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In order to characterize the controllability of the aggregate demand response, that is, the aggregated consumer behaviors, the paper
introduces the concept of controllability index which expresses the lowest occurrence probability in total electric consumption
which can be changed by electric price. As the number of consumers is larger, it becomes difficult to directly analyze the
controllability index. To resolve the difficulty of the large number of consumers, by using the central limit theorem, the paper
approximates the controllability index and gives the solution maximizing the approximated controllability index.

1. Introduction

Real-time pricing (RTP) is a price based program on demand
response [1–7] defined as the changes in electricity usage
patterns of consumers in response to changes in electric price
or to incentive payments [1]. By controlling electricity usage,
consumers can produce the effectiveness in the same way
that an electric power plant generates electricity. Thus it is
important to implement efficacious RTP. From the viewpoint
of control theory, RTP system can be regarded as a feedback
system as shown in Figure 1. Here, output and reference
signals are total electric consumption and electricity supply
in a community, respectively, and an input signal is electric
price. RTP researches can be categorized into

(i) the stability analysis of power grids under RTP [6, 8],
(ii) the design of electric price [9–12],
(iii) the controllability analysis of the aggregate con-

sumers.

To clarify electric usage patterns of consumers when we
can reduce the peak of total electric consumption by RTP, this
paper studies (iii) which is a newproblemonRTP. To this end,
this paper considers that

(i) every consumer probabilistically has a value 1 or 0,
which means that a consumer uses electricity or not,

(ii) probabilities of electric usages of consumers depend
on electric price.

As a result, the total electric consumption which expresses
the aggregate demand response also probabilistically varies
corresponding to electric price.

In order to discuss the controllability of the aggregate
demand response, we introduce the concept of controllability
index which expresses “the lowest occurrence probability in
total electric consumption which can be changed by electric
price.” When the controllability index is large, we can largely
change the aggregate demand response by adjusting electric
price.

Unfortunately, as the number of consumers is larger, the
controllability index becomes complicated, and thus it is dif-
ficult to study the probabilitiesmaximizing the controllability
index. To resolve the problem, by using the central limit
theorem, this paper approximates the controllability index
and gives the probabilities maximizing the approximated
controllability index.

Finally, we note that the recent works of [13, 14] are
strongly related to this study. Reference [13] has studied good
consumers for performing RTP by focusing on the aggregate
demand response through some simulations. Reference [14]
has given the design principle of randomized automated
demand response machines in the viewpoint of control
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Figure 1: Real-time pricing system.

theory. However, [13, 14] have not given the performance
index of the controllability of the aggregate demand response
and have not mathematically studied the controllability.

The paper is organized as follows. Section 2 defines the
aggregate demand response system and the controllability
index. Moreover, the controllability problem is presented.
Section 3 approximates the controllability index by applying
the central limit theorem. Section 4 gives an approximate
solution of the controllability problem. Section 5 gives a vali-
dation of the approximations used in Section 3. The conclu-
sion is presented in Section 6.

The notation used throughout the paper is stated in
Notation section.

2. Controllability of Aggregate
Demand Response

2.1. Aggregate Demand Response System. We consider the
aggregate demand response system composed of 𝑁 con-
sumers as shown in Figure 2 and study its controllability to
answer how total electric consumption changes by adjusting
electric price.

The system corresponds to the group of consumers of
the RTP system illustrated in Figure 1. For each consumer
𝑖 ∈ {1, 2, . . . , 𝑁}, the input is electric price 𝑢(𝑡) ∈ [0,∞) and
the output is electric consumption 𝑥

𝑖
(𝑡) ∈ {0, 1}, where 𝑡 ∈ R.

Here, 𝑥
𝑖
(𝑡) = 0means that consumer 𝑖 does not use electricity

at time 𝑡. On the other hand, 𝑥
𝑖
(𝑡) = 1 means that consumer 𝑖

uses electricity at time 𝑡. Then the total electric consumption
is denoted by

𝑦 (𝑡) := 𝑥1 (𝑡) + 𝑥2 (𝑡) + ⋅ ⋅ ⋅ + 𝑥
𝑁 (𝑡) . (1)

We consider that the output 𝑥
𝑖
(𝑡) of consumer 𝑖 ∈

{1, 2, . . . , 𝑁} is a random variable which has the following
probability distribution:

𝑃 (𝑥
𝑖 (𝑡) = 1 | 0≤𝑢 (𝑡) < 𝛾) = 𝑝

𝑖
,

𝑃 (𝑥
𝑖 (𝑡) = 0 | 0≤𝑢 (𝑡) < 𝛾) = 1−𝑝

𝑖
,

𝑃 (𝑥
𝑖 (𝑡) = 1 | 𝑢 (𝑡) ≥ 𝛾) = 𝑞

𝑖
,

𝑃 (𝑥
𝑖 (𝑡) = 0 | 𝑢 (𝑡) ≥ 𝛾) = 1− 𝑞

𝑖
,

(2)

where 𝑝
𝑖
, 𝑞
𝑖
∈ [0, 1] are constants and 𝛾 > 0. Here, 𝛾 denotes

the threshold on the electric price 𝑢(𝑡). As a result, the total
electric consumption 𝑦(𝑡) also becomes a random variable
which has a probability distribution.

Throughout the paper, we assume

𝑞 ≤ 𝑞
𝑖
< 𝑝
𝑖
≤ 𝑝 (3)

for any 𝑖 ∈ {1, 2, . . . , 𝑁}, where 𝑞 and 𝑝 are constants satis-
fying 0 < 𝑞 < 1, 0 < 𝑝 < 1, and 𝑞 < 𝑝. This assumption
expresses the consumer buying behavior. Furthermore, we
assume that the random variables 𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑁(𝑡) are
conditionally independent given 𝑢

∗
∈ [0,∞); that is,

𝑃 (𝑥1 (𝑡) = 𝜉1, 𝑥2 (𝑡) = 𝜉2, . . . , 𝑥𝑁 (𝑡) = 𝜉
𝑁
| 𝑢 (𝑡) = 𝑢

∗
)

=

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) = 𝑢

∗
)

(4)

for any 𝜉1, 𝜉2, . . . , 𝜉𝑁 ∈ {0, 1}. This means that each electric
usage pattern of consumers is not influenced from another
consumer. The assumption is valid for the following reasons:

(i) For the aggregate demand response system illustrated
in Figure 2, if consumers can communicate with each
other, the independence is not satisfied. However,
under the situation in which consumers cannot com-
municate with each other, the assumption is valid.

