑑𝑗, sl𝑗, st𝑗,msg𝑗, orb𝑗, su𝑗, sd𝑗, duty𝑗), where
Δ𝜃𝑗, Δ𝑑𝑗, sl𝑗, msg𝑗, orb𝑗, su𝑗, sd𝑗, and duty𝑗 are the field of
view, the longest opening time, slewing rate, attitude stability
time, maximum slewing angle, the flight time in each orbit,
the start-up time of sensor, the retention time of shutdown,
and the longest imaging time in each orbit.

3.3. Available Opportunities. For available opportunities, let
AO = {ao1

1
, ao2
1
, . . . , ao𝑗

1
, ao1
2
, . . . , ao𝑗

2
, . . . , ao𝑀

𝑁
} be the oppor-

tunity set of every task on each satellite resource. For ao𝑗
𝑖

∈

AO, ao𝑗
𝑖

= {ao𝑗
𝑖1

, ao𝑗
𝑖2

, ao𝑗
𝑖3

, . . . , ao𝑗
𝑖𝑘𝑖𝑗

} represents the available
opportunities of task 𝑡

𝑖
on resource 𝑠𝑗, where 𝑘

𝑖𝑗
represents

the number of available opportunities. Giving an available
opportunity ao𝑗

𝑖𝑘
∈ ao𝑗

𝑖
, it is represented by ao𝑗

𝑖𝑘
=

{[ws𝑗
𝑖𝑘

,we𝑗
𝑖𝑘

], 𝜃
𝑗

𝑖𝑘
}, where ws𝑗

𝑖𝑘
and we𝑗

𝑖𝑘
are denoted by the

start time and end time of the window 𝑊
𝑗

𝑖𝑘
, and 𝜃

𝑗

𝑖𝑘
is the

swing angle. The set of time windows of task 𝑖 on satellite 𝑗

is 𝑊
𝑗

𝑖
= ⋃
𝑘∈[1,...,𝐾𝑖𝑗]

𝑊
𝑗

𝑖𝑘
.

3.4. OptimizationObjectives. Weassume that 𝑡𝑘
𝑆
is the current

scheduling time, and then the model can be described as
follows.

The primary objective is to maximize the revenue of all
scheduled tasks:

max :

𝑁+𝑁
𝐸

∑
𝑖=1

𝑀

∑
𝑗=1

𝐾𝑖𝑗

∑
𝑘=1

𝑥
𝑗

𝑖,𝑘
𝑝
𝑖
, (1)

where 𝑥
𝑗

𝑖,𝑘
is the decision variable whether the task 𝑖 is

scheduled:

𝑥
𝑗

𝑖,𝑘
=

{

{

{

1, if task 𝑖 is executed by satellite 𝑗 in the 𝑘th time window

0, otherwise.
(2)

The second objective is called the neighborhood-based
robust indicator [40].The robustness based on neighborhood
is proposed from the advances in robust optimization of
continuous functions [41, 42]. The idea is that robust optima
are located on broad peaks (plateaus) in the fitness landscape,
whereas brittle optima are located on narrow peaks, as shown
in Figure 4. A tradeoff is made between the broadness and
height of the peaks, such that a low and broad peak may
be preferable to a narrow and high peak. The problem of
satellite scheduling is a discrete problem. There are some
schedules which are different sequence of the scheduled
tasks ordered in time but have the same revenue. If only

considering the revenue, any one of these schedules is a
feasible solution. However, dynamic task scheduling not only
requires arranging more emergency tasks, but also requires
reducing the frequency and difficulty of adjustment as much
as possible. Thus, the property of resisting disturbances and
self-adjusting is very important for dynamic task scheduling.

Hence, we define the neighborhood-based robustness as
the total revenue of scheduled tasks that can be reassigned to
other timeslots in the scheme directly. It is used to measure
the ability of a scheduling scheme to rearrange scheduled
tasks. The higher value of the neighborhood-based robust
indicator is, the more possible it is to rearrange scheduled
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tasks.Therefore, wemaximize the value of the neighborhood-
based robust indicator:

max :

𝑁+𝑁
𝐸

∑
𝑖=1

𝑀

∑
𝑗=1

𝐾𝑖𝑗

∑
𝑘=1

𝑝
𝑖
× 𝑥
𝑗

𝑖,𝑘
× 𝑦
𝑖
, (3)

where 𝑦
𝑖
is the parameter that indicates whether the task 𝑡

𝑖
∈

SS can be rearranged in another timeslot:

𝑦
𝑖

=
{

{

{

1, if task 𝑡
𝑖
can be rearranged in another timeslot

0, otherwise.

(4)

3.5. Constraints. There are some constraints that are used to
analyze the complex restricted condition in the model.

(1) Each task 𝑡
𝑖
must be executed in an available opportu-

nity ao𝑗
𝑖𝑘
, ao𝑗
𝑖𝑘

∈ ao𝑗
𝑖
.

Hence, we have the available opportunity constraint:

𝐶
1

:

{{{{

{{{{

{

𝑥
𝑗

𝑖,𝑘
(ts𝑗
𝑖

− ws𝑗
𝑖𝑘

) ≥ 0

𝑥
𝑗

𝑖,𝑘
(ts𝑗
𝑖

+ 𝑑
𝑖
− we𝑗
𝑖𝑘

) ≤ 0

𝑎
𝑖
≤ 𝑡𝑘
𝑆

≤ ts𝑗
𝑖

≤ dt
𝑖
,

(5)

where ts𝑗
𝑖
denotes the start time of task 𝑡

𝑖
. Actually, for a

given scheduled task 𝑡
𝑖
on 𝑠𝑗, its starting observation time ts𝑗

𝑖

and observation angle 𝜃
𝑗

𝑖
are determined. All scheduled tasks

form the current schedule SS = ⋃
𝑗∈[1,𝑀]

𝑇𝑗, where 𝑇𝑗 is a
sequence of scheduled tasks on satellite 𝑗.

