Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 484671, 10 pages
http://dx.doi.org/10.1155/2015/484671

Research Article

Hindawi

Theoretical Expectation versus Practical Performance of

Jackson’s Heuristic

Nodari Vakhania, Dante Pérez, and Lester Carballo

Facultad de Ciencias, UAEM, Avenida Universidad 1001, 62210 Cuernavaca, MOR, Mexico

Correspondence should be addressed to Nodari Vakhania; nodari@uaem.mx

Received 19 January 2015; Revised 14 May 2015; Accepted 18 May 2015

Academic Editor: Ben T. Nohara

Copyright © 2015 Nodari Vakhania et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

A basic 2-approximation heuristic was suggested by Jackson in early 50s last century for scheduling jobs with release times and
due dates to minimize the maximum job lateness. The theoretical worst-case bound of 2 helps a little in practice, when the solution
quality is important. The quality of the solution delivered by Jackson’s heuristic is closely related to the maximum job processing
time p,.. that occurs in a given problem instance and with the resultant interference with other jobs that such a long job may
cause. We use the relationship of p, .. with the optimal objective value to obtain more accurate approximation ratio, which may
drastically outperform the earlier known worst-case ratio of 2. This is proved, in practice, by our computational experiments.

1. Introduction

One of the oldest and commonly used (online) heuristics
in scheduling theory is that of Jackson [1] (see also Schrage
[2]). It was first suggested for scheduling jobs with release
times and due dates on a single machine to minimize the
maximum job lateness. In general, variations of Jackson’s
heuristic are widely used to construct feasible solutions
for scheduling jobs with release and delivery times on a
single machine or on a group of parallel machines. Besides,
Jackson’s heuristic is efficiently used in the solution of more
complicated shop scheduling problems including job-shop
scheduling, in which the original problem occurs as an
auxiliary one and is applied to obtain lower estimations in
implicit enumeration algorithms (although even this latter
problem is strongly NP-hard, see Garey and Johnson [3]). At
the same time, it is known that, in the worst-case, Jackson’s
heuristic will deliver a solution which is twice worse than an
optimal one.

The latter worst-case bound might be too rough in
practice, when the solution quality is important; that is, solu-
tions with the objective value better than twice the optimal
objective value are required. In addition, the solutions may
need to be created online (any possible offline modification

of the heuristic that may lead to a better performance would
be of not much use). In this situation, the online performance
measure is essentially important.

As we will see, the quality of the solution delivered by the
heuristic is essentially related to the maximum job processing
time p,,, that may occur in a given problem instance. In
particular, the interference of a “long” nonurgent job with the
following scheduled urgent jobs affects the solution quality.

We express p,., as a fraction the optimal objective value
and derive a much more accurate approximation ratio than
2. In some applications, this kind of relationship can be
predicted with a good accuracy. For instance, consider large-
scale production process where the processing requirement
of any individual job is small relative to an estimated (shortest
possible) overall production time T of all the products (due
to a large number of products and the number of operations
required to produce each product). If this kind of prediction is
not possible, by a single application of Jackson’s heuristic, we
obtain a strong lower bound on the optimal objective value
and represent p, .. as its fraction « (instead of representing
it as a fraction of an unknown optimal objective value). Then
we give an explicit expression of the heuristic’s approximation
ratio in terms of that fraction. In particular, Jackson’s heuristic
will always deliver a solution within a factor of 1 + 1/x of

the optimum. We further refine p, . to a smaller more
accurate magnitude and use it instead of p,,, in our second
stronger estimation.

Our estimations may drastically outperform the earlier
known worst-case ratio of 2. This is proved, in practice,
by the computational experiments. From 200 randomly
generated problem instances, more than half of the instances
were solved optimally by Jacksons heuristic, as no above
interference with a long job has occurred. For the rest of the
instances, the interference was insignificant, so that most of
them were solved within a factor of 1.009 of the optimum
objective value, whereas the worst approximation ratio was
less than 1.03. According to the experimental results, our
lower bounds turn out to be quite strong, in practice.

The paper is organized as follows. In the next subsection
we give a general overview of combinatorial optimization
and scheduling problems mentioning the importance of good
approximation algorithms and efficient heuristics for these
problems. Then we give an overview of some related work.
In the following section we describe Jackson’s heuristic, give
some basic concepts and facts, and derive our estimations on
the worst-case performance of Jackson’s heuristic. In the final
section we present our computational experiments.

1.1. Heuristics and Combinatorial Optimization Problems.
Combinatorial optimization (CO) problems constitute a sig-
nificant class of practical problems with a discrete nature.
They have emerged in late 40s of 20th century. With a rapid
growth of the industry, the new demands in the optimal
solution of the newly emerging resource management and
distribution problems have arisen. For the development of
effective solution methods, these problems were formalized
and addressed mathematically.

A CO problem is characterized by a finite set of the so-
called feasible solutions, defined by a given set of restric-
tions, and an objective function for these feasible solutions,
which typically needs to be optimized, that is, minimized
or maximized: the problem is to find an optimal solution,
that is, one minimizing the objective function. Typically,
the number of feasible solutions is finite. Thus theoretically,
finding an optimal solution is trivial: just enumerate all the
feasible solutions calculating for each of them the value of
the objective function and select any one with the optimal
objective value. However, this brutal enumeration of all
feasible solutions may be impossible in practice. Even for
problems with a moderate size (say 30 cities for a classical
traveling salesman problem or 10 jobs on 10 machines in
job-shop scheduling problem), such a complete enumeration
may take hundreds of centuries on the modern computers.
Moreover, this situation will not be changed if in the future,
much faster computers will be developed.