(ii) In the real society, the independence may not be
satisfied due to the environmental factors such as
the temperature and the weather. However, under a
constant environment, the assumption is valid.

Remark 1. We consider that the output 𝑥
𝑖
of each consumer

only takes two values in {0, 1}. The simple setting can be
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Figure 2: Aggregate demand response system.

considered as an approximation of the real society when
we regard 1 as the average electric consumption of electric
devices.

Remark 2. In this paper, we assume that electric usage of
each consumer is modeled by (2). The model (2) can express
the behavior of the randomized automated demand response
(ADR) machine proposed in [14]. If such ADR machines
prevail in households, it is meaningful to consider the model
(2).

2.2. Controllability Index. In order to study the optimal
consumer behavior, this paper studies the controllability of
the aggregate demand response system as shown in Figure 2.
As an index of controllability, we introduce

𝐶 (𝑝, 𝑞) := min
𝑦
∗
∈{0,1,...,𝑁}

max
𝑢
∗
∈[0,∞)

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
) (5)

for

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
) := 𝑃 (𝑦 (𝑡) = 𝑦

∗
| 𝑢 (𝑡) = 𝑢

∗
) , (6)

where 𝑝 := (𝑝1, 𝑝2, . . . , 𝑝𝑁) ∈ [𝑞, 𝑝]
𝑁 and 𝑞 := (𝑞1, 𝑞2, . . .,

𝑞
𝑁
) ∈ [𝑞, 𝑝]

𝑁 denote the vectors of probabilities.
The controllability index 𝐶(𝑝, 𝑞) in (5) means the lowest

occurrence probability in the total electric consumption. For
example, Figure 3 illustrates (6) when𝑁 = 10 and

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝10 = 0.8,
𝑞1 = 𝑞2 = ⋅ ⋅ ⋅ = 𝑞10 = 0.15.

(7)

In Figure 3,

max
𝑢
∗
∈[0,∞)

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
)

= {
𝑐 (𝑝, 𝑞, 𝑦

∗
, 𝑢
∗
) ∀𝑦

∗
∈ {5, 6, . . . , 10} if 0 ≤ 𝑢

∗
< 𝛾,

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
) ∀𝑦

∗
∈ {0, 1, . . . , 4} if 𝑢∗ ≥ 𝛾

=
{

{

{

𝑐 (𝑝, 𝑞, 𝑦
∗
, 0) if 𝑦∗ ∈ {5, 6, . . . , 10} ,

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝛾) if 𝑦∗ ∈ {0, 1, . . . , 4}

(8)

and thus
𝐶 (𝑝, 𝑞) = min (𝑐 (𝑝, 𝑞, 5, 0) , 𝑐 (𝑝, 𝑞, 4, 𝛾))

= 𝑐 (𝑝, 𝑞, 5, 0) ≈ 0.0264.
(9)
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Figure 3: Illustration of (6) under (7).

If controllability index (5) is sufficiently large, we can
approximately coincide the total electric consumption 𝑦(𝑡)

with any value in {0, 1, . . . , 𝑁} by adjusting the electric price
𝑢(𝑡). Hence if controllability index (5) is sufficiently large,
we can decide to perform RTP for a community such as an
apartment composed of many consumers. Furthermore, we
can use the controllability index (5) as the design index of
ADR machines [14, 15] for performing RTP. Therefore we
want to consider the following problem.

Controllability Problem. Find 𝑝, 𝑞maximizing the controlla-
bility index 𝐶(𝑝, 𝑞).

By solving the above problem, we can obtain the optimal
consumer behavior from the viewpoint of the controllability
of the aggregate demand response.

2.3. Difficulty of the Controllability Problem. As the number
of consumers 𝑁 is larger, the optimization variables 𝑝

𝑖
, 𝑞
𝑖
,

𝑖 = 1, 2, . . . , 𝑁 for the controllability problem increase. As
a result, when 𝑁 is large, we cannot solve the controllability
problem even if we use any numerical methods. In fact, as
shown in Appendix A, we obtain

𝐶 (𝑝, 𝑞) = min
𝑦
∗
∈{0,1,...,𝑁}

max (𝑐1 (𝑝, 𝑦
∗
) , 𝑐2 (𝑞, 𝑦

∗
)) (10)

for

𝑐1 (𝑝, 𝑦
∗
)

:= ∑

(𝜉1,𝜉2,...,𝜉𝑁)∈S𝑦∗

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 0≤𝑢 (𝑡) < 𝛾) ,

(11)

𝑐2 (𝑞, 𝑦
∗
) := ∑

(𝜉1,𝜉2,...,𝜉𝑁)∈S𝑦∗

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) ≥ 𝛾) , (12)
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where

S
𝑦
∗ := {(𝜉1, 𝜉2, . . . , 𝜉𝑁) ∈ {0, 1}

𝑁
|

𝑁

∑

𝑖=1
𝜉
𝑖
=𝑦
∗
} . (13)

By substituting (2) into 𝑃(𝑥
𝑖
(𝑡) = 𝜉

𝑖
| 0 ≤ 𝑢(𝑡) < 𝛾) in (11)

and 𝑃(𝑥
𝑖
(𝑡) = 𝜉

𝑖
| 𝑢(𝑡) ≥ 𝛾) in (12), we obtain

𝑐1 (𝑝, 𝑦
∗
) = ∑

(𝑖1 ,𝑖2 ,...,𝑖𝑁)∈S̃𝑦∗
𝑝
𝑖1
𝑝
𝑖2
⋅ ⋅ ⋅ 𝑝
𝑖
𝑦
∗
(1−𝑝

𝑖
𝑦
∗
+1
)

× (1−𝑝
𝑖
𝑦
∗
+2
) ⋅ ⋅ ⋅ (1−𝑝

𝑖
𝑁

) ,

(14)

𝑐2 (𝑞, 𝑦
∗
) = ∑

(𝑖1 ,𝑖2 ,...,𝑖𝑁)∈S̃𝑦∗
𝑞
𝑖1
𝑞
𝑖2
⋅ ⋅ ⋅ 𝑞
𝑖
𝑦
∗
(1− 𝑞

𝑖
𝑦
∗
+1
)

× (1− 𝑞
𝑖
𝑦
∗
+2
) ⋅ ⋅ ⋅ (1− 𝑞

𝑖
𝑁

) ,

(15)

where

S̃
𝑦
∗ := {(𝑖1, 𝑖2, . . . , 𝑖𝑁)

∈ {1, 2, . . . , 𝑁}
𝑁
| (

1 2 ⋅ ⋅ ⋅ 𝑁

𝑖1 𝑖2 ⋅ ⋅ ⋅ 𝑖
𝑁

)∈ Sym (𝑁) , 𝑖1

< 𝑖2 < ⋅ ⋅ ⋅ < 𝑖
𝑦
∗ , 𝑖
𝑦
∗
+1 < 𝑖
𝑦
∗
+2 < ⋅ ⋅ ⋅ < 𝑖

𝑁
} .

