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The dynamic topology optimization of three-dimensional continuum structures subject to frequency constraints is investigated
using Independent Continuous Mapping (ICM) design variable fields. The composite exponential function (CEF) is selected to be
a filter function which recognizes the design variables and to implement the changing process of design variables from “discrete”
to “continuous” and back to “discrete.” Explicit formulations of frequency constraints are given based on filter functions, first-
order Taylor series expansion. And an improved optimal model is formulated using CEF and the explicit frequency constraints.
Dual sequential quadratic programming (DSQP) algorithm is used to solve the optimal model. The program is developed on the
platform of MSC Patran & Nastran. Finally, numerical examples are given to demonstrate the validity and applicability of the
proposed method.

1. Introduction

Structural topology optimization is to find optimal material
layout within a given design space, for a given set of loads
and boundary conditions such that the resulting layout meets
a prescribed set of performance targets. The essence of
topology optimization lies in searching for the optimum path
of transferring loads; therefore the computational results of
topology optimization are usually more attractive and more
challenging than the results of cross-sectional and shape
optimization. Although topology optimization is only in
conceptual design phase in engineering, the design results
significantly impact the performance of the final structure.

In the last decades, since the landmark paper of Bendsøe
and Kikuchi [1], numerical methods for topology optimiza-
tion of continuum structures have been developed quickly in
application [2–4]. Homogenizationmethods and SIMP (solid
isotropic material with penalization) method are especially
popular in continuum topology optimization, though their
design variables are “fictions.” In homogenization method [5,
6], the design variables are microscale void and the optimal

problem is defined by seeking the optimal porosity of porous
medium using the optimality criteria. But sometimes the
designs result in infinitesimal pores in the materials and the
structure is not easy to manufacture. SIMP method [7–9] is
employed to describe the relationship between the relative
density and the material elastic modules of grey elements
by a nonlinear function with continuous variables. These
grey elements have intermediate densities by introducing
a penalty coefficient. ESO method is another engineering
approach which is investigated and used widely in recent
years. The optimal topology is generated by deleting the
group of elements with low strain energy from entire domain
systematically [10–12]. Later, a new development in ESO
is the recent introduction approach named bidirectional
evolutionary structural optimization (BESO) where elements
are allowed to be added as well as removed [13, 14]. The
validity and new-look of ESO type methods are stated by
Huang and Xie [15–17], and a critical evaluation as well as
comparison of SIMP and ESO method is discussed in detail
by Rozvany [18]. Other promising newmethods include level
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set method [19–23] and phase field method [24–26] and they
are used widely in multiple material topology optimization.

Compared with static topology optimization, the study
on dynamic topology optimization is more complicated and
there are few investigations. Frequency topology optimiza-
tion is of great importance in dynamic topology optimization
and engineering fields. Topology optimization with respect
to frequencies of structural vibration was first considered
by Dı́aaz and Kikuchi [27], who studied the topology opti-
mization of eigenvalues by using the homogenizationmethod
where reinforcement of a structure was optimized to max-
imize eigenvalues. Subsequently, many researches focus on
expanding topology optimization in dynamic problems. Ma
et al. [28, 29] studiedmulti-eigenvalue optimization problems
and frequency response optimization problems for vibrating
plate structure. An optimization algorithm is derived tomax-
imize a set of eigenvalues. Kosaka and Swan [30] investigated
the optimization of the first five eigenfrequencies of plate
structure and obtained the elastic properties by using a pure
Reuss formulation. Krog and Olhoff [31] and Jensen and
Pedersen [32] utilized a variable bound formulation that facil-
itates proper treatment of multiple frequencies. Pedersen [33]
dealt with maximum fundamental frequency design of plates
and included a technique to avoid spurious localized modes.
Jensen and Pedersen [32] presented a method to maximize
the separation of two adjacent frequencies in structures with
two material components. Zhu and Zhang [34] emphasized
on layout design which was related to optimization of
boundary conditions and it was studied to maximize natural
frequency of structures. In 2007, Du and Olhoff [35] intro-
duced SIMPmethod for maximization of first eigenvalue and
frequency gaps. Recently, Niu et al. [36] proposed a two-
scale optimizationmethod and found the optimal figurations
of macrostructure-microstructure of cellular material with
maximum structural fundamental frequency. Huang et al.
[17] investigated the maximization of fundamental frequency
of beam, plane, and three-dimensional block by applying
a new bidirectional evolutionary structural optimization
(BESO)method and dealt with localizedmodes bymodifying
the traditional penalization function of SIMP method. Xia
et al. [37, 38] presented a level set based shape and topology
optimization method for maximizing the simple or repeated
first eigenvalues of structure vibration. Further development
on frequency topology optimization is seen in [3, 38–41].