The CO problems are partitioned into two basic types,
type P, which are polynomially solvable ones, and NP-hard
problems. Intuitively, there exist efficient (polynomial in the
size of the problem) solution methods or algorithms for the
problems from the first class, whereas no such algorithms
exist for the problems of the second class (informally, the
size of the problem is the number of bits necessary to repre-
sent the problem data/parameters in a computer memory).

Mathematical Problems in Engineering

Furthermore, all NP-hard problems, ones from the second
class, have a similar computational complexity, in the sense
that a polynomial-time algorithm for any of them would yield
a polynomial time algorithm for any other problem from this
class. At the same time, it is believed that it is very unlikely
that an NP-hard problem can be solved in polynomial
time.

Greedy (heuristic) algorithms are efficient polynomial-
time algorithms that create a feasible schedule. Such algo-
rithms, typically, work on n (external) iterations, where n
is the number of objects in the given problem. The size of
the problem (i.e., the number of bits necessary to represent
the problem data/parameters in a computer memory) is a
polynomial in #. Hence, the number of iterations in a greedy
algorithm is also polynomial in the size of the problem.
Such an algorithm creates a complete destiny feasible solution
iteratively, extending the current partial solution by some
yet unconsidered object at each iteration. In this way, the
search space is reduced to a single possible extension at
each iteration, from all the theoretically possible potential
extensions. This type of “rough” reduction of the whole
solution space may lead us to the loss of an optimal or near-
optimal solution.

A greedy/heuristic algorithm may create an optimal
solution for a problem in class P (though not any problem
in class P may optimally be solved by a heuristic method).
However, this is not the case for an NP-hard problem; that is,
no greedy or heuristic algorithm can solve optimally an NP-
hard problem (unless P = NP, which is very unlikely). Since
the majority of CO problems are NP-hard, a compromise
accepting a solution worse than an optimal one is hence
unavoidable. On this way, it is natural and also practical
to think about the design and analysis of polynomial-
time approximation algorithms, that is, ones which deliver a
solution with a guaranteed deviation from an optimal one in
polynomial time. The performance ratio of an approximation
algorithm A is the ratio of the value of the objective function
delivered by A to the optimal value. A x-approximation
algorithm is one with the worst-case performance ratio x.
Since the simplest polynomial-time algorithms are greedy, a
greedy algorithm is a simplest approximation algorithm.

L.11. Scheduling Problems. The scheduling problems deal with
a finite set of requests called jobs to be performed (or
scheduled) on a finite (and limited) set of resources called
machines (or processors). The aim is to choose the order of
processing the jobs on machines so as to meet given objective
criteria.

A basic scheduling problem that we consider in this paper
is as follows: #1 jobs have to be scheduled on a single machine.
Each job j becomes available at its release time r;. A released
job can be assigned to the machine that has to process job j
for p; time units. The machine can handle at most one job
at a time. Once it completes j this job still needs a (constant)
delivery time q; for its full completion (the jobs are delivered
by an independent unit and this takes no machine time). All
above parameters are integers. Our objective is to find a job
sequence on the machine that minimizes the maximum job
full completion time.

Mathematical Problems in Engineering

According to the conventional three-field notation intro-
duced by Graham et al. [4] the above problem is abbreviated
as 1|7, q;|Cpnqy: in the first field the single-machine environ-
ment is indicated, the second field specifies job parameters,
and in the third field the objective criteria are given. The
problem has an equivalent formulation 1|r;|L,,, in which
delivery times are interchanged by due dates and the maxi-
mum job lateness L., that is, the difference between the job
completion time and its due date, is minimized (due date d;
of job j is the desirable time for the completion of job j; there
occurs a penalty whenever j is completed after time moment
d;).

Given an instance of 1|r;,q;|C,,,,, one can obtain an
equivalent instance of 1|r/|L ,, as follows. Take a suitably
large constant K (no less than the maximum job delivery
time) and define due date of every job jasd; = K — g;. Vice
versa, given an instance of 1|r;|L .., an equivalent instance
of 1|7}, 4;|Cyqx can be obtained by defining job delivery times
as q; = D — d;, where D is a suitably large constant (no less
than the maximum job due date). It is straightforward to see
that the pair of instances defined in this way are equivalent;
that is, whenever the makespan for the version 1|r;, q;|C,,.«
is minimized, the maximum job lateness in 1|r|L ., is
minimized and vice versa (see Bratley et al. [5] for more
details).

Because of the above equivalence, we will use both
above formulations interchangeably. (As noted briefly earlier,
the version with delivery times naturally occurs in implicit
enumeration algorithms for job-shop scheduling problem
and is used for the calculation of lower bounds.)

1.2. Overview. Jackson’s heuristic iteratively, at each schedul-
ing time f (given by job release or completion time), among
the jobs released by time t schedules one with the largest
delivery time (or smallest due date). For the sake of con-
ciseness Jackson’s heuristic has been commonly abbreviated
as EDD-heuristic (earliest due date) or alternatively, LDT-
heuristic (largest delivery time). Since the number of schedul-
ing times is O(n) and at each scheduling time search for a
minimal/maximal element in an ordered list is accomplished,
the time complexity of the heuristic is O(nlog n).