(16)

Hence, the controllability index (5) is calculated by solving
a minimax problem for the higher-order polynomial defined
by (14) and (15).

To resolve the difficulty on the number of consumers 𝑁,
in the next section, we approximate the controllability index
(5).

3. Approximation of the Controllability Index

This section approximates controllability index (5) by the
central limit theorem [16, 17] (see Appendix H).

To this end, we define

𝜇1 := 𝐸 (𝑦 (𝑡) | 0≤𝑢 (𝑡) < 𝛾) =

𝑁

∑

𝑖=1
𝑝
𝑖
, (17)

𝜎1 := √𝑉 (𝑦 (𝑡) | 0 ≤ 𝑢 (𝑡) < 𝛾) = √

𝑁

∑

𝑖=1
(𝑝
𝑖
− 𝑝

2
𝑖
), (18)

𝜇2 := 𝐸 (𝑦 (𝑡) | 𝑢 (𝑡) ≥ 𝛾) =

𝑁

∑

𝑖=1
𝑞
𝑖
, (19)

𝜎2 := √𝑉 (𝑦 (𝑡) | 𝑢 (𝑡) ≥ 𝛾) = √

𝑁

∑

𝑖=1
(𝑞
𝑖
− 𝑞

2
𝑖
), (20)

where 𝜇1 and 𝜎1 represent the expectation and the stan-
dard deviation of the total electric consumption 𝑦(𝑡) when

0 ≤ 𝑢(𝑡) < 𝛾 and 𝜇2 and 𝜎2 represent them of 𝑦(𝑡) when
𝑢(𝑡) ≥ 𝛾. The derivation is shown in Appendix B.

The following lemma can derived by applying the central
limit theorem as shown in Appendix H.

Lemma 3. For 𝑖 ∈ {1, 2}, (𝑦(𝑡) − 𝜇
𝑖
)/𝜎
𝑖
converges in distri-

bution to the standard Gaussian random variable.

The proof of Lemma 3 is given in Appendix C.
Furthermore, as shown in Appendix D, we obtain

𝑐1 (𝑝, 𝑦
∗
) = 𝑃 (𝑦 (𝑡) = 𝑦

∗
| 0≤𝑢 (𝑡) < 𝛾) , (21)

𝑐2 (𝑞, 𝑦
∗
) = 𝑃 (𝑦 (𝑡) = 𝑦

∗
| 𝑢 (𝑡) ≥ 𝛾) , (22)

where 𝑐1(𝑝, 𝑦
∗
) and 𝑐2(𝑞, 𝑦

∗
) are defined by (11) and (12),

respectively.
Hence if𝑁 is sufficiently large, by Lemma 3, (21), and (22),

we can consider that
𝑐1 (𝑝, 𝑦

∗
) ≈ 𝑓1 (𝑦

∗
, 𝑝) ,

𝑐2 (𝑞, 𝑦
∗
) ≈ 𝑓2 (𝑦

∗
, 𝑞)

(23)

for

𝑓1 (𝑦
∗
, 𝑝) :=

1
√2𝜋𝜎1

exp(−
(𝑦
∗
− 𝜇1)

2

2𝜎2
1

) ,

𝑓2 (𝑦
∗
, 𝑞) :=

1
√2𝜋𝜎2

exp(−
(𝑦
∗
− 𝜇2)

2

2𝜎2
2

) .

(24)

We alsowrite𝑓1(𝑦
∗
, 𝑝) and𝑓2(𝑦

∗
, 𝑞) as𝑓1(𝑦

∗
, 𝑝1, 𝑝2, . . . , 𝑝𝑁)

and 𝑓2(𝑦
∗
, 𝑞1, 𝑞2, . . . , 𝑞𝑁), respectively. Therefore if 𝑁 is

sufficiently large, the controllability index (5) can be approx-
imated as

𝐶 (𝑝, 𝑞) ≈ 𝐶 (𝑝, 𝑞) (25)
for

𝐶 (𝑝, 𝑞) := min
𝑦
∗
∈{0,1,...,𝑁}

max (𝑓1 (𝑦
∗
, 𝑝) , 𝑓2 (𝑦

∗
, 𝑞)) . (26)

We call (26) the approximated controllability index. In
Section 5, we give further validation of the approximations
(23) and (25) through simulations.

4. Controllability Analysis

This section gives an approximate solution of the control-
lability problem as mentioned in Section 2.2 by using the
approximated controllability index (26).

In order to study 𝑝 and 𝑞 maximizing the approximated
controllability index (26), we first clarify the probabilities
𝑝 and 𝑞 such that variances of 𝑓1(𝑦

∗
, 𝑝) and 𝑓2(𝑦

∗
, 𝑞) are

maximized under the constraints that means 𝑓1(𝑦
∗
, 𝑝) and

𝑓2(𝑦
∗
, 𝑞) are constants. Namely, we first solve

max
𝑝1 ,𝑝2,...,𝑝𝑁

𝑁

∑

𝑖=1
(𝑝
𝑖
−𝑝

2
𝑖
)

s.t.
𝑁

∑

𝑖=1
𝑝
𝑖
= 𝛼𝑁,

(27)

where 0 ≤ 𝛼 ≤ 1.
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Lemma 4. Probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑁 are the solution of the
optimization problem (27) if and only if

𝑝
𝑖
= 𝛼 (𝑖 = 1, 2, . . . , 𝑁) . (28)

The proof of Lemma 4 is given in Appendix E.
The following lemma shows that if the mean of 𝑓1(𝑦

∗
, 𝑝)

is equal to that of 𝑓2(𝑦
∗
, 𝑞) and if 𝑁 is sufficiently large,

the magnitude relationship of variances between 𝑓1(𝑦
∗
, 𝑝)

and 𝑓2(𝑦
∗
, 𝑞) corresponds to that of values of 𝑓1(𝑦

∗
, 𝑝) and

𝑓2(𝑦
∗
, 𝑞).