(2) Each task only needs to be executed once, and the
execution process does not involve preemptive service. So we
have the following uniqueness constraint:

𝐶
2

:

𝑀

∑
𝑗=1

𝐾𝑖𝑗

∑
𝑘=1

𝑥
𝑗

𝑖,𝑘
≤ 1. (6)

(3) There should be an adequate transmission time for
sensor in any two adjacent tasks 𝑡

𝑢
, 𝑡V assigned to the same

satellite 𝑠𝑗 to finish the actions such as shutting down,

NSGA2

Static scheduling
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Rule-based heuristic algorithm
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Updated schedule
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dynamic scheduling time

94
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· · ·
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· · ·

· · ·

Figure 5: The flowchart of the algorithm.

swinging the observation angle, stabilizing gesture, and start-
up. So we have the switch time constraint:

𝐶
3

: te𝑗
𝑢

+ sd𝑗 + sl𝑗 × 󵄨󵄨󵄨󵄨󵄨
𝜃
𝑗

V − 𝜃
𝑗

𝑢

󵄨󵄨󵄨󵄨󵄨
+ st𝑗 + su𝑗 ≤ ts𝑗V. (7)

(4) Another constraint is the total imaging time of any
satellite, which should be less than the allowable longest
imaging time of its sensor during every time period. Let the
scheduling period be [𝑡𝑘

𝑆
, 𝑓]. Hereby, we have the imaging

time constraint:

𝐶
4

: ∑

𝑖∈𝑇
𝑗

𝑡
𝑏

𝑑
𝑖
≤ duty𝑗,

(8)

where 𝑇
𝑗

𝑡𝑏
denotes a sequence of scheduled tasks on satellite

𝑗 which flies during the time span [𝑡
𝑏
, 𝑡
𝑏

+ orb𝑗], where 𝑡
𝑏

∈

[𝑡𝑘
𝑆
, 𝑓 − orb𝑗].

4. Algorithms

In this section, we introduce the dynamic emergency tasks
scheduling algorithm HA-NSGA2 proposed in this paper.
The algorithm, which is actually a combined algorithm, aims
at improving the efficiency of dynamic emergency tasks
scheduling. The flowchart of the algorithm is depicted in
Figure 5. Firstly, themultiobjective genetic algorithmNSGA2
with two objectives, that is, revenue and robustness, is used
for common tasks scheduling to obtain the optimal solution.
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With the arrival of emergency tasks, the rule-based heuristic
algorithm is applied to insert these emergency tasks into the
initial schedule as much as possible. To improve the imaging
efficiency as much as possible, we propose a compact task
merging method that considers task execution duration in
the rule-based heuristic algorithm. If two or more targets
are geographically adjacent, they may be combined into
a compact composite task by the compact task merging
method. The details of compact task merging strategy are
described in Appendix B. Based on the rule-based heuristic
algorithm, the multiobjective genetic algorithm NSGA2 is
employed to find the optimal solution. The neighborhood
operator, which is embedded in NSGA2, aims at generating
the initial population.

4.1. Multiobjective Genetic Algorithm. Satellites observation
scheduling problem has been proven to be NP-complete.
Thus, it is impossible to find polynomial time algorithms for
finding optimal solutions. Genetic algorithms are the most
successful algorithms for efficiently dealing with the com-
plexity of computationally hard problems from the network-
ing domain [23, 43]. Before introducing the multiobjective
genetic algorithm NSGA2, we firstly make clear some terms,
such as ParetoDominance, Pareto optimality, ParetoOptimal
Set, Pareto Front, Nondominated Sorting, and crowding
distance, which will be referred to in the algorithm. We give
the associative definitions in Appendix A.

As shown in Figure 6, we present the main process of
NSGA2. First, we initialize the parameters and generate
the initial population 𝑃father. After computing the fitness
function of 𝑃father, we make use of the binary tournament
selection mechanism, single point crossover operator, and
single point mutation operator for the current individuals
until the number of the next generation population 𝑃child
reaches the size 𝑀. Then, we set the total population as
𝑄 = 𝑃father ∪ 𝑃child by combining 𝑃father and 𝑃child. Next,
the nondominated sorting algorithm is used to divide the
population 𝑄 into different Pareto Front 𝐹rank with the rank
of each individual.We choose the individuals from𝐹rank until
the number of the next population |𝑃next| satisfies the request,
ranking from small to large. If |𝑃next| is greater than 𝑀, then
we sort the current 𝐹rank in order according to the crowding
distance and choose the better individuals as 𝑃next. Finally, if
the result satisfies the termination conditions, then we output
the nondominated solution set. Otherwise, we let 𝑃father =

𝑃next and repeat the process.
The main parts of the genetic algorithm will be described

in detail including initialization, selection operator, crossover
operator, mutation operator, nondominated sorting, and the
computation of crowding distance.

4.1.1. Initialization. Unlike local search techniques, the
genetic algorithmuses a population of individuals giving thus
the search a larger scope and chances to find a better solution.
In this paper, the satellite scheduling problem is encoded
into a set of chromosomes. Each chromosome composed of
an imaging task sequence of different satellites represents a
solution and is assigned a fitness value to determine how
good each chromosome is. The structure of a chromosome

is shown in Figure 7. In the algorithm, some parameters such
as the size of population 𝑀, the maximum iterative number
𝑇, the probability of crossover 𝑝crossover, and mutation proba-
bility 𝑝mutation must be set.The initial population is generated
by random strategy.

4.1.2. Selection Operator. Several selection strategies have
been proposed in the previous literatures such as roulette
wheel selection and binary tournament selection. We adopt
binary tournament selection in this paper.Themain steps are
to choose two individuals randomly from a population and
to select the individual that dominates the others.

4.1.3. CrossoverOperator. Crossover operator plays an impor-
tant role in the genetic algorithm. The best genetic informa-
tion of parents can be transmitted to offspring during gen-
erations of the evolution process by the crossover operator.
After parent chromosomes have been selected from the pop-
ulation, we set the crossover probability 𝑝crossover to allow the
majority of chromosomes to mate and pass to their offspring.
Figure 8 shows an example of the crossover. According to the
characteristics of the satellite scheduling problem, we cross
the parent chromosomes to generate child chromosomes and
then delete the same genes in common chromosome. Finally
we attempt to arrange the tasks differently for both parent
chromosomes in child chromosomes.

4.1.4. Mutation Operator. Mutation operator intends to keep
the variety of the population and improve the individuals
by small local perturbations. Additionally, the mutation
operator provides a component of randomness in the neigh-
borhood of the individuals of the population. Therefore,
genetic algorithm has the ability to avoid falling prematurely
into local optima and eventually escapes from them during
the search process. For example, if we set the probability
𝑝mutation = 0.2, then the overall procedure of the random
mutation operator on the chromosome is shown in Figure 9.
We choose a scheduled task that has another window ran-
domly such as 𝑡

8
. Then the task is rearranged in another

available window.

4.1.5. Nondominated Sorting. The main procedure of non-
dominated sorting is described in Algorithm 1 in detail.

4.1.6. Crowding Distance Computation. The main proce-
dure of computing the crowding distance is described in
Algorithm 2 in detail.