A number of efficient algorithms are variations of Jack-
son’s heuristic. For instance, Potts [6] has proposed a mod-
ification of this heuristic with for the problem 1|r;, q;|C,,,.
His algorithm repeatedly applies the heuristic O(n) times
and obtains an improved approximation ratio of 3/2. Hall
and Shmoys [7] have elaborated polynomial approximation
schemes for the same problem and also an 4/3-approximation
an algorithm for its version with the grecedence relations
with the same time complexity of O(n”logn) as the above
algorithm from [6]. Jackson’s heuristic can be efficiently
used for the solution of shop scheduling problems. Using
Jackson’s heuristic as a schedule generator, McMahon and
Florian [8] and Carlier [9] have proposed efficient enu-
merative algorithms for 1171, q;1C nax- Grabowski et al. [10]
use the heuristic for the obtention of an initial solution in
another enumerative algorithm for the same problem. Garey
et al. [11] have applied the same heuristic in an O(nlogn)
algorithm for the feasibility version of this problem with

equal-length jobs (in the feasibility version job due-dates
are replaced by deadlines and a schedule in which all jobs
are complete by their deadlines is looked for). Again using
Jackson’s heuristic as a schedule generator, other polynomial-
time direct combinatorial algorithms were described. In [12]
was proposed an O(r? log) algorithm for the minimization
version of the latter problem with two possible job processing
times and in [13] an O(n’ log 1) algorithm that minimizes the
number of late jobs with release times on a single-machine
when job preemptions are allowed. Without preemptions,
two polynomial-time algorithms for equal-length jobs on
single machine and on a group of identical machines were
proposed in [14] and [15], respectively, with time complexities
O(n* logn) and O(n* log nlog p,...), respectively.

Jackson’s heuristic has been used in multiprocessor
scheduling problems as well. For example, for the feasibility
version with m identical machines and equal-length jobs,
algorithms with the time complexities O(n’ loglogn) and
O(n*m) were proposed in Simons [16] and Simons and
Warmuth [17], respectively. Using the same heuristic as a
schedule generator in [18] was proposed an O(q,,,,11 log n+
O(mvn)) algorithm for the minimization version of the latter
problem, where g, is the maximal job delivery time and
v < nis a parameter.

The heuristic has been successfully used for the obtain-
ment of lower bounds in job-shop scheduling problems. In
the classical job-shop scheduling problem the preemptive
version of Jackson’s heuristic applied for a specially derived
single-machine problem immediately gives a lower bound,
see, for example, Carlier [9], Carlier and Pinson [19], and
Brinkkotter and Brucker [20] and more recent works of
Gharbi and Labidi [21] and Croce and T’kindt [22]. Carlier
and Pinson [23] have used the extended Jackson’s heuristic
for the solution of the multiprocessor job-shop problem with
identical machines, and it can also be adopted for the case
when parallel machines are unrelated (see [24]). Jackson’s
heuristic can be useful for parallelizing the computations in
scheduling job-shop Perregaard and Clausen [25] and also
for the parallel batch scheduling problems with release times
Condotta et al. [26].

2. Theoretical Estimations of
Heuristics Performance

We start this section with a detailed description of Jack-
son’s heuristic. It distinguishes n scheduling times, the time
moments at which a job is assigned to the machine. Initially,
the earliest scheduling time is set to the minimum job
release time. Among all jobs released by that time a job
with the minimum due date (the maximum delivery time,
alternatively) is assigned to the machine (ties being broken
by selecting a longest job). Iteratively, the next scheduling
time is either the completion time of the latest so far assigned
job to the machine or the minimum release time of a yet
unassigned job, whichever is more (since no job can be
started before the machine gets idle, nether it can be started
before its release time). And again, among all jobs released
by this scheduling time a job with the minimum due date
(the maximum delivery time, alternatively) is assigned to

the machine. Note that the heuristic creates no gap that can be
avoiding always scheduling an already released job once the
machine becomes idle, whereas among yet unscheduled jobs
released by each scheduling time it gives the priority to a most
urgent one (i.e., one with the smallest due date, alternatively,
with the largest delivery time).

Let o be the schedule obtained by the application of
Jackson’s heuristic (J-heuristic, for short) to the originally
given problem instance. Schedule, o, and, in general, any
Jackson’s schedule S (J-schedule, for short), that is, one
constructed by J-heuristic, may contain a gap, which is its
maximal consecutive time interval in which the machine
is idle. We assume that there occurs a 0-length gap (c;, ;)
whenever job i starts at its earliest possible starting time, that
is, its release time, immediately after the completion of job j;
here t; (c;, resp.) denotes the starting (completion, resp.) time
of job j.

A block in a J-schedule is its consecutive part consisting
of the successively scheduled jobs without any gap in between
preceded and succeeded by a (possibly a 0-length) gap.

J-schedules have useful structural properties. The follow-
ing basic definitions, taken from [18], will help us to expose
these properties.

Given a J-schedule S, let i be a job that realizes the
maximum job lateness in S; that is, L;(S) = maxj{L j(S)}. Let,
further, B be the block in S that contains job i. Among all the
jobs in B with this property, the latest scheduled one is called
an overflow job in S (we just note that not necessarily this job
ends block B).

A kernel in S is a maximal (consecutive) job sequence
ending with an overflow job o such that no job from this
sequence has a due date more than d,. For a kernel K, we
let (K) = min;eg{r;}.

It follows that every kernel is contained in some block in
S, and the number of kernels in S equals the number of the
overflow jobs in it. Furthermore, since any kernel belongs to
a single block, it may contain no gap.

The following lemmas are used in the proof of Theorem 6.
A statement similar to Lemma 1 can be found in [27] and
Lemma 3 in [18]. Lemma 5 is obtained as a consequence of
these two lemmas, though the related result has been known
earlier. For the sake of completeness of our presentation, we
give all our claims with proofs.

Lemma 1. The maximum job lateness (the makespan) of a
kernel K cannot be reduced if the earliest scheduled job in K
starts at time r(K). Hence, if a J-schedule S contains a kernel
with this property, then it is optimal.