Lemma 5. Let

𝑔
𝑖
(𝑦) :=

1
√2𝜋V

𝑖

exp(−
(𝑦 − 𝑚

𝑖
)
2

2V2
𝑖

) , 𝑖 = 1, 2. (29)

If𝑚1 = 𝑚2 = 𝑘𝑁 (0 < 𝑘 < 1), V1 ≥ V2, and if

𝑁 > √
1

(𝛽 − 𝑘)
2

V21V
2
2

V21 − V22
ln

V21
V22

(30)

for 0 ≤ 𝛽 ≤ 1 (𝛽 ̸= 𝑘), then

𝑔1 (𝛽𝑁) ≥ 𝑔2 (𝛽𝑁) . (31)

The equality of (31) holds if and only if V1 = V2.

The proof of Lemma 5 is given in Appendix F.
By applying Lemmas 4 and 5, we can give 𝑝 and 𝑞

maximizing the approximated controllability index (26).

Theorem 6. If 𝑁 is sufficiently large, 𝑝 ∈ (0, 1)𝑁 and 𝑞 ∈

(0, 1)𝑁 are the solution of

max
𝑝,𝑞

𝐶 (𝑝, 𝑞) (32)

if and only if

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝
𝑁
=
3
4
,

𝑞1 = 𝑞2 = ⋅ ⋅ ⋅ = 𝑞
𝑁
=
1
4
.

(33)

The proof of Theorem 6 is given in Appendix G.
If a pair of 𝑝 and 𝑞 is composed of the solution (33), the

means of 𝑓1(𝑦
∗
, 𝑝) and 𝑓2(𝑦

∗
, 𝑞) are 𝜇1 = (3/4)𝑁 and 𝜇2 =

(1/4)𝑁, respectively. Furthermore, then Lemma 4 implies
that the variances of 𝑓1(𝑦

∗
, 𝑝) and 𝑓2(𝑦

∗
, 𝑞) are maximized

under 𝜇1 = (3/4)𝑁 and 𝜇2 = (1/4)𝑁 and are 𝜎2
1 = 𝜎

2
2 =

(3/16)𝑁. As a result, the approximated controllability index
𝐶(𝑝, 𝑞) in the case of (33) is larger than the index 𝐶(𝑝, 𝑞) in
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Figure 4: Comparison with (33) and (34).

other cases with 𝜇1 = (3/4)𝑁 and 𝜇2 = (1/4)𝑁. For example,
Figure 4 illustrates the cases of (33) and

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝500 =
9
10

,

𝑝501 = 𝑝502 = ⋅ ⋅ ⋅ = 𝑝1000 =
6
10

,

𝑞1 = 𝑞2 = ⋅ ⋅ ⋅ = 𝑞500 =
1
10

,

𝑞501 = 𝑞502 = ⋅ ⋅ ⋅ = 𝑞1000 =
4
10

(34)

when the number of consumers 𝑁 is 1000. As shown in
Figure 4, the approximated controllability index 𝐶(𝑝, 𝑞) in
the case of (33) is larger than the index 𝐶(𝑝, 𝑞) in the case
of (34) because the variances 𝜎2

1 = 𝜎
2
2 = (3/16)𝑁 of 𝑓1(𝑦

∗
, 𝑝)

and 𝑓2(𝑦
∗
, 𝑞) in the case of (33) are larger than the variances

𝜎
2
1 = 𝜎

2
2 = (33/200)𝑁 of 𝑓1(𝑦

∗
, 𝑝) and 𝑓2(𝑦

∗
, 𝑞) in the

case of (34). Moreover, Theorem 6 shows that if the means
of 𝑓1(𝑦

∗
, 𝑝) and 𝑓2(𝑦

∗
, 𝑞) are not equal to 𝜇1 = (3/4)𝑁 and

𝜇2 = (1/4)𝑁, the approximated controllability index 𝐶(𝑝, 𝑞)
is smaller than the index in the case of (33). For example,
Figure 5 illustrates the cases of (33) and

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝1000 =
4
5
,

𝑞1 = 𝑞2 = ⋅ ⋅ ⋅ = 𝑞1000 =
1
3

(35)

when the number of consumers 𝑁 is 1000. As shown in
Figure 5, the approximated controllability index 𝐶(𝑝, 𝑞) in
the case of (33) is larger than the index 𝐶(𝑝, 𝑞) in the case
of (35).

From (25) and Theorem 6, we can give an approximate
solution of the controllability problem as mentioned in
Section 2.2.
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Figure 5: Comparison with (33) and (35).

Approximate Solution of the Controllability Problem. When
the number of consumers𝑁 is large, an approximate solution
of the controllability problem is (33).

We note two points on the approximate solution (33):

(i) The approximate solution (33) does not depend on
the number of consumers 𝑁; that is, we can easily
implement this result into the ADR machine for
performing RTP.

(ii) The approximate solution (33) does not depend on the
threshold 𝛾 on the electric price 𝑢(𝑡). This is because
the controllability index 𝐶(𝑝, 𝑞) in (5) is invariant for
any change of the threshold 𝛾. In fact, as shown in
Section 2.3, the controllability index 𝐶(𝑝, 𝑞) is equal
to min

𝑦
∗
∈{0,1,...,𝑁}max(𝑐1(𝑝, 𝑦

∗
), 𝑐2(𝑞, 𝑦

∗
)) in (10) and

the functions 𝑐1(𝑝, 𝑦
∗
) and 𝑐2(𝑞, 𝑦

∗
) are defined by

(11) and (12), respectively. It seems that (11) and (12)
depend on the threshold 𝛾. However, by substituting
(2) into (11) and (12), 𝑐1(𝑝, 𝑦

∗
) and 𝑐2(𝑞, 𝑦

∗
) are

given in (14) and (15), which are independent of the
threshold 𝛾, respectively. Hence the controllability
index𝐶(𝑝, 𝑞) is invariant for any change of 𝛾, and thus
the approximate solution (33) does not depend on 𝛾.