4.2. Rule-Based Heuristic Algorithm. The solution withmaxi-
mum revenue and robustness, which is produced by NSGA2,
is selected as the initial schedule. When the schedule is
executed, a number of emergency tasks arrive. In this case,
the current executing schedule must be modified to arrange
these emergency tasks.

When a batch of emergency tasks arrives, based on the
current scheduling time, tasks may have different states:
finished task, running task, waiting task, and new task. In the
example shown in Figure 10, 𝑡𝑘

𝑆
is the current scheduling time.

If task 𝑖 has been executed before the current time, then task
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Figure 6: The main process of NSGA-2.

𝑖 is a finished task while te
𝑖
< 𝑡𝑘
𝑆
. If ts
𝑖
< 𝑡𝑘
𝑆

< te
𝑖
, then task 𝑖 is

a running task. Task 𝑖 is a waiting task if ts
𝑖
> 𝑡𝑘
𝑆
. If task 𝑖 is an

emergent task that has not been planned, then task 𝑖 is a new
task.

According to the analysis on the state of the tasks,
the waiting tasks in the current schedule can be adjusted.
Focusing on the new emergency tasks, we assign these

tasks to the current schedule. In this paper, we employ
a rule-based heuristic algorithm considering compact task
merging (CTM-DAHA) to insert the new tasks dynamically
[44]. The main idea of the heuristic algorithm is to assign
the most conflict-free time window to the task most in
need. With CTM-DAHA, we obtain the temporary adjusted
schedules.
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To describe the dynamic adjusting rule-based heuristic
algorithm considering compact task merging clearly, we first
give some definitions.

Definition 1. Theneed of the task indicates how badly the task
needs to be performed [30, 44]:

𝑁 (𝑡
𝑖
) =

𝑝
𝑖

󵄨󵄨󵄨󵄨AO𝑖
󵄨󵄨󵄨󵄨
. (9)

Definition 2. The contention of the task window is measured
by counting the number of tasks that need the time window,
weighted by the weights of the tasks:

𝐶 (𝑤) = ∑
𝑡𝑖∈𝑇(𝑤)

𝑝 (𝑡
𝑖
) , (10)

where 𝑇(𝑤) is the set of tasks that could be executed at any
moment within time window 𝑤 and 𝑝(𝑡

𝑖
) is the weight of the

tasks 𝑡
𝑖
.

The dynamic adjusting rule-based heuristic algorithm
CTM-DAHA is presented as shown in Figure 11 [44]. To
accommodate emergency tasks in the initial scheme, firstly
we update the state of tasks in the schedule. Then, all new
tasks are inserted into a waiting queue according to the needs
of the tasks𝑁(𝑡

𝑖
), fromhigh to low.The timewindows of each

task are ranked from low to high according to the contention
𝐶(𝑤). For a task, we first judge whether it can merge with any
other existing task in the current schedule. If all timewindows
of the task fail to be merged, we attempt to insert the task
directly if it does not conflict with any other task. If direct
insertion fails, we judge whether the task can be inserted by
rearranging the conflict tasks. If direct insertion and insertion
by rearranging do not succeed, some tasks may be deleted
for inserting an emergency task. Then the entire process will
repeat until the waiting queue is empty. Take, for example,
a current executing schedule as shown in Figure 12(a). With
the arrival of emergency tasks, that is, 𝑇

𝐸 = {𝑡
8
, 𝑡
9
, 𝑡
10

, 𝑡
11

},
they should be arranged in time. Task 𝑡

8
can be combined

with 𝑡
2
by compact task merging. Task 𝑡

9
can be inserted

directly. Task 𝑡
10
is inserted into the schedule by rearranging

the conflict task 𝑡
5
. Task 𝑡

7
is deleted from the schedule so

that task 𝑡
11
with higher weight can be inserted. Figure 12(b)

shows the planning task list of the adjusted schedule.

4.3. Neighborhood Operator. The solution obtained by CTM-
DAHA still needs to be optimized. Based on the tempo-
rary adjusted schedule, we use NSGA2 to find the optimal
solution. Different from the multiobjective genetic algorithm
described in Section 4.1, we design a neighborhood operator
to generate the initial population.

The main idea of the neighborhood operator is to search
all neighborhoods of the current schedule. As shown in
Figure 13, the current schedule SS is represented by the red
point and the yellow points denote the neighborhoods of SS.
Specifically, we change the locus of a task tomove it to another
position, as shown in Figure 14.

The procedure of the neighborhood operator is described
as shown in Algorithm 3.

After initializing the population using the neighbor-
hood operator, the next serial of operation is selection,
crossover, mutation, and nondominated sorting as expressed
in Section 4.1. Finally, using the multiobjective genetic algo-
rithm NSGA2, we obtain the optimal solution as the new
adjusted schedule.

5. Experimental Simulation and Discussion

In this section, we evaluate the performance of the pro-
posed algorithm HA-NSGA2. To reveal the advantages of
the algorithm, we compare it with RBHA-DTSP [36] and
CTM-DAHA [44].The two methods both use multiobjective
genetic algorithm to make the initial schedule for common
tasks. To evaluate the advantage of the compact task merging
method (CTM), we perform experiments to compare the
scheduling results obtained by HA-NSGA2 with the two task
merging strategies: traditional task merging strategy (TTM)
and compact task merging method (CTM). Specifically, we
embed the two task merging methods into HA-NSGA2,
respectively, so as to prove the effectiveness of compact task
merging strategy.

(i) RBHA-DTSP: the basic idea of RBHA-DTSP is to
carry out some amount of iterative repair search
inside each emergency task’s available opportunities.
With the repair search for a given emergency task,
some rules are adopted to decide which tasks should
be retracted [36].

(ii) CTM-DAHA: this is a dynamic adjusting rule-based
heuristic algorithm considering compact task merg-
ing (CTM-DAHA) which is designed to insert the
emergency tasks into the initial schedule.

To evaluate the result we use the following performance
metrics.
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Figure 8: Crossover operator.

Emergency task revenue (ETR) can be described as

ETR =

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝐾𝑖𝑗

∑
𝑘=1

𝑥
𝑗

𝑖,𝑘
𝑝
𝑖
. (11)

Satisfaction ratio (SR) is defined as SR = total number
of tasks that can be arranged in the scheme/total number of
tasks.