Proof. Recall that all jobs in K are no less urgent than the
overflow job o and that jobs in K form a tight sequence (i.e.,
without any gap). Then since the earliest job in K starts at its
release time, no reordering of jobs in K can reduce the current
maximum lateness, which is L ,(S). Hence, there is no feasible
schedule ' with L(S') < L ,(S); that is, S is optimal. O

Thus o is already optimal if the condition in Lemma 1
holds. Otherwise, there must exist a job less urgent than o,
scheduled before all jobs of kernel K that delays jobs in K

Mathematical Problems in Engineering

(and the overflow job o). By rescheduling such a job to a later
time moment the jobs in kernel K can be restarted earlier. We
need some extra definitions to define this operation formally.

Suppose job i precedes job jin ED-schedule S. We will say
that i pushes j in S if ED-heuristic will reschedule job j earlier
whenever i is forced to be scheduled behind j.

Since the earliest scheduled job of kernel K does not start
at its release time (Lemma 1), it is immediately preceded and
pushed by a job I with d; > d,,. In general, we may have more
than one such a job scheduled before kernel K in block B (one
containing K). We call such a job an emerging job for K, and
we call the latest scheduled one (job / above) the live emerging
job.

From the above definition and Lemma 1 we immediately
obtain the following corollary.

Corollary 2. IfS contains a kernel which has no live emerging
job, then it is optimal.

We illustrate the above introduced definitions on a prob-
lem instance of 1|1}, q;|C,,,,,. The corresponding J-schedule is
depicted in Figure 1(a). In that instance, we have 11 jobs, job
1 with p; = 100, r, = 0, and gq; = 0. All the rest of the jobs
are released at time moment 10 and have the equal processing
time 1 and the delivery time 100. These data completely define
our problem instance.

Consider the initial J-schedule o of Figure 1(a) consisting
of a single block. In that schedule, jobs are included in the
increasing order of their indexes. The earliest scheduled job
1 is the live emerging job which is followed by jobs 2-11
scheduled in this order (note that, for the technical reasons,
the scaling on the vertical and horizontal axes is different). It
is easy to see that the latter jobs form the kernel K in schedule
o0.Indeed, all the 11 jobs belong to the same block, job 1 pushes
the following jobs, and its delivery time is less than that of
these pushed jobs. Hence, job 1 is the live emerging job in
schedule 0. The overflow job is job 1I since it realizes the
value of the maximum full completion time (the makespan)
in schedule o which is 110 + 100 = 210. Therefore, jobs 2-11
form the kernel in 0.

Note that the condition in Lemma 1 is not satisfied for
schedule o. Indeed, its kernel K starts at time 100 which
is more than r(K) = 10. Furthermore, the condition of
Corollary 2 is also not satisfied for schedule ¢ and it is
not optimal. The optimal schedule $* with makespan 120 is
depicted in Figure 1(b), in which the live emerging job 1 is
rescheduled behind all kernel jobs.

Below we use T® for the makespan (maximum full job
completion time) of J-schedule S and T* (L}, , resp.) for the
optimum makespan (lateness, resp.).

Lemma 3. Consider T° - T* < p; (L . - L

ax < D1) where
L is the live emerging job for kernel K € o.

Proof. We need to show that the delay imposed by job [for
the jobs in kernel K in schedule o is less than p;. Indeed, o is
a J-schedule. Hence, no job in K could have been released by
the time when job [was started in o, as otherwise J-heuristic
would have included the former job instead of I. At the same

Mathematical Problems in Engineering

100 2 11

1

0 20 40 60 80 100 110120

()

40 60 80 100 120

(®)

FIGURE 1: First instance. On (a) the J-schedule o and on (b) the optimal schedule S*.

time, the earliest job from K is scheduled immediately after
job I 'in 0. Then the difference between the starting time of
the former job and time moment r(K) is less than p. Now
our claim follows from Lemma 1. O

For our problem instance and the corresponding schedule
o, the above bound is almost reached. Indeed, T -T* = 210—
120 = 90, whereas p; = 100 (I = 1).

As we have mentioned in Section 1.2, Jackson’s heuristic’s
preemptive version (which gives an optimal solution to
1lr;,q;, pmtn|C,,y) gives a lower bound for 1|r;, g;|C
that is, an optimal solution of the preemptive version
1|7, q;, pmtn|Ci,,y is a lower bound for the non-preemptive
case 1]r;,q;|C,,,. By going deeper into the structure of
Jackson’s preemptive schedules, Croce and T°kindt [22] have
proposed another (a more “complete”) lower bound, which,
in practice, also turns out to be more efficient than the above
lower bound yielded by an optimal preemptive solution. The
lower bound proposed by Gharbi and Labidi [21] is based
on the concept of the so-called semipreemptive schedules,
derived from the observation that in an optimal nonpreemp-
tive schedule a part of some jobs is to be scheduled within
a certain time interval. This yields to the semipreemptive
schedules, for which stronger lower bounds can be derived.

Unlike the above lower bounds, Lemma 3 implicitly
defines a lower bound of T° — p; derived from the solution
of the nonpreemptive Jackson’s heuristic. This lower bound
can further be strengthen using the following concept. Let the
delay for kernel K € o, §(K,I) be g — r(K) (I (o, resp.) stand
again for the live emerging (overflow, resp.) job for kernel K).

Lemmad4. L* =T -8(K,I) (L,(0) - 8(K, 1), resp.) is a lower
bound on the optimal job makespan T (lateness L, , resp.).

The proof is similar to that of Lemma 3, with an extra
observation that the delay for the earliest scheduled job of
kernel K is defined more accurately by 8(K, I).

Observe that 6(K,) < p;. Infact, §(K,) can be drastically
smaller than p;. For instance, if in our problem instance from
Figure 1 r(K) were 90 (instead 0f 10) then §(K,) = 100-90 =
10. In general, observe that the smaller is (K,) (the more is
p; — (K, 1)) the more essential is the difference between the
lower bounds of Lemmas 4 and 3.