5. Validation of the Approximations
(23) and (25)

In Section 3, the controllability index (5) has been approx-
imated into the index (26). This section demonstrates a
validation of the approximation based on simulations. To this
end, first, we examine a validation of the approximation (23).
Consider the maximum error of 𝑐1(𝑝, 𝑦

∗
) and 𝑓1(𝑦

∗
, 𝑝) on

𝑦
∗
∈ {0, 1, . . . , 𝑁}:

max
𝑦
∗
∈{0,1,...,𝑁}

𝑐1 (𝑝, 𝑦
∗
) −𝑓1 (𝑦

∗
, 𝑝)

 (36)
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Figure 6: The relation of (36) and𝑁 in the case of (37).

at fixed 𝑝1, 𝑝2, . . . , 𝑝𝑁. Figures 6 and 7 illustrate the relation
of (36) and𝑁 in the cases of

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝
𝑁
=
5
6
, (37)

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝
𝑁
=
3
4
, (38)

respectively. On the other hand, Figures 8 and 9 illustrate the
relations of (36) and𝑁 in the cases of

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝
𝑁1

=
4
5
,

𝑝
𝑁1+1 = 𝑝

𝑁1+2 = ⋅ ⋅ ⋅ = 𝑝
𝑁
=
2
3
,

(39)

𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝
𝑁1

=
1
2
,

𝑝
𝑁1+1 = 𝑝

𝑁1+2 = ⋅ ⋅ ⋅ = 𝑝
𝑁
=
1
3

(40)

for 𝑁1 := round(𝑁 × 0.7), where round(⋅) denotes the
round off number of (⋅). Figures 6, 7, 8, and 9 show that as
the number of consumers 𝑁 is larger, (36) becomes smaller.
We have the same conclusion for different 𝑝1, 𝑝2, . . . , 𝑝𝑁.
Hence we can observe that 𝑐1(𝑝, 𝑦

∗
) ≈ 𝑓1(𝑦

∗
, 𝑝) when

𝑁 is sufficiently large. Similarly, we can also observe that
𝑐2(𝑞, 𝑦

∗
) ≈ 𝑓2(𝑦

∗
, 𝑞)when𝑁 is sufficiently large. Hence if the

number of consumers 𝑁 is sufficiently large, we can obtain
the relation (23).

From the above discussion, if𝑁 is sufficiently large,

𝐶 (𝑝, 𝑞)

≈ min
𝑦
∗
∈{0,1,...,𝑁}

max (𝑓1 (𝑦
∗
, 𝑝) , 𝑓2 (𝑦

∗
, 𝑞)) =𝐶 (𝑝, 𝑞) ;

(41)

that is, we have (25). As a result, if the number of consumers
𝑁 is sufficiently large, the approximate solution (33) of the
controllability problem is valid.
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Figure 7: The relation of (36) and𝑁 in the case of (38).
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Figure 8: The relation of (36) and𝑁 in the case of (39).
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Figure 9: The relation of (36) and𝑁 in the case of (40).

6. Conclusion

We have introduced the controllability index of the aggregate
demand response system. By applying the central limit the-
orem, we have shown that if every consumer uses electricity
at probability 0.75 when electric price is less than or equal
to the threshold and if every consumer uses electricity at
probability 0.25 when electric price is greater than the thresh-
old, the controllability index is approximately maximized.
The optimal consumer behavior can be implemented to the
automated demand response machine proposed in [14] for
performing RTP. Currently, we have studied the case with
several thresholds on the electric price.

Appendices

A. Proof of (10)

The function 𝑐(𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
) in (5) can be expressed by

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
)

= 𝑃(

𝑁

∑

𝑖=1
𝑥
𝑖 (𝑡) = 𝑦

∗
| 𝑢 (𝑡) = 𝑢

∗
)

(A.1)

= ∑

(𝜉1,𝜉2,...,𝜉𝑁)∈S𝑦∗
𝑃 (𝑥1 (𝑡) = 𝜉1, 𝑥2 (𝑡) = 𝜉2, . . . , 𝑥𝑁 (𝑡)

= 𝜉
𝑁
| 𝑢 (𝑡) = 𝑢

∗
)

(A.2)

= ∑

(𝜉1,𝜉2,...,𝜉𝑁)∈S𝑦∗

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (t) = 𝜉

𝑖
| 𝑢 (𝑡) = 𝑢

∗
) . (A.3)

The equality (A.1) obeys (1) and (A.2) follows from the fact
that each element of 𝑆

𝑦
∗ generates mutually exclusive events,

and (A.3) obeys (4).
On the other hand, (2) implies that there exists 0 ≤ 𝑢

∗
< 𝛾

such that
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 0≤𝑢 (𝑡) < 𝛾)

= 𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) = 𝑢

∗
)

(A.4)

and there exists 𝑢∗ ≥ 𝛾 such that

𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) ≥ 𝛾)

= 𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) = 𝑢

∗
) .

(A.5)

Therefore (A.3) implies that

max
0≤𝑢∗<𝛾

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
)

= max
0≤𝑢∗<𝛾

( ∑

(𝜉1 ,𝜉2,...,𝜉𝑁)∈S𝑦∗

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) = 𝑢

∗
))

= ∑

(𝜉1 ,𝜉2,...,𝜉𝑁)∈S𝑦∗

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 0≤𝑢 (𝑡) < 𝛾)

=: 𝑐1 (𝑝, 𝑦
∗
) .

(A.6)
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Similarly,

max
𝑢
∗
≥𝛾

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
)

= ∑

(𝜉1 ,𝜉2,...,𝜉𝑁)∈S𝑦∗

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) ≥ 𝛾)

=: 𝑐2 (𝑞, 𝑦
∗
) .

(A.7)

Equations (A.6) and (A.7) imply that

max
𝑢
∗
∈[0,∞)

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
)

= max( max
0≤𝑢∗<𝛾

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
) ,max
𝑢
∗
≥𝛾

𝑐 (𝑝, 𝑞, 𝑦
∗
, 𝑢
∗
))

= max (𝑐1 (𝑝, 𝑦
∗
) , 𝑐2 (𝑞, 𝑦

∗
)) .

(A.8)

Hence (5) and (A.8) yield (10).

B. Proof of (17), (18), (19), and (20)

First, we prove (17). Equation (2) yields

𝐸 (𝑥
𝑖 (𝑡) | 0≤𝑢 (𝑡) < 𝛾) = 𝑝

𝑖
. (B.1)

Hence by the definition (1) of 𝑦(𝑡),

𝜇1 := 𝐸 (𝑦 (𝑡) | 0≤𝑢 (𝑡) < 𝛾)

=

𝑁

∑

𝑖=1
𝐸 (𝑥
𝑖 (𝑡) | 0≤𝑢 (𝑡) < 𝛾) =

𝑁

∑

𝑖=1
𝑝
𝑖
.

(B.2)

Next, we prove (18).The claim that there exists 𝑢∗ ∈ [0, 𝛾)
such that 𝑢(𝑡) = 𝑢

∗ is equivalent to 0 ≤ 𝑢(𝑡) < 𝛾. Hence there
exists 𝑢∗ ∈ [0, 𝛾) such that

𝑉 (𝑥
𝑖 (𝑡) | 0≤𝑢 (𝑡) < 𝛾) = 𝑉 (𝑥

𝑖 (𝑡) | 𝑢 (𝑡) = 𝑢
∗
)

= 𝑝
𝑖
−𝑝

2
𝑖
.