Scheduled tasks robustness (STR) can be defined as

STR =

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝐾𝑖𝑗

∑
𝑘=1

𝑝
𝑖
× 𝑥
𝑗

𝑖,𝑘
× 𝑦
𝑖
. (12)

In fact, the satellite application is a complex process and
the orders can only be uploaded with special equipment
within limited visible time windows, so it is important to
make the least adjustment to keep the stability of the schedule
as well as to insert more tasks to keep the efficiency of the
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schedule. Therefore, the main measurement of perturbation
needs to be considered.

Perturbation measurement (PM) is a metric used to
describe the distance between the adjusted scheme and the
initial scheme. PM can be defined with the total number of
initial tasks that change in the adjusted scheme compared
with the initial scheme.

5.1. Simulation Method and Parameters. Without loss
of generality, we acquire the imaging targets randomly
in the area: latitude −180∘∼180∘ and longitude −65∘ ∼65∘.
The scheduling period is 24 h, which can be denoted by
[0, 86400]. The number of common tasks is 200. In addition,
there are five batches of new coming emergency tasks and
each batch is given the same size: 50. The arrival time
of a batch 𝑡

𝑘

𝑆
is a random positive number distributed

in [𝑡0
𝑆
, 𝑡
𝑓

𝑆
]. In the experiment, we simulate 5 batches of

emergency tasks and 𝑇
𝑆
is set as 𝑇

𝑆
= {𝑡0
𝑆
, 𝑡1
𝑆
, . . . , 𝑡𝑒

𝑆
, 𝑡
𝑓

𝑆
} =

{0, 59, 13300, 26100, 41800, 65000, 86400}. Moreover, the
deadline of an emergency task is the end time of scheduling:
86400. Without loss of generality, the weights of all
tasks are randomly distributed in [1, 10]. Two sensors on
different satellites are simulated to accomplish the tasks. The
parameters of sensors are shown in Table 1. The available
opportunities, including time windows and slewing angles
associated with tasks, are computed using STK (Satellite

Table 1: Parameters of satellites.

Parameters Satellite 𝑠1 Satellite 𝑠2

Average height (km) 780.099 505.984
Orbital inclination (degree) 98.5 97.421
Local descending node time (am) 10:30 10:30
Argument of perigee 90 90
Eccentricity ratio (degree) 0.0011 0
Nodical period (min) 100.38 97.716
Maximum slewing angle (degree) ±32 ±32
Field of view (degree) 8.4 6

Tool Kit). The time window is removed if its span is shorter
than the duration of the corresponding task or its finished
time is later than the deadline. Moreover, we assume that the
maximum time for each satellite to open its sensor once is
60 seconds and that the longest imaging time in any period
time of orb𝑗 is 150 seconds.

5.2.The Simulation Result. We carry out two groups of exper-
iments in this section.We investigate the performance impact
of different algorithms, that is, RBHA-DTSP, CTM-DAHA,
and HA-NSGA2, in the first group. The experimental results
are depicted in Figure 15. The second group of experiments
is designed to evaluate the efficiency of the task merging
method: CTM and TTM.

Figure 15(a) shows the result of the revenue of scheduled
emergency tasks in each adjusted schedule. Among the
algorithms, HA-NSGA2 shows the best scheduling revenue.
The explanation is that HA-NSGA2 optimizes the robustness
and uses the compact task merging strategy. In contrast,
CTM-DAHA does not improve the robustness and RBHA-
DTSP does not consider taskmerging. Based on Figure 15(b),
we can see that, with more batches of emergency tasks, the
robustness of each adjusted schedule decreases. This can
be attributed to the fact that, with the time of scheduling
increasing, the scheduling period becomes shorter. This
means that the tasks’ available opportunities in a schedule
decrease and the number of tasks which can be rearranged
decreases. As a result, the robustness becomes smaller. In
addition, in each scheduling, HA-NSGA2 can generate a
more robust schedule except the last scheduling. In the last
scheduling, the schedule obtained by HA-NSGA2 shows the
lowest robustness because HA-NSGA2 scheduled more tasks
and less spare time is left for other tasks to be rearranged.
As a result, the robustness is worse. Figure 15(c) presents
the satisfaction ratio of every scheduling result. It is found
that the satisfaction ratio of all algorithms decreases as the
arrival of more emergency tasks. This can be attributed
to the fact that the number of scheduled tasks decreases
compared with the increasing emergency tasks. Moreover,
HA-NSGA2 shows the highest satisfaction ratio among all of
the algorithms. Table 2 describes the number of scheduled
emergency tasks and the number of adjusted tasks in the
adjusted schedules. It is found that there is little difference of
disturbance among the algorithms. On the whole, the ability
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Figure 12: (a) The current executing schedule. (b) The adjusted schedule.

dealing with emergency tasks of HA-NSGA2 is superior to
that of the other algorithms.

Figure 16 shows the performance impact of the two
task merging methods. Figure 16(a) demonstrates that, with
the increase in scheduling time, the compact task merg-
ing method (CTM) can get a higher total emergency task
revenue. This result indicates that more emergency tasks
can be arranged by the compact task merging method and
more opportunities can be left for other emergency tasks.
From Figure 16(b), it is found that robustness of the schedule
of the compact task merging method is lower than that

of the traditional task merging strategy. This result can
be attributed to two factors. First, the algorithm with the
compact task merging strategy can arrange more emergency
tasks compared with traditional task merging method. The
other is the composite task, which is unable to participate
in the robustness computing because there is only one syn-
thetic available window, acquired by compact task merging.
Moreover, the number of composite tasks by compact task
merging is more than that by traditional task merging. So the
compact task merging strategy is better than the traditional
merging strategy in the available windows and the satellite
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Figure 14: Illustration of neighborhood operator.

Table 2: The perturbation measurements of different algorithms.

Batch RBHA-DTSP CTM-DAHA HA-NSGA2
𝑁 PM 𝑁 PM 𝑁 PM

1 47 2 47 2 48 4
2 46 5 46 5 47 5
3 41 3 41 1 42 1
4 43 3 46 4 47 4
5 43 1 42 1 44 1
Note:𝑁: the number of scheduled emergency tasks.

resources left. Figure 16(c) depicts that the compact task
merging method can arrange more emergencies and obtain
a more satisfactory schedule. Table 3 describes the way of
adjusting of emergency tasks and the distance of the adjusted
scheme from the initial scheme. In the same perturbation
measurement, HA-NSGA2 with the compact task merging
method can arrange more emergency tasks. Also, CTM
can merge more tasks than CTM. The result proves that

Table 3: The perturbation measurements of different task merging
strategies.