Now we can easily derive a known performance ratio

2 of J-heuristic for version 1|r;,q;|C,, (we note that

the estimation of the approximation for the version with due
dates with the objective to minimize maximum lateness is
less appropriate: for instance, the optimum lateness might be
negative).

Lemma 5. J-heuristic gives a 2-approximate solution for
1r}, 4;IC e that is, T°/T" < 2.

Proof. If there exists no live emerging job for K € o then o is
optimal by Corollary 2. Suppose [exists; clearly, p, < T™ (as
job I has to be scheduled in S* and there is at least one more
(kernel) job in it). Then by Lemma 3,

g T*
T—<M=1+ﬂ<1+1=2. 6)
T* T* T* 0

For the purpose of the estimation of the approximation
given by Jackson’s heuristic, we express p; as a fraction of an
optimal objective value T* (L},). Alternatively, instead of
the optimal objective value we may use its lower bound L*
from Lemma 4 (as T* may not be known). Let « > 1 be such
that p, < T" /x; that is, x < T"/p,. Since L™ is a lower bound
onT" (L* < T"), weletk = L*/p;, and thus we have that
k < T"/ps thatis, x = L*/p; is a valid assignment. Then
note that for any problem instance x can be obtained in time
O(nlogn).

In the following two theorems [is the live emerging job
for kernel K € o, as before.

Theorem 6. Consider T° /T < 1+ 1/k, foranyx < T"/p;.

Proof. By Lemma 3,

o T +
T—<M:1+ﬂ§1+l.)
T* T T* K O

Similarly as in Lemma 4, we can strengthen Theorem 6
replacing p; by (K, I) redefining, respectively, «; that is, we
now allow k¥ < T*/8(K, 1) (where we may let x = L* /8(K, 1)).

Theorem 7. Consider T°|T" <
T*/8(K,).

1 + 1/x, for any ¥ <

Proof. The proof is saimilar to the proof of Theorem 6 with
the only difference that the strong inequality in T7/T* <

(T* + p)/T" is replaced by T°/T* < (T* + 8(K,1))/T" as
now T? < T* + 8(K,). O

Note that if we let x = L*/p, and x = L*/8(K,I),
respectively, in Theorems 6 and 7, respectively, and we replace
T* with the lower bound L*, we obtain valid inequalities
T°/L* <1+ 1/, foranyx < L*/p;and T°/L" < 1 + 1/x,
for any k < L*/8(K, 1), respectively.

To illustrate the above obtained results, let us consider
another modification of our problem instance of Figure 1.
In that modified instance the emerging job remains longer
than the kernel jobs, although the difference between the
processing times is not as drastic as in the previous instance
(such an instance characterizes better an “average problem
instance”). We have a long emerging job 1 with p; = 10,
r; = 0,and g; = 0, and the processing time of the rest of
the jobs is again 1. Latter jobs are released at time 5 and also
have the same delivery times as in the first instance. The J-
schedule o with makespan 120 is depicted in Figure 2(a). The
lower bound on the optimum makespan defined by Lemma 3
ishence 120 - 10 = 110, whereas Lemma 4 defines a stronger
lower bound 120 - 5 = 115, since §(K, 1) = 5. The makespan
of the optimal schedule depicted in Figure 2(b) is the same as
this lower bound.

The approximation provided by Jackson’s heuristic for
this problem instance can be obtained from Theorems 6 and
7. Based on Theorem 6, we use the lower bound 115 on T~
and obtain a valid x = T"/p, = 115/10 = 11.5 and the
resultant approximation ratio 1 + 1/11.5. Using Theorem 7
and the fact that (K, 1) = 5 with the lower bound 115, we
obtain another valid x = T*/8(K, 1) = 115/5 = 23 and the
approximation ratio 1 + 1/23. For this instance, we can also
obtain the approximation ratio directly 120/115 = 1 + 1/23,
which coincides with the estimation of Theorem 7.

Observe that for our second (average) problem instance,
Jackson’s heuristic gave an almost optimal solution, and the
resultant approximation ratio coincides with the estimation
of Theorem 7. This encouraging observation is completely
supported and even outperformed by our computational
experiments discussed in Section 3.

3. On Heuristic’s Practical Behavior

Recall that in our first problem instance from Figurel we
had a “huge” live emerging job essentially contributing to the
makespan of o. As a result, Jackson’s heuristic has created
a schedule with an almost worst possible performance ratio
(see Lemma 5). Two distinct facts were decisive in such a
poor performance of the J-heuristic. First, it the processing
time of the live emerging job (which was too large); second,
it is also large 8(K,I) “close” to p;. We have carried out
computational experiments aiming to verify how often, in
practice, both of these two events occur. The results were
more than encouraging showing that it is highly unlikely
that both of these events may take place, as we describe
a bit later in this section. As an example, for the second
modified problem instance with #(K) = 90 from the previous
section, the second event did not occur (as §(K,I) was 10,
instead of 90, a value, relatively small compared to the optimal

Mathematical Problems in Engineering

objective value). As a result, Jackson’s heuristic has provided
a good approximation. Our third problem instance from
Figure 2(a) reflects typical characteristics of an “average”
problem instance.

Our study has shown that in real-life scenarios, where the
processing requirement of an individual (live emerging) job
can approximately be estimated as a fraction of the expected
total work time, the quality of the solution that will deliver
Jackson’s heuristic can be predicted in terms of that fraction
(Theorems 6 and 7) without actually running the algorithm
and can be significantly better than the known worst-case
bound of 2. Alternatively, Lemmas 3 and 4 provide the lower
bounds on the expected total work time, and the above
fraction can directly be derived.