(B.3)

Here, the last equality follows from (2). Therefore (4) implies
that there exists 𝑢∗ ∈ [0, 𝛾) such that

𝜎1 := √𝑉 (𝑦 (𝑡) | 0 ≤ 𝑢 (𝑡) < 𝛾)

= √

𝑁

∑

𝑖=1
𝑉 (𝑥
𝑖 (𝑡) | 𝑢 (𝑡) = 𝑢∗) = √

𝑁

∑

𝑖=1
(𝑝
𝑖
− 𝑝

2
𝑖
).

(B.4)

Similarly, we can prove (19) and (20).

C. Proof of Lemma 3

Let 𝑥
𝑖
(𝑡) := 𝐸(𝑥

𝑖
(𝑡) | 0 ≤ 𝑢(𝑡) < 𝛾) = 𝑝

𝑖
.Then (2) implies that

𝐸 (
𝑥𝑖 (𝑡) − 𝑥

𝑖 (𝑡)


3
| 0≤𝑢 (𝑡) < 𝛾)

= 𝑝
𝑖

1−𝑝
𝑖



3
+ (1−𝑝

𝑖
)
0−𝑝
𝑖



3

= (𝑝
𝑖
−𝑝

2
𝑖
) (1+ 2𝑝

𝑖
(𝑝
𝑖
− 1)) ≤ (𝑝

𝑖
−𝑝

2
𝑖
) .

(C.1)

Hence we obtain
𝑁

∑

𝑖=1
𝐸 (

𝑥𝑖 (𝑡) − 𝑥
𝑖 (𝑡)



3
| 0≤𝑢 (𝑡) < 𝛾) ≤ 𝜎

2
1 . (C.2)

Therefore if

lim
𝑁→∞

𝜎1 = ∞, (C.3)

then

lim
𝑁→∞

1
𝜎
3
1

𝑁

∑

𝑖=1
𝐸 (

𝑥𝑖 (𝑡) − 𝑥
𝑖 (𝑡)



3
| 0≤𝑢 (𝑡) < 𝛾) = 0, (C.4)

so that the Lyapunov condition is satisfied (see Appendix H).
On the other hand, since we have assumed (3) and since
𝜎1 is defined by (18), (C.3) is satisfied. Hence, since the
Lyapunov condition implies the Lindeberg condition, by
Proposition H.1 in Appendix H, (𝑦(𝑡) − 𝜇1)/𝜎1 converges in
distribution to the standard Gaussian random variable.

Similarly, by the central limit theorem, (𝑦(𝑡) − 𝜇2)/𝜎2
converges in distribution to the standard Gaussian random
variable.

D. Proof of (21) and (22)

For all 𝑢∗ ∈ [0, 𝛾), we have

𝑃 (𝑦 (𝑡) = 𝑦
∗
| 𝑢 (𝑡) = 𝑢

∗
)

= 𝑃(

𝑛

∑

𝑖=1
𝑥
𝑖 (𝑡) = 𝑦

∗
| 𝑢 (𝑡) = 𝑢

∗
)

= ∑

(𝜉1 ,𝜉2,...,𝜉𝑁)∈S𝑦∗

𝑁

∏

𝑖=1
𝑃 (𝑥
𝑖 (𝑡) = 𝜉

𝑖
| 𝑢 (𝑡) = 𝑢

∗
) .

(D.1)

Here, the last equality is derived from (4). Since 𝑢
∗ is any

value in [0, 𝛾) and 𝑐1(𝑝, 𝑦
∗
) is defined by (11), we obtain (21).

Similarly, we have (22).

E. Proof of Lemma 4

Let

𝐿 (𝑝1, 𝑝2, . . . , 𝑝𝑁, 𝜆) :=
𝑁

∑

𝑖=1
(𝑝
𝑖
−𝑝

2
𝑖
)

+ 𝜆(

𝑁

∑

𝑖=1
𝑝
𝑖
−𝛼𝑁) .

(E.1)

Then a necessary condition [18] for 𝑝
𝑖
to be a solution of

optimization problem (27) is

𝜕𝐿

𝜕𝑝
𝑖

= 1− 2𝑝
𝑖
+𝜆 = 0, 1 ≤ 𝑖 ≤ 𝑁, (E.2)

𝜕𝐿

𝜕𝜆
=

𝑁

∑

𝑖=1
𝑝
𝑖
−𝛼𝑁 = 0. (E.3)
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Equation (E.2) implies 𝑝
𝑖
= (1 + 𝜆)/2. This and (E.3) yield

𝜆 = 2𝛼 − 1. Thus we get 𝑝
𝑖
= 𝛼.

Putting 𝑝 := (𝑝1, 𝑝2, . . . , 𝑝𝑁),

𝜕
2
𝐿

𝜕𝑝2 (𝛼, 𝛼, . . . , 𝛼, 2𝛼− 1) = − 2𝐼
𝑁
< 0, (E.4)

where 𝐼
𝑁
denotes the identity matrix of size𝑁. Since 𝑝

𝑖
= 𝛼

and 𝜆 = 2𝛼 − 1 satisfy (E.2) and (E.3), the relation (E.4)
is a sufficient condition [18] for (28) to be a solution of
optimization problem (27).

F. Proof of Lemma 5

By direct calculation,

𝑔1 (𝛽𝑁)

𝑔2 (𝛽𝑁)
=
V2
V1

exp(
(𝛽 − 𝑘)

2
𝑁

2

2
V1 + V2
V21V22

(V1 − V2)) . (F.1)

Thus the relation (30) is satisfied; we have (31).

G. Proof of Theorem 6

We show that if 𝑁 is sufficiently large, for any 𝑝
𝑖
, 𝑞
𝑖

∈

(0, 1) (𝑖 = 1, 2, . . . , 𝑁),

𝐶 (𝑝, 𝑞) ≤ 𝑓1 (𝑁,
3
4
,
3
4
, . . . ,

3
4
)

= 𝑓2 (0,
1
4
,
1
4
, . . . ,

1
4
)

= 𝑓1 (
1
2
𝑁,

3
4
,
3
4
, . . . ,

3
4
)

= 𝑓2 (
1
2
𝑁,

1
4
,
1
4
, . . . ,

1
4
)

= √
8

3𝜋𝑁
exp(−𝑁

6
)

(G.1)

with equality if and only if (33) holds.
If 𝑁 is sufficiently large, for any 𝑝

𝑖
∈ (0, 1) (𝑖 = 1, 2,

. . . , 𝑁) satisfying∑𝑁
𝑖=1 𝑝𝑖 ≤ (3/4)𝑁,

𝑓1 (𝑁, 𝑝1, 𝑝2 . . . , 𝑝𝑁) ≤ 𝑓1 (𝑁,
3
4
,
3
4
, . . . ,

3
4
) . (G.2)