Batch Method 𝑁 TM NI NIR NID PM

1 CTM 48 4 42 1 1 4
TTM 47 1 44 1 1 4

2 CTM 47 4 38 3 2 5
TTM 46 1 41 2 2 6

3 CTM 42 3 38 1 0 1
TTM 41 2 38 1 0 2

4 CTM 47 7 36 1 3 4
TTM 46 1 39 1 4 6

5 CTM 44 3 40 0 1 1
TTM 42 1 43 0 0 1

Note: 𝑁: the number of scheduled emergency tasks, PM: the number of
adjusted tasks in the schedules, NITM: the number of emergency tasks
inserted by task merging, NI: the number of emergency tasks inserted
directly, NIR: the number of emergency tasks inserted by rearranging, and
NID: the number of emergency tasks inserted by deleting.

the compact task merging strategy has an advantage over
the existing traditional method. The compact task merging
method can improve the chances of inserting emergency
tasks.

5.3. Discussion. Based on the extensive experiments, we can
evaluate the performance of HA-NSGA2 proposed in the
paper. Using the algorithm HA-NSGA2 with two objectives,
that is, the revenue and robustness, we can obtain the
scheduling scheme that has higher revenue and stronger
ability to resist disturbance in emergency tasks scheduling.
HA-NSGA2 algorithm can insert more emergency tasks
while keeping the high revenue as is shown in Figure 15.
Moreover, HA-NSGA2 can significantly reduce the schedul-
ing disturbance in the process of scheduling emergency tasks.
The experiments prove that the HA-NSGA2 is capable of
finding optimal solutions with the ability to resist disturbance
and to address emergency tasks efficiently. Moreover, the
compact task merging strategy can improve the chances of
merging multiple tasks and save the satellite resources. So the
method proposed in this paper is more practical and satisfies
the requests of the users.

6. Conclusion and Future Work

To solve dynamic scheduling problem for emergency tasks
in a multisatellite observation system, we propose a mixed
algorithm namedHA-NSGA2 to improve the ability of emer-
gency tasks scheduling from two aspects. In our algorithm
two optimization objectives, that is, revenue and robustness,
are considered continuously. Firstly, we schedule common
tasks by using themultiobjective genetic algorithmNSGA2 to
obtain an initial solution with high revenue and robustness.
Then, the heuristic algorithm which embeds a compact task
merging strategy is used to handle emergency tasks. Finally,
to optimize the solution, NAGA2, which embeds a novel
neighborhood operator to generate the initial population,
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Figure 15: The performance of different dynamic scheduling algorithms.

is adopted to search the optimal result in the local scope.
Extensive experimental simulation proves that the robustness
is an important factor in dynamic scheduling. The algorithm
HA-NSGA2 proposed in this paper optimizes the robustness
and obtains the more robust scheduling results with the
highest revenue compared with other algorithms. Moreover,
the compact task merging strategy can improve the chances
of merging multiple tasks. Therefore, we conclude that the
robustness of the schedule has considerable significance in
the dynamic scheduling problem.

In the future, our studies will address the following issues:
first, we will conduct some research on area targets and
consider more critical issues, such as resource availability,
data dimension, and communication. In addition, we will
improve our scheduling model by considering more con-
straints, such as memory capacity, energy consumption, and
speed of upload. Finally, we will extend our experiments in
real scene.

Appendices

To help the readers understand, we make some terms clear
that will be referred to in NSGA2 and describe the compact
task merging strategy in detail in these appendices. In
Appendix A we introduce some definitions of the multiob-
jective genetic algorithm NSGA2. Compact task merging
strategy is presented in Appendix B.

A. The Associative Definitions for NSGA2

Some fundamental definitions of the multiobjective genetic
algorithm NSGA2 are given in the following [44, 45].

Definition for Pareto Dominance. For any u ∈ R𝑚 and k ∈

R𝑚 : u dominates k (in symbols u ≺ k) if and only if: ∀𝑖 =

1, . . . , 𝑚 : u ≤ k and ∃𝑖 ∈ {1, . . . , 𝑚} : u < k.
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for each 𝑝 ∈ 𝑄 // every individual in population 𝑝 ∈ 𝑄

𝑆
𝑝

= ⌀; // let the set of individuals dominated by 𝑝 be null
𝑛
𝑝

= 0; // the number of individuals dominating 𝑝 be 0
for each 𝑞 ∈ 𝑄

if (𝑝 ≺ 𝑞) then // if 𝑝 dominates 𝑞

𝑆
𝑝

= 𝑆
𝑝

∪ 𝑞; add 𝑞 into 𝑆
𝑝

else if (𝑝 ≻ 𝑞) then // if 𝑞 dominates 𝑝

𝑛
𝑝

= 𝑛
𝑝

+ 1;
end for;
end for;
for each 𝑝 ∈ 𝑄

if (𝑛
𝑝

== 0) then
𝑝rank = 1; // the rank of 𝑝 is 1st
𝐹
1

= 𝐹
1

∪ 𝑝; // add 𝑝 into the set of the first non-dominated front 𝐹
1

end for;
𝑖 = 1; // initialize the rank of the non-dominated fronts
while (𝐹

𝑖
̸= ⌀)

for each 𝑝 ∈ 𝐹
𝑖

for each 𝑞 ∈ 𝑆
𝑝

𝑛
𝑞

= 𝑛
𝑞

− 1; // the number of individuals dominating 𝑝 is reduced by one
if (𝑛
𝑞

== 0) then // if there is no individual dominating 𝑞

𝑞rank = 𝑖 + 1; // the rank of 𝑞 plus one
𝐹
𝑖+1

= 𝐹
𝑖+1

∪ 𝑞; // add 𝑞 into the non-dominated front 𝐹
𝑖+1

end for;
end for;

𝑖 = 𝑖 + 1;
end while.

Algorithm 1

𝐼 = |𝐹rank|; // number of solutions in 𝐹rank

for each 𝑝 ∈ 𝐹rank

𝐹rank[𝑝]distance = 0; // initialize the distance
end for;
for each objective 𝑚

𝐹rank,𝑚 = sort(𝐹rank, 𝑚); // sort using each objective value
for each 𝑖 = 2 → 𝐼 − 1

𝐹rank,𝑚[𝑖]distance = (𝐹rank,𝑚[𝑖 + 1] − 𝐹rank,𝑚[𝑖 − 1])/(𝐹
max
rank,𝑚 − 𝐹

min
rank,𝑚); //crowding-distance of individual 𝑖 inm th objective

end for;
end for;
for each 𝑝 ∈ 𝐹rank

for each objective 𝑚

𝐹rank[𝑝]distance = 𝐹rank[𝑝]distance + 𝐹rank,𝑚[𝑝]distance; // crowding-distance of 𝑝

end for;
end for.