However, in many researches concerning the model of
dynamic topology optimization for continuum structure,
frequency has been used as objective instead of constraints.
In this paper, we extend our previous researches [42, 43] pri-
marily on static topology optimization issues of continuum
structures to dynamic topology optimization field. Using
structural weight as objective function, we build topology
optimization model for continuum structure with frequency
constraints. This method is beneficial to maintain the consis-
tency of objective and constraint in cross-sectional optimiza-
tion, shape optimization, and topology optimization.

Among the methods of mathematic optimization model
solving, mathematical programming (MP) method is pop-
ular. Sequential quadratic programming (SQP) [44, 45] in
the MP method is widely used. SQP algorithm is a local

quadratic approximation. A Lagrange function is needed
to build for the global nonlinear optimization problem.
However, a large amount of calculation is required if the
number of optimization variables increases in the problem
because of the repeated building of the Hessian of the
Lagrange function. In this paper, dual sequential quadratic
programming (DSQP) algorithm is employed to solve the
topology optimization model constrained by frequency. In
the process of solving optimal model, the dual theory is
used to convert the constrained optimization model to one
with reduced number of design variables, and the solving
efficiency is greatly improved.

This paper is organized as follows. In Section 2, Inde-
pendent Continuous Mapping (ICM) method is introduced.
In Section 3, an improved frequency topology optimization
model based on ICM method is built. Optimal algorithm
to solve the mathematical optimization problem is given
in Section 4. Two numerical simulations are presented in
Section 5. In Section 6, conclusions are given.

2. Independent Continuous
Mapping (ICM) Method

Independent Continuous Mapping (ICM) method is pro-
posed by Sui [42] for skeleton and continuum structural
topology optimization. It generalizes topological variables
abstractly independent of the design variables such as sec-
tional sizes, geometrical shape, density, or Young module
of material. Using filter functions it maps the topological
variables essentially with discrete values of zero and one
to continuous independent topological variables with values
belonging to [0, 1].

Based on the idea of ICM, the smooth model for struc-
tural topology optimization is established and it can be solved
by the traditional algorithms in mathematical programming.
Afterwards these continuous variables are discretized to 1 or
0 according to the criterionwhich the corresponding element
is conserved or removed. The essential idea of the process
is selecting the map from “discrete” to “continuous” and the
inverse map from “continuous” to “discrete.”

For structural cross-section and shape optimization, nat-
ural frequency of structure is often taken as constraint. We
denote 𝑓

𝑖
as the frequency of 𝑖th order, and 𝑓

𝑖
, 𝑓
𝑖
are the

low and up bound of frequency, respectively. They satisfy the
following inequality:

(i) 𝑓
1
≥ 𝑓
1
;

(ii) 𝑓
𝑖

≤ 𝑓
𝑖
and 𝑓

𝑖+1
≥ 𝑓
𝑖+1

in nonfrequency band
constraints.

Here 𝑓
1
and 𝑓

1
are natural and low bound of the first order

frequency, respectively.
For elastic structure, the usual relation between frequency

f and eigenvalue 𝜆 is 𝜆 = (2𝜋𝑓)
2. Therefore, the frequency

constraints can apparently be transformed into eigenvalue
constraints using the formula. Here we uniformly use 𝑔(𝜆) ≤

𝜆 to generalize (i) and (ii) based on 𝜆 = (2𝜋𝑓)
2.
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Thus, the model of continuum topology optimization
with frequency constraints can be formulated as follows:

find t ∈ 𝐸
𝑁

make 𝑊 =

𝑁

∑
𝑖=1

𝑤
𝑖
→ min

s.t. 𝑔 (𝜆
𝑗
) ≤ 𝜆
𝑗
, (𝑗 = 1, . . . , 𝐽)

0 ≤ 𝑡
𝑖
≤ 1, (𝑖 = 1, . . . , 𝑁) ,

(1)

where t, 𝑊, and 𝑤
𝑖
denote the topological design variable

vector, the total weight of structure, and the 𝑖th element
weight. 𝑖 and 𝑗 are the 𝑖th element and the 𝑗th order frequency,
respectively, and 𝐽 and 𝑁 represent the total number of
constraints and elements.