In fact, if𝑁 is sufficiently large, Lemmas 4 and 5 imply for any
𝑝
𝑖
∈ (0, 1) (𝑖 = 1, 2, . . . , 𝑁) satisfying∑𝑁

𝑖=1 𝑝𝑖 = 𝛼𝑁, 𝛼 ≤ 3/4,

𝑓1 (𝑁, 𝑝1, 𝑝2, . . . , 𝑝𝑁) ≤ 𝑓1 (𝑁, 𝛼, 𝛼, . . . , 𝛼) . (G.3)

Furthermore, by a direct calculation,

𝑓1 (𝑁, 3/4, 3/4, . . . , 3/4)
𝑓1 (𝑁, 𝛼, 𝛼, . . . , 𝛼)

=
√
16 (𝛼 − 𝛼

2
)

3
exp(3 − 4𝛼

6𝛼
𝑁) .

(G.4)

Hence if𝑁 ≥ (3𝛼/(3 − 4𝛼)) ln(3/16(𝛼 − 𝛼
2
)),

𝑓1 (𝑁, 𝛼, 𝛼, . . . , 𝛼) ≤ 𝑓1 (𝑁,
3
4
,
3
4
, . . . ,

3
4
) . (G.5)

Thus if 𝑁 is sufficiently large, for any 𝑝
𝑖
∈ (0, 1) (𝑖 = 1, 2,

. . . , 𝑁) satisfying ∑𝑁
𝑖=1 𝑝𝑖 ≤ (3/4)𝑁, (G.2) holds. Similarly, if

𝑁 is sufficiently large, for any 𝑞
𝑖
∈ (0, 1) (𝑖 = 1, 2, . . . , 𝑁)

satisfying∑𝑁
𝑖=1 𝑞𝑖 ≥ (1/4)𝑁,

𝑓2 (0, 𝑞1, 𝑞2, . . . , 𝑞𝑁) ≤ 𝑓2 (0,
1
4
,
1
4
, . . . ,

1
4
) . (G.6)

On the other hand, when 𝑝
𝑖
, 𝑞
𝑖
∈ (0, 1) (𝑖 = 1, 2, . . . , 𝑁)

satisfy ∑𝑁
𝑖=1 𝑝𝑖 ≤ (3/4)𝑁 or ∑𝑁

𝑖=1 𝑞𝑖 ≥ (1/4)𝑁, (3) yields

𝐶 (𝑝, 𝑞) = min (𝑓1 (𝑁, 𝑝1, 𝑝2, . . . , 𝑝𝑁) ,

𝑓2 (0, 𝑞1, 𝑞2, . . . , 𝑞𝑁)) .
(G.7)

Therefore if 𝑁 is sufficiently large, for any 𝑝
𝑖
, 𝑞
𝑖
∈ (0, 1) (𝑖 =

1, 2, . . . , 𝑁) satisfying ∑𝑁
𝑖=1 𝑝𝑖 ≤ (3/4)𝑁 or ∑𝑁

𝑖=1 𝑞𝑖 ≥ (1/4)𝑁,
(G.2), (G.6), and (G.7) yield

𝐶 (𝑝, 𝑞)

≤ min(𝑓1 (𝑁,
3
4
,
3
4
, . . . ,

3
4
) , 𝑓2 (0,

1
4
,
1
4
, . . . ,

1
4
))

= √
8

3𝜋𝑁
exp(−𝑁

6
) .

(G.8)

Hence then we have (G.1).
Next, we show that if𝑁 is sufficiently large, for any𝑝

𝑖
, 𝑞
𝑖
∈

(0, 1) (𝑖 = 1, 2, . . . , 𝑁) satisfying ∑
𝑁

𝑖=1 𝑝𝑖 ≥ (3/4)𝑁 and
∑
𝑁

𝑖=1 𝑞𝑖 ≤ (1/4)𝑁, (G.1) also holds. By Lemmas 4 and 5, if
𝑁 is sufficiently large, for any 𝑝

𝑖
∈ (0, 1) (𝑖 = 1, 2, . . . , 𝑁)

satisfying∑𝑁
𝑖=1 𝑝𝑖 = 𝛽𝑁 (𝛽 ≥ 3/4),

𝑓1 (
1
2
𝑁,𝑝1, 𝑝2, . . . , 𝑝𝑁) ≤ 𝑓1 (

1
2
𝑁,𝛽, 𝛽, . . . , 𝛽) . (G.9)

Moreover,

𝑓1 ((1/2)𝑁, 𝛽, 𝛽, . . . , 𝛽)

𝑓1 ((1/2)𝑁, 3/4, 3/4, . . . , 3/4)

= √
3

16 (𝛽 − 𝛽2)

× exp(−1
2
(𝛽 − 1/4) (𝛽 − 3/4)

𝛽 (1 − 𝛽)
𝑁) .

(G.10)

Thus if𝑁 ≥ (𝛽(1 − 𝛽)/(𝛽 − 1/4)(𝛽 − 3/4)) ln(3/16(𝛽 − 𝛽
2
)),

𝑓1 (
1
2
𝑁,𝛽, 𝛽, . . . , 𝛽) ≤ 𝑓1 (

1
2
𝑁,

3
4
,
3
4
, . . . ,

3
4
) . (G.11)

Therefore (G.9) and (G.11) imply that if𝑁 is sufficiently large,
for any 𝑝

𝑖
∈ (0, 1) (𝑖 = 1, 2, . . . , 𝑁) satisfying ∑

𝑁

𝑖=1 𝑝𝑖 ≥

(3/4)𝑁,

𝑓1 (
1
2
𝑁,𝑝1, 𝑝2 . . . , 𝑝𝑁) ≤ 𝑓1 (

1
2
𝑁,

3
4
,
3
4
, . . . ,

3
4
) . (G.12)
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Similarly, we can show that if 𝑁 is sufficiently large, for any
𝑞
𝑖
∈ (0, 1) (𝑖 = 1, 2, . . . , 𝑁) satisfying∑𝑁

𝑖=1 𝑞𝑖 ≤ (1/4)𝑁,

𝑓2 (
1
2
𝑁, 𝑞1, 𝑞2 . . . , 𝑞𝑁) ≤ 𝑓2 (

1
2
𝑁,

1
4
,
1
4
, . . . ,

1
4
) . (G.13)

On the other hand, when 𝑝
𝑖
, 𝑞
𝑖
∈ (0, 1) (𝑖 = 1, 2, . . . , 𝑁)

satisfy∑𝑁
𝑖=1 𝑝𝑖 ≥ (3/4)𝑁 and ∑

𝑁

𝑖=1 𝑞𝑖 ≤ (1/4)𝑁, (3) yields

𝐶 (𝑝, 𝑞) ≤ max(𝑓1 (
1
2
𝑁,𝑝1, 𝑝2, . . . , 𝑝𝑁) ,

𝑓2 (
1
2
𝑁, 𝑞1, 𝑞2, . . . , 𝑞𝑁)) .