Algorithm 2
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(1) According to the arrival time of a batch of emergency tasks, select the waiting tasks in the current schedule SS as 𝑇𝑤

(2) for all 𝑖 ∈ [1, 2, . . . , |𝑇𝑤|], do
(3) for all 𝑗 ∈ [1, . . . , 𝑀], do
(4) compute all available opportunities for task 𝑖 on satellite 𝑗

(5) end for
(6) compute the number of available opportunities |𝑊

𝑖
| for task 𝑖

(7) end for
(8) let the neighborhood set of the current schedule SS𝑁 be SS𝑁 = SS
(9) while 𝑇𝑤 ̸= ⌀ do
(10) take the serial number 𝑖 of the first task in 𝑇

𝑤

(11) if |𝑊
𝑖
| ≤ 1 do

(12) remove 𝑡
𝑖
from 𝑇𝑤 and then go to Step (9)

(13) end if
(14) else
(15) try to change the locus of task 𝑖 in the chromosome
(16) if succeed, update the chromosome and add the chromosome to SS𝑁
(17) remove 𝑡

𝑖
from 𝑇

𝑤 and then go to Step (9)
(18) end if
(19) else
(20) remove 𝑡

𝑖
from 𝑇

𝑤 and then go to Step (9)
(21) end while
(22) output the neighborhood set of the current schedule SS𝑁

Algorithm 3

Definition for Pareto Optimality. The idea that a candidate
solution x ∈ Ω is the optimal solution of Pareto means that
x ∈ Ω makes 𝐹(𝑥

󸀠) ≺ 𝐹(𝑥). x is a 𝐾-dimensional decision
variable in the decision space, and 𝐹(𝑥) is an objective space.

Definition for Pareto Optimal Set. Consider

𝑃 = {𝑥 ∈ Ω | ¬∃𝑥
󸀠

∈ Ω st 𝐹 (𝑥
󸀠
) ≺ 𝐹 (𝑥)} . (A.1)

Definition for Pareto Front. Consider

𝑃𝐹 = {𝐹 (𝑥) | 𝑥 ∈ 𝑃} . (A.2)

Definition for Nondominated Sorting. Nondominated sorting
is used to confirm the rank of each individual in the whole
population according to the dominated space. For example,
∀𝑥
𝑖

∈ Ω, we can compute a dominated set of 𝑥
𝑖
, 𝑃
𝑥𝑖

= {𝑥 ∈

Ω | ∀𝑥󸀠 ∈ Ω, st : 𝐹(𝑥󸀠) ≺ 𝐹(𝑥
𝑖
)}. The size of 𝑃

𝑥𝑖
is the rank of

𝑥
𝑖
, Rank(𝑥

𝑖
) = |𝑃

𝑥𝑖
|. We divide the population into different

Pareto Front with the rank of each individual, Ω = {𝐹
1

∪ 𝐹
2

∪

⋅ ⋅ ⋅ ∪ 𝐹max rank}.

Definition for Crowding Distance. The crowding distance
approaches aim to obtain a uniform spread of solutions
along a similar Pareto Front without using a fitness sharing
parameter. In this paper, there are two objectives, that is,
revenue and robustness. Firstly, we rank all individuals in
order according to the revenue and then compute the distance
of each individual in the sequence by formula dis 𝑘(𝑥

𝑖
) =

(𝑓(𝑥
𝑖+1

)−𝑓(𝑥
𝑖+1

))/(𝑓max
𝑘

−𝑓min
𝑘

).Thus, the crowding distance
can be defined as

Distance (𝑥
𝑖
) =

𝑓revenue (𝑥
𝑖+1

) − 𝑓revenue (𝑥
𝑖−1

)

𝑓max
revenue − 𝑓min

revenue

+
𝑓robust (𝑥

𝑖+1
) − 𝑓robust (𝑥

𝑖−1
)

𝑓max
robust − 𝑓min

robust
.

(A.3)

Definition for Fitness Function. The determination of an
appropriate fitness function is crucial to the performance of
the genetic algorithm. Thus, we should construct optimiza-
tion objectives with a weight sum to represent the fitness
function [46]:

𝐹 = 𝑤revenue

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝐾𝑖𝑗

∑
𝑘=1

𝑥
𝑗

𝑖,𝑘
𝑝
𝑖

+ 𝑤robustness

𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝐾𝑖𝑗

∑
𝑘=1

𝑝
𝑖
× 𝑥
𝑗

𝑖,𝑘
× Rearrange (𝑡

𝑖
) ,

(A.4)

where 𝐹 is the fitness and 𝑤revenue and 𝑤robustness are weights.

B. The Compact Task Merging Strategy

The compact task merging strategy, which is embedded in
the rule-based heuristic algorithm, is used to improve the
imaging efficiency. If two or more targets are geographically
adjacent, we can rationally tune the slewing angle and the
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Figure 16: The performances of different task merging methods.
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observation duration of the sensor to enable an observation
strip to cover them. In other words, tasks in the same swath of
a sensor may be merged into one composite task. To improve
the imaging opportunities of the new tasks, a task merging
strategy is required. Suppose there are two tasks 𝑡

𝑖
and 𝑡
𝑗
that

could be imaged by satellite 𝑗. And ao
𝑖

= {[ws
𝑖
,we
𝑖
], 𝜃
𝑖
} ∈

AO𝑗
𝑖
is an available opportunity of task 𝑡

𝑖
. Accordingly, ao

𝑗
=

{[ws
𝑗
,we
𝑗
], 𝜃
𝑗
} ∈ AO𝑗

𝑗
is an available opportunity of task

𝑡
𝑗
. Since the length of a visible time window must be larger

than the observation duration of task, there often exists some
unnecessary time to finish merged tasks according to the
traditional task merging strategy. Therefore, the duration of
task execution is an important factor in task merging. By
considering the duration of task execution, we employ a
new compact task merging method to construct the compact
composite tasks in this paper.

When a task merging mechanism is embedded into
the schedule scheme, we must judge when two tasks can
be combined into a composite task and determine how to
construct a composite task.

Without loss of generality, between two tasks 𝑡
𝑖
and 𝑡
𝑗
, the

window start time ws
𝑖
of task 𝑡

𝑖
is assumed to be no later than

that of task 𝑡
𝑗
in the following.