3.1. The Computational Experiments. We have implemented
Jackson’s heuristic (the version 1|rj|LmaX) in Java using the
development environment Eclipse IDE for Java Developers
(version Luna Service Release 1 (4.4.1)) under Windows 8.1
operative system for 64 bits and have used a laptop with
Intel Core i7 (2.4 GHz) and 8 GB of RAM DDR3 to run the
code. The inputs in our main program are plain texts with
job data that we have generated randomly. The program for
the generation of our instances was constructed under the
same development environment as our main program. The
job parameters (the release times, the processing times, and
the due dates) were generated randomly, somewhat similar
as in [9, 21], as follows. For job release times and due dates
a random number was generated with the rnd() function in
Java, with an open range (0, 50n), where # is the number of
jobs in each instance. The processing times were generated
from the interval [1,50] (as in [9, 21]) and also from the
interval [1, 100].

For deeper analysis of the created solutions, we have
augmented the code with a procedure detecting a kernel K,
the corresponding live emerging and overflow jobs (I and o,
resp.), and the corresponding intersection 6(K, I). In this way,
for every created J-schedule o, we were able to calculate the
objective value (L ,(0)) and the lower bounds L (o) — p; and
L,(0) - 6(K,I) from Lemmas 3 and 4, respectively.

We have created instances for n = 50, 200, 800, 3200 (n =
50, 100, 200, 500, 1000, 2000, resp.), with the processing times
from the interval [1,50] ([1,100], resp.). We have created
20 instances for each above #, in total 200 instances. For
more than half of these instances, in the created J-schedules
no emerging job existed. Hence these instances were solved
optimally due to Corollary 2. For the rest of the instances,
there existed an emerging job I and kernel K. However,
importantly, the corresponding §(K, I) was too insignificant,
so that most of these instances were solved within a factor
of 1.009 of the optimum objective value, whereas the worst
approximation ratio was less than 1.03.

A detailed description of the experimental data can be
found in Tables 1-10. Each table represents the randomly
generated 20 problem instances with a particular p,,, and
n. The problem instances that were solved optimally (due to
the nonexistence of the live emerging job) have no specific
entries. For the rest of the problem instances, the tables,
besides the approximation ratio of the obtained solution

Mathematical Problems in Engineering 7

100 | Zyll 100| 2.1
q q
1 . 1
0 10 20 40 60 80 100 120 05 1520 30 40 60 80 100 120
t t
ZE Gap

() (b)

FIGURE 2: Second instance. On (a) the J-schedule o and on (b) the optimal schedule S*.

TABLE I: 20 instances of 50 jobs. The processing time p drawn from the interval [1, 50]. The instances that are not shown in the table were
solved optimally.

N Emerging job Overflow job LB,) T° LB, K Aprox. ratio
n b d, "o Do dy Lo 9o G

9 17 42 638 88 30 602 100 467 702 59 41 769 728 17.7 1.0563

20 4 28 1236 108 31 1069 31 0 1100 27 4 1101 1096 274 1.0036

TABLE 2: 20 instances of 200 jobs. The processing time p drawn from the interval [1, 50]. The instances that are not shown in the table were
solved optimally.

N bmergingjob Overflow job LB, & T° LB, K Aprox. ratio
LS b d, "o Po dy Ly g0 G
28 38 4267 843 6 3187 818 283 4005 811 7 4288 4281 611.5 1.0016
64 42 3520 1200 30 3470 411 0 3881 393 18 4005 3987 221.5 1.0045
TABLE 3: 20 instances of 800 jobs. The processing time p drawn from the interval [1, 50].
N Emerging job Overflow job LB,) T LB, K Aprox. ratio
n b d, 7o Do d Lo 90 G

All instances were solved optimally

TABLE 4: 20 instances of 3200 jobs. The processing time p drawn from the interval [1, 50]. The instances that are not shown in the table were
solved optimally.

N [Emergingjob Overflow job LB, & T° LB, K Aprox. ratio
" b d, o Po dy Ly 9o Gy
2 125 50 62627 30505 1 60459 9222 0 69681 9184 38 69681 69643 1832.7 1.0005

TABLE 5: 20 instances of 50 jobs. The processing time p drawn from the interval [1, 100]. The instances that are not shown in the table were

solved optimally.

N Emerging job Overflow job LB, 0 T’ LB, K Aprox. ratio
n b d; "o Do d Lo 9o G
1 688 89 935 817 82 830 65 1406 895 -13 78 2301 2223 28.5 1.0350
3 94 72 1291 155 34 164 62 2162 226 -9 71 2388 2317 32.6 1.0306
5 705 85 1795 929 31 953 36 1373 989 -24 60 2362 2302 38.3 1.0260
6 1032 82 2463 2291 43 2326 -7 0 2319 =35 28 2319 2291 81.8 1.0122
7 1737 89 2014 1877 36 1882 69 444 1951 -5 74 2395 2331 315 1.0274
8 1366 66 1925 1544 88 1573 29 753 1602 =29 58 2355 2297 39.6 1.0252
10 2067 62 2269 2127 52 2146 14 180 2160 -19 33 2340 2307 69.9 1.0143
16 291 79 1454 320 27 355 27 1971 382 =35 62 2353 2291 36.9 1.0270

8 Mathematical Problems in Engineering

TABLE 6: 20 instances of 100 jobs. The processing time p drawn from the interval [1, 100]. The instances that are not shown in the table were
solved optimally.