(G.14)

Hence if 𝑁 is sufficiently large, for any 𝑝
𝑖
, 𝑞
𝑖
∈ (0, 1) (𝑖 =

1, 2, . . . , 𝑁) satisfying ∑
𝑁

𝑖=1 𝑝𝑖 ≥ (3/4)𝑁 and ∑
𝑁

𝑖=1 𝑞𝑖 ≤

(1/4)𝑁, (G.12), (G.13), and (G.14) yield

𝐶 (𝑝, 𝑞) ≤ max(𝑓1 (
1
2
𝑁,

3
4
,
3
4
, . . . ,

3
4
) ,

𝑓2 (
1
2
𝑁,

1
4
,
1
4
, . . . ,

1
4
)) = √

8
3𝜋𝑁

exp(−𝑁
6
) .

(G.15)

Therefore then we have (G.1).
Finally, we show that the equality condition of (G.1) is to

hold (33). Lemmas 4 and 5 imply that

𝑓1 (𝑦
∗
, 𝑝1, 𝑝2, . . . , 𝑝𝑁) = 𝑓1 (𝑦

∗
,
3
4
,
3
4
, . . . ,

3
4
) (G.16)

if and only if 𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝
𝑁
= 3/4. Similarly, Lemmas 4

and 5 imply that

𝑓2 (𝑦
∗
, 𝑞1, 𝑞2, . . . , 𝑞𝑁) = 𝑓2 (𝑦

∗
,
1
4
,
1
4
, . . . ,

1
4
) (G.17)

if and only if 𝑞1 = 𝑞2 = ⋅ ⋅ ⋅ = 𝑞
𝑁

= 1/4. Therefore
𝑝1, 𝑝2, . . . , 𝑝𝑁 and 𝑞1, 𝑞2, . . . , 𝑞𝑁 are the solution of (32) if and
only if (33) holds.

H. Central Limit Theorem

For the convenience of readers, the appendix summarizes the
central limit theorem. We refer [16].

A sequence of random variables {𝑋
𝑖
} is said to converge

in distribution to a random variable𝑋 if

lim
𝑛→∞

𝐹
𝑛 (𝑥) = 𝐹 (𝑥) (H.1)

for any 𝑥 ∈ R at which 𝐹 is continuous, where 𝐹
𝑛
and 𝐹

are the distribution functions of random variables 𝑋
𝑛
and

𝑋, respectively. The following proposition is known as the
central limit theorem [16].

Proposition H.1. Let {𝑋
𝑖
} be a sequence of independent

random variables with 𝐸(𝑋
𝑖
) = 𝜇
𝑖
and 𝑉(𝑋

𝑖
) = 𝜎

2
𝑖
, and let

𝐴
𝑛
:= 𝜇1 +𝜇2 + ⋅ ⋅ ⋅ + 𝜇

𝑛
,

𝐵
𝑛
:= √𝜎

2
1 + 𝜎

2
2 + ⋅ ⋅ ⋅ + 𝜎2

𝑛
.

(H.2)

If

lim
𝑛→∞

1
𝐵2
𝑛

𝑛

∑

𝑖=1
𝐸 (

𝑋𝑖 − 𝜇
𝑖



2
⋅ 1
{|𝑋
𝑖
−𝜇
𝑖
|≥𝜖𝐵
𝑛
}
) = 0 (H.3)

is satisfied for any 𝜖 > 0,

𝑋1 + 𝑋2 + ⋅ ⋅ ⋅ + 𝑋
𝑛
− 𝐴
𝑛

𝐵
𝑛

(H.4)

converges in distribution to the standard Gaussian random
variable, where 1

{⋅}
denotes the indicator function.

Note that Proposition H.1 guarantees that if condition
(H.3) called the Lindeberg condition is satisfied, standardized
sums of independent random variables converge in distri-
bution to the standard Gaussian random variable without
the assumption that the random variables are identically
distributed.

The following condition called the Lyapunov condition
is a sufficient condition for the Lindeberg condition (H.3) to
hold [16]. There exists 𝛿 > 0 such that

lim
𝑛→∞

1
𝐵2+𝛿
𝑛

𝑛

∑

𝑖=1
𝐸(

𝑋𝑖 −𝜇
𝑖



2+𝛿
) = 0. (H.5)

In fact, since |𝑋
𝑖
− 𝜇
𝑖
| ≥ 𝜖𝐵

𝑛
yields |(𝑋

𝑖
− 𝜇
𝑖
)/𝜖𝐵
𝑛
|
𝛿
≥ 1, for

any 𝜖 > 0,

1
𝐵2
𝑛

𝑛

∑

𝑖=1
𝐸 (

𝑋𝑖 −𝜇
𝑖



2
⋅ 1
{|𝑋
𝑖
−𝜇
𝑖
|≥𝜖𝐵
𝑛
}
)

≤
1
𝐵2
𝑛

𝑛

∑

𝑖=1
𝐸(



𝑋
𝑖
− 𝜇
𝑖

𝜖𝐵
𝑛



𝛿

⋅
𝑋𝑖 −𝜇

𝑖



2
⋅ 1
{|𝑋
𝑖
−𝜇
𝑖
|≥𝜖𝐵
𝑛
}
)

≤
1

𝜖𝛿𝐵2+𝛿
𝑛

𝑛

∑

𝑖=1
𝐸(

𝑋𝑖 −𝜇
𝑖



2+𝛿
) .

(H.6)

Hence if the Lyapunov condition (H.5) is satisfied, the
Lindeberg condition (H.3) is also satisfied.

Notation

R: The set of all real numbers
Sym(𝑁): The symmetric group of𝑁 elements
𝑃(𝐴 | 𝐵): The probability of 𝐴 assuming 𝐵
𝐸(𝐴 | 𝐵): The expectation of 𝐴 assuming 𝐵
𝑉(𝐴 | 𝐵): The variance of 𝐴 assuming 𝐵.
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