TheoremB.1. Two feasible tasks 𝑡
𝑖
and 𝑡
𝑗
can be combined into

a compact composite task 𝑡
𝑖,𝑗
if and only if they satisfy

(𝑤𝑠
𝑗

+ 𝑑
𝑗
) − (𝑤𝑒

𝑖
− 𝑑
𝑖
) ≤ Δ𝑑, (B.1)

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑖
− 𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ Δ𝜃. (B.2)

Equation (B.1) is the timewindow constraint. As shown in
Figure 17(b), we illustrate the case where two time windows
of tasks intersect.

Equation (B.2) is the slewing angle constraint. It is shown
in Figure 17(a) that tasks 𝑡

𝑖
and 𝑡
𝑗
must be located in the same

swath of the sensor.

Theorem B.2. If two feasible tasks 𝑡
𝑖
and 𝑡
𝑗
can be merged

into a compact composite task 𝑡
𝑖,𝑗
, then its time window 𝑊

𝑖,𝑗
=

[𝑤𝑠
𝑖,𝑗

, 𝑤𝑒
𝑖,𝑗

] should range from

𝑤𝑠
𝑖,𝑗

=
{

{

{

𝑤𝑒
𝑖
− 𝑑
𝑖
, 𝑖𝑓

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑖
∩ 𝑊
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ min (𝑑

𝑖
, 𝑑
𝑗
)

min {𝑤𝑠
𝑗
,max (𝑤𝑠

𝑖
, 𝑤𝑠
𝑗

+ 𝑑
𝑗

− 𝑑
𝑖
)} , 𝑒𝑙𝑠𝑒

(B.3)

to

𝑤𝑒
𝑖,𝑗

=
{

{

{

𝑤
𝑗

+ 𝑑
𝑗
, 𝑖𝑓

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑖
∩ 𝑊
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ min (𝑑

𝑖
, 𝑑
𝑗
)

min (𝑤𝑒
𝑖
− 𝑑
𝑖
, 𝑤𝑒
𝑗

− 𝑑
𝑗
) + max (𝑑

𝑖
, 𝑑
𝑗
) , 𝑒𝑙𝑠𝑒.

(B.4)

Its indispensable duration of task execution should be

𝑑
𝑖,𝑗

=
{

{

{

𝑤𝑠
𝑗

+ 𝑑
𝑗

− (𝑤𝑒
𝑖
− 𝑑
𝑖
) , 𝑖𝑓

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑖
∩ 𝑊
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ min (𝑑

𝑖
, 𝑑
𝑗
)

max (𝑑
𝑖
, 𝑑
𝑗
) , 𝑒𝑙𝑠𝑒

(B.5)

and the slewing angle is given by

𝜃
𝑖,𝑗

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

max{𝜃
𝑖
−

Δ𝜃
𝑠

2
, 0} , 𝑖𝑓 𝜃

𝑖
≥ 0,

󵄨󵄨󵄨󵄨𝜃𝑖
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨

min{𝜃
𝑖
+

Δ𝜃
𝑠

2
, 0} , 𝑖𝑓 𝜃

𝑖
< 0,

󵄨󵄨󵄨󵄨𝜃𝑖
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨

max{𝜃
𝑗

−
Δ𝜃
𝑠

2
, 0} , 𝑖𝑓 𝜃

𝑗
≥ 0,

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨
>

󵄨󵄨󵄨󵄨𝜃𝑖
󵄨󵄨󵄨󵄨

min{𝜃
𝑗

+
Δ𝜃
𝑠

2
, 0} , 𝑖𝑓 𝜃

𝑗
< 0,

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑗

󵄨󵄨󵄨󵄨󵄨
>

󵄨󵄨󵄨󵄨𝜃𝑖
󵄨󵄨󵄨󵄨 .

(B.6)
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[10] M. Lemâıtre, G. Verfaillie, F. Jouhaud, J.-M. Lachiver, and
N. Bataille, “Selecting and scheduling observations of agile
satellites,” Aerospace Science and Technology, vol. 6, no. 5, pp.
367–381, 2002.

[11] W.-C. Lin and S.-C. Chang, “Hybrid algorithms for satellite
imaging scheduling,” in Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, vol. 3, pp. 2518–
2523, IEEE, Waikoloa Village, Hawaii, USA, October 2005.

[12] W.-C. Lin, D.-Y. Liao, C.-Y. Liu, and Y.-Y. Lee, “Daily imaging
scheduling of an earth observation satellite,” IEEE Transactions
on Systems, Man, and Cybernetics Part A: Systems and Humans,
vol. 35, no. 2, pp. 213–223, 2005.

[13] W.-C. Lin and D.-Y. Liao, “A tabu search algorithm for satellite
imaging scheduling,” in Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC ’04), pp.
1601–1606, October 2004.

[14] W. J. Wolfe and S. E. Sorensen, “Three scheduling algorithms
applied to the earth observing systems domain,” Management
Science, vol. 46, no. 1, pp. 148–168, 2000.

[15] V. Gabrel and C. Murat, “Mathematical programming for earth
observation satellite mission planning,” in Operations Research
in Space and Air, pp. 103–122, Springer, New York, NY, USA,
2003.

[16] M. Vasquez and J.-K. Hao, “A ‘logic-constrained’ knapsack
formulation and a tabu algorithm for the daily photograph
scheduling of an earth observation satellite,” Computational
Optimization and Applications, vol. 20, no. 2, pp. 137–157, 2001.

[17] M. Vasquez and J.-K. Hao, “Upper bounds for the SPOT 5 daily
photograph scheduling problem,” Journal of Combinatorial
Optimization, vol. 7, no. 1, pp. 87–103, 2003.

[18] M. Zweben, E. Davis, B. Daun, and M. J. Deale, “Scheduling
and rescheduling with iterative repair,” IEEE Transactions on
Systems,Man andCybernetics, vol. 23, no. 6, pp. 1588–1596, 1993.

[19] J. Frank, A. Jonsson, R. Morris, and D. E. Smith, “Planning and
scheduling for fleets of earth observing satellites,” in Proceedings
of the 6th International Symposium on Artificial Intelligence,
Robotics, Automation and Space, Montreal, Canada, June 2001.

[20] N. Bianchessi and G. Righini, “Planning and scheduling algo-
rithms for the COSMO-SkyMed constellation,” Aerospace Sci-
ence and Technology, vol. 12, no. 7, pp. 535–544, 2008.

[21] P. Wang and G. Reinelt, “A heuristic for an earth observing
satellite constellation scheduling problem with download con-
siderations,” Electronic Notes in Discrete Mathematics, vol. 36,
pp. 711–718, 2010.