N Emerging job Overflow job LB, é T’ LB, K Aprox. ratio
1 b 4 "o Po dy Ly 9o G

2 1526 98 2515 1590 45 1715 -63 3001 1652 -125 62 4653 4591 74 1.0135
1137 30 1967 1189 70 1200 4 3516 1204 -11 15 4720 4705 313.6 1.0031

8 3958 68 4999 4697 10 4716 19 0 4735 -19 38 4735 4697 123.6 1.0080

12 110 78 379 139 33 139 51 4577 190 0 51 4767 4716 92.4 1.0108

13 1169 71 3905 1209 46 1317 =70 3399 1247 -108 38 4646 4608 121.2 1.0082

15 2518 80 4720 4197 55 4218 26 498 4244 =21 47 4742 4695 99.8 1.0100

17 130 76 823 238 24 203 24 4513 227 -25 49 4740 4691 95.1 1.0104

20 1402 42 4239 3227 75 3258 7 1458 3265 =31 38 4723 4685 123.2 1.0081

TABLE 7: 20 instances of 200 jobs. The processing time p drawn from the interval 1, 100]. The instances that are not shown in the table were
solved optimally.

N Emerging job Overflow job LB, é T’ LB, K Aprox. ratio
" b dy "o Do dy Lo) S
3 7688 83 9677 9389 22 9422 16 0 9438 -33 49 9438 9389 191.6 1.0052
5 4493 80 5774 4621 68 4658 7 4764 4665 =37 44 9429 9385 213.2 1.0046
6 6641 92 7665 6745 87 6812 =30 2610 6782 -67 37 9392 9355 252.8 1.0039
9 3981 61 6226 4114 76 4157 15 5265 4172 —43 58 9437 9379 161.7 1.0061
12 2325 51 8839 7306 33 7319 27 2103 7346 -13 40 9449 9409 235.2 1.0042
13 1304 100 9640 9030 22 9101 2 321 9103 =71 73 9424 9351 128 1.0078
14 3334 74 7872 3374 21 3439 4 5983 3443 —-65 69 9426 9357 135.6 1.0073
15 32 97 2879 205 83 207 77 9215 284 -2 79 9499 9420 119.2 1.0083
17 1529 94 9466 8700 53 8713 76 709 8789 -13 89 9498 9409 105.7 1.0094
18 3792 77 8322 5891 95 5896 3 3526 5899 -5 8 9425 9417 11771 1.0008
19 3987 57 7815 5509 81 5529 -3 3893 5526 =20 17 9419 9402 553 1.0018
20 3853 78 9696 8813 26 8863 5 559 8868 =55 60 9427 9367 156.1 1.0064

TaBLE 8: 20 instances of 500 jobs. The processing time p drawn from the interval 1, 100]. The instances that are not shown in the table were
solved optimally.

N Emerging job Overflow job LB, ¢ T LB, K Aprox. ratio
n)i dy "o Po dy Ly 90 S
1 2737 30 24074 21250 74 21266 5 2065 21271 -16 21 23336 23315 1110.2 1.0009
2 10786 95 18198 11566 87 11656 —4 11675 11652 -90 86 23327 23241 270.2 1.0037
3 2469 100 6761 2531 22 2553 74 20778 2627 -22 96 23405 23309 242.8 1.0041
5 28 11 16601 31 35 32 7 23299 39 -1 8 23338 23330 2916.2 1.0003
6 187 77 9189 413 39 417 35 22914 452 -4 39 23336 23297 597.3 1.0016
8 6251 94 23315 21904 26 21934 62 1397 21996 =30 92 23393 23301 253.2 1.0039
9 6313 72 21427 18378 54 18427 12 4904 18439 -49 61 23343 23282 381.6 1.0026
11 12208 70 23060 19855 67 19866 36 3465 19902 -11 47 23367 23320 496.1 1.0020
16 11401 55 24586 23297 48 23331 9 0 23340 34 43 23340 23297 541.7 1.0018
20 3181 88 17110 8493 39 8541 -1 14790 8540 -48 47 23330 23283 497.5 1.0020

TABLE 9: 20 instances of 1000 jobs. The processing time p drawn from the interval [1, 100]. The instances that are not shown in the table were
solved optimally.

N Emerging job Overflow job LB, ¢ T LB, K Aprox. ratio
n b a "o Po dy Lo 9o Co

1 48087 82 77454 54385 40 54441 -5 —4441 54436 56 51 49995 49944 979.29 1.0010

5 39909 22 99943 53552 74 53591 15 3591 53576 -39 24 49985 49961 2081.71 1.0005

9 2441 92 3451 2879 66 2882 26 47118 2908 -3 29 50026 49997 1724.03 1.0006

Mathematical Problems in Engineering

TABLE 10: 20 instances of 2000 jobs. The processing time p drawn from the interval [1, 100]. The instances that are not shown in the table

were solved optimally.

N Emerging job Overflow job LB, ¢ T LB, K Aprox. ratio
n b d, "o Do dy Lo 9o G

1 48087 82 77454 54385 40 54441 =5 45559 54436 -56 51 99995 99944 1959.69 1.0005

5 39909 22 99943 53552 74 53591 15 46409 53576 -39 24 99985 99961 4165.04 1.0002
34418 98 77808 54170 73 54182 6 45818 54188 -12 18 100006 99988 5554.89 1.0002

13 29865 51 99008 98068 9 98072 28 1928 98100 -4 32 100028 99996 3124.88 1.0003

17 53804 20 71630 54118 16 54165 30 45835 54135 47 17 99970 99953 5879.59 1.0002

18 27503 39 67807 30462 7 30474 24 69526 30498 12 36 100024 99988 277744 1.0004

19 17473 86 85224 67046 74 67060 58 32940 67118 14 72 100058 99986 1388.69 1.0007

due to Theorem 6 (A.R.), specify the parameters of the
live emerging job I and the overflow job o for the earliest
encountered kernel K € o. In addition, the lateness and
the completion time of the overflow job o, the makespan of
o0, 6(K, 1), and the corresponding « are specified. The lower
bounds from Lemma 4 in terms of lateness and makespan,
respectively, are denoted by LB, and LB,, respectively. As it
can be seen from the tables, these lower bounds turned out
to be quite strong for the tested problem instances, because
of their closeness to the objective value in o (represented in
columns labeled by L, for the maximum lateness and T for
the makespan).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

(1] J. R. Jackson, “Schedulig a production line to minimize the
maximum tardiness,” Manegement Scince Research Project,
University of California, Los Angeles, Calif, USA, 1955.