[22] F. Marinelli, S. Nocella, F. Rossi, and S. Smriglio, “A Lagrangian
heuristic for satellite range scheduling with resource con-
straints,” Computers & Operations Research, vol. 38, no. 11, pp.
1572–1583, 2011.

[23] L. Barbulescu, J.-P. Watson, L. D. Whitley, and A. E. Howe,
“Scheduling space-ground communications for the air force
satellite control network,” Journal of Scheduling, vol. 7, no. 1, pp.
7–34, 2004.

[24] J. Wang, N. Jing, J. Li, and Z. H. Chen, “A multi-objective
imaging scheduling approach for earth observing satellites,” in
Proceedings of the 9th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO ’07), pp. 2211–2218, London, UK,
2007.

[25] S.-W. Baek, S.-M. Han, K.-R. Cho et al., “Development of
a scheduling algorithm and GUI for autonomous satellite
missions,” Acta Astronautica, vol. 68, no. 7-8, pp. 1396–1402,
2011.

[26] Y. Chen, D. Zhang,M. Zhou, andH. Zou, “Multi-satellite obser-
vation scheduling algorithm based on hybrid genetic particle
swarm optimization,” in Advances in Information Technology
and Industry Applications, vol. 136 of Lecture Notes in Electrical
Engineering, pp. 441–448, Springer, Berlin, Germany, 2012.

[27] Z. Zhang, N. Zhang, and Z. Feng, “Multi-satellite control
resource scheduling based on ant colony optimization,” Expert
Systems with Applications, vol. 41, no. 6, pp. 2816–2823, 2014.

[28] X. Liu, B. Bai, Y. Chen, and Y. Feng, “Multi satellites scheduling
algorithm based on task merging mechanism,” Applied Mathe-
matics and Computation, vol. 230, pp. 687–700, 2014.

[29] G. Wu, J. Liu, M. Ma, and D. Qiu, “A two-phase scheduling
method with the consideration of task clustering for earth
observing satellites,” Computers & Operations Research, vol. 40,
no. 7, pp. 1884–1894, 2013.

[30] D. Qiu, L. Zhang, J. Zhu, andH. Li, “FFFS-DTMB and ADTPC-
DTMB algorithmin multi-satellites mission planning,” Acta
Aeronautica et Astronautica Sinica, vol. 30, pp. 2178–2184, 2009.

[31] A. Globus, J. Crawford, J. Lohn, and A. Pryor, “A comparison
of techniques for scheduling earth observing satellites,” in
Proceedings of the 16th Conference on Innovative Applications of
Artificial Intelligence (IAAI ’04), pp. 836–843, AAAI, San Jose,
Calif, USA, July 2004.

[32] A. Globus, J. Crawford, J. Lohn, and A. Pryor, “Scheduling
earth observing satellites with evolutionary algorithms,” in
Proceedings of the International Conference on Space Mission
Challenges for Information Technology (SMC-IT ’03), Pasadena,
Calif, USA, July 2003.

[33] J. C. Pemberton and L. G. Greenwald, “On the need for dynamic
scheduling of imaging satellites,” International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences,
vol. 34, pp. 165–171, 2002.

[34] L. A. Kramer and S. F. Smith, “Maximizing flexibility: a
retraction heuristic for oversubscribed scheduling problems,”



20 Mathematical Problems in Engineering

in Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI ’03), pp. 1218–1223, August 2003.

[35] G. Verfaillie and T. Schiex, “Solution reuse in dynamic con-
straint satisfaction problems,” inProceedings of the 12thNational
Conference on Artificial Intelligence (AAAI ’94), pp. 307–312,
Seattle, Wash, USA, July 1994.

[36] J. Wang, J. Li, and Y. Tan, “Study on heuristic algorithm for
dynamic scheduling problem of earth observing satellites,”
in Proceedings of the 8th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD ’07), pp. 9–14, Qingdao,
China, July 2007.

[37] J. Wang, X. Zhu, L. T. Yang, J. Zhu, and M. Ma, “Towards
dynamic real-time scheduling for multiple earth observation
satellites,” Journal of Computer and System Sciences, vol. 81, no.
1, pp. 110–124, 2015.

[38] M. Wang, G. Dai, and M. Vasile, “Heuristic scheduling algo-
rithm oriented dynamic tasks for imaging satellites,”Mathemat-
ical Problems in Engineering, vol. 2014, Article ID 234928, 11
pages, 2014.

[39] J. Wang, X. Zhu, D. Qiu, and L. T. Yang, “Dynamic scheduling
for emergency tasks on distributed imaging satellites with
task merging,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 9, pp. 2275–2285, 2014.

[40] B.-C. Bai, Y.-Z. Ci, and Y.-W. Chen, “Dynamic task merging
in multi-satellites observing scheduling,” Journal of System
Simulation, vol. 21, no. 9, pp. 2646–2649, 2009.

[41] J. Branke, “Creating robust solutions by means of evolutionary
algorithms,” in Parallel Problem Solving from Nature—PPSN V,
vol. 1498 of Lecture Notes in Computer Science, pp. 119–128,
Springer, Berlin, Germany, 1998.

[42] S. Tsutsui and A. Ghosh, “Genetic algorithms with a robust
solution searching scheme,” IEEE Transactions on Evolutionary
Computation, vol. 1, no. 3, pp. 201–208, 1997.

[43] F. Xhafa, J. Sun, A. Barolli, A. Biberaj, and L. Barolli, “Genetic
algorithms for satellite scheduling problems,” Mobile Informa-
tion Systems, vol. 8, no. 4, pp. 351–377, 2012.

[44] X. Niu, H. Tang, L. Wu, R. Deng, and X. Zhai, “Imaging-
duration embedded dynamic scheduling of Earth observation
satellites for emergent events,” Mathematical Problems in Engi-
neering, vol. 2015, Article ID 731734, 31 pages, 2015.

[45] T. Mao, Z. Xu, R. Hou, andM. Peng, “Efficient satellite schedul-
ing based on improved vector evaluated genetic algorithm,”
Journal of Networks, vol. 7, no. 3, pp. 517–523, 2012.

[46] B. Sun, W. Wang, X. Xie, and Q. Qin, “Satellite mission
scheduling based on genetic algorithm,” Kybernetes, vol. 39, 8,
pp. 1255–1261, 2010.

[47] M. T. Jensen, “Generating robust and flexible job shop schedules
using genetic algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 3, pp. 275–288, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