[2] L. Schrage, “Obtaining optimal solutions to resource
constrained network scheduling problems,” unpublished
manuscript, 1971.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman, San
Francisco, Calif, USA, 1979.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. G. H. R. Kan,
“Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of Discrete Mathematics, vol.
5, pp. 287-326, 1979.

[5] P. Bratley, M. Florian, and P. Robillard, “On sequencing with
earliest starts and due dates with application to computing

bounds for the (n/m/G/F,,,,) problem,” Naval Research Logistics
Quarterly, vol. 20, no. 1, pp. 57-67, 1973.

[6] C.N. Potts, “Analysis of a heuristic for one machine sequencing
with release dates and delivery times,” Operations Research, vol.
28, no. 6, pp. 1436-1441, 1980.

[7] L. A. Hall and D. B. Shmoys, “Jackson’s rule for single-machine
scheduling: making a good heuristic better;” Mathematics of
Operations Research, vol. 17, no. 1, pp. 22-35,1992.

[8] G. McMahon and M. Florian, “On scheduling with ready times
and due dates to minimize maximum lateness,” Operations
Research, vol. 23, no. 3, pp. 475-482, 1975.

>

[9] J. Carlier, “The one-machine sequencing problem,” European
Journal of Operational Research, vol. 11, no. 1, pp. 42-47, 1982.

[10] J. Grabowski, E. Nowicki, and S. Zdrzalka, “A block approach
for single-machine scheduling with release dates and due dates,”
European Journal of Operational Research, vol. 26, no. 2, pp. 278-
285, 1986.

[11] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan,
“Scheduling unit-time tasks with arbitrary release times and
deadlines;” SIAM Journal on Computing, vol. 10, no. 2, pp. 256-
269, 1981.

[12] N. Vakhania, “Single-machine scheduling with release times
and tails;” Annals of Operations Research, vol. 129, pp. 253-271,
2004.

[13] N. Vakhania, “Scheduling jobs with release times preemptively
on a single machine to minimize the number of late jobs,
Operations Research Letters, vol. 37, no. 6, pp. 405-410, 2009.

[14] N. Vakhania, “A study of single-machine scheduling problem to
maximize throughput,” Journal of Scheduling, vol. 16, no. 4, pp.
395-403, 2013.

[15] N. Vakhania, “Branch less, cut more and minimize the number
of late equal-length jobs on identical machines,” Theoretical
Computer Science, vol. 465, pp. 49-60, 2012.

B. Simons, “Multiprocessor scheduling of unit-time jobs with
arbitrary release times and deadlines,” SIAM Journal on Com-
puting, vol. 12, no. 2, pp- 294-299, 1983.

B. B. Simons and M. K. Warmuth, “A fast algorithm for
multiprocessor scheduling of unit-length jobs,” SIAM Journal
on Computing, vol. 18, no. 4, pp- 690-710, 1989.

[18] N. Vakhania, “A better algorithm for sequencing with release
and delivery times on identical machines,” Journal of Algo-
rithms, vol. 48, no. 2, pp. 273-293, 2003.

J. Carlier and E. Pinson, “An algorithm for solving the job-shop
problem;” Management Science, vol. 35, no. 2, pp. 164-176, 1989.

[20] W. Brinkkotter and P. Brucker, “Solving open benchmark
instances for the job-shop problem by parallel head-tail adjust-
ments,” Journal of Scheduling, vol. 4, no. 1, pp. 53-64, 2001.

[21] A. Gharbi and M. Labidi, “Tackson’s semi-preemptive schedul-
ing on a single machine,” Computers &> Operations Research, vol.
37,no. 12, pp. 2082-2088, 2010.

E D. Croce and V. T’kindt, “Improving the preemptive bound
for the single machine dynamic maximum lateness problem,”
Operations Research Letters, vol. 38, no. 6, pp. 589-591, 2010.

[23] J. Carlier and E. Pinson, “Jakson’s pseudo preemptive schedule

for the Pm/ri, qi/C,,,,, problem,” Annals of Operations Research,
vol. 83, pp. 41-58, 1998.

(16]

(17]

[19

(22]

10

[24] N. Vakhania and E. Shchepin, “Concurrent operations can be
parallelized in scheduling multiprocessor job shop,” Journal of
Scheduling, vol. 5, no. 3, pp. 227-245, 2002.

[25] M. Perregaard and J. Clausen, “Parallel branch-and-bound
methods for the job-shop scheduling problem,” Annals of
Operations Research, vol. 83, pp. 137-160, 1998.

[26] A. Condotta, S. Knust, and N. V. Shakhlevich, “Parallel batch
scheduling of equal-length jobs with release and due dates;”
Journal of Scheduling, vol. 13, no. 5, pp. 463-477, 2010.

[27] N. Vakhania and E. Werner, “Minimizing maximum lateness of
jobs with naturally bounded job data on a single machine in

polynomial time,” Theoretical Computer Science, vol. 501, pp. 72—
81, 2013.

Mathematical Problems in Engineering

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