3. Improved Model Based on ICM Method

3.1. Properties of Filter Function. In order to develop the
model ICM method, we firstly investigate the essential part
of ICM—the filter function. Its definition and choosing
determine the establishment of optimization model and its
solving, and further it will make great impact on the final
performance of topology optimization. In order to map the
topological variables from “discrete” to “continuous,” Sui
[42] studied the filter function 𝑓(𝑡

𝑖
) and summarized the

following properties:

(1) Continuity: filter function 𝑓(𝑡
𝑖
) is continuous about

topology variable 𝑡
𝑖
in the range of [0, 1];

(2) Differentiability: if 𝑡
𝑖
∈ [0, 1], 𝑓(𝑡

𝑖
) is continuously

differential;
(3) Monotonicity: 𝑓(𝑡

𝑖
) is strictly monotonous;

(4) Convexity: 𝑓(𝑡
𝑖
) is strictly convex in [0, 1];

(5) Approximation: the approximation is given as follows:

𝑓 (𝑡
𝑖
)
{

{

{

→ 1, (𝑡
𝑖
> 𝜀)

= 0, (𝑡
𝑖
→ 0) ;

(2)

here 𝜀 is an arbitrary small positive.
However, the approximation property is not easy to

control; it is a limit process. To achieve the approximation,
we introduce the following formula:

𝑓 (𝑡
𝑖
) ∈ [0, 1] , 𝑓 (0) = 0, 𝑓 (1) = 1. (3)

Consider ∫1
0
𝑓(𝑡
𝑖
)𝑑𝑥 < 𝜀; here 𝜀 is a given arbitrary small

positive and 0 < 𝜀 < 1/2.

3.2. Improved Filter Functions. Several types of filter function
are suggested in ICMmethod, among which Power Function
(PF) is used frequently in application [46] and is as follows:

𝑓 (𝑡
𝑖
) = 𝑡
𝛼

𝑖
, 𝛼 ≥ 1. (4)

Here 𝑡
𝑖
denotes 𝑖th design variable. 𝛼 is a positive constant.

We introduce a new filter function-composite exponen-
tial function (CEF) to take the place of the old one and it is as
follows:

𝑓 (𝑡
𝑖
) =

𝑒
𝑡𝑖/𝛾 − 1

𝑒1/𝛾 − 1
, 𝛾 > 0; (5)

𝛾 is a given positive constant and it is determined by numer-
ical experiments with different problems. In Section 5, we
compare the performance of the two types of filter function.

3.3. Improved Model of Frequency Topology Optimization.
Denote 𝑓

𝑤
(𝑡
𝑖
), 𝑓
𝑘
(𝑡
𝑖
), and 𝑓

𝑚
(𝑡
𝑖
) as filter functions for fre-

quency topology optimization and they are given as follows:

𝑤
𝑖
= 𝑓
𝑤
(𝑡
𝑖
) 𝑤
0

𝑖
, k

𝑖
= 𝑓
𝑘
(𝑡
𝑖
) k0
𝑖
, m

𝑖
= 𝑓
𝑚
(𝑡
𝑖
)m0
𝑖
.

(6)

Here𝑤0
𝑖
, k0
𝑖
, andm0

𝑖
are the element weight, element stiffness

matrix, and element mass matrix of original structure before
the process of topology optimization, respectively.𝑤

𝑖
, k
𝑖
, and

m
𝑖
are the ones in the process of topology optimization,

respectively.
Based on the above analysis, we build the model of

topology optimization with frequency constraints as follows:

find t ∈ 𝐸
𝑁

make 𝑊 =

𝑁

∑
𝑖=1

𝑓
𝑤
(𝑡
𝑖
) 𝑤
0

𝑖
→ min

s.t. 𝑔 (𝜆
𝑗
(𝑓
𝑘
(𝑡
𝑖
) , 𝑓
𝑚
(𝑡
𝑖
))) ≤ 𝜆

𝑗
, (𝑗 = 1, . . . , 𝐽)

0 ≤ 𝑡
𝑖
≤ 1, (𝑖 = 1, . . . , 𝑁) .

(7)

In what follows, we face the problem of approximating the
function of frequency constraints explicitly.

In the finite element analysis the dynamic behavior of
a continuum structure can be represented by the following
general eigenvalue problem:

(K − 𝜆
𝑗
M) u
𝑗
= 0, (8)

whereK is the global stiffnessmatrix andM is the globalmass
matrix. 𝜆

𝑗
is the 𝑗th eigenvalue and u

𝑗
is the eigenvector cor-

responding to 𝜆
𝑗
. The eigenvalue 𝜆

𝑗
and the corresponding

eigenvector u
𝑗
are related to each other by Rayleigh quotient

𝜆
𝑗
=

u𝑇
𝑖
Ku
𝑖

u𝑇
𝑖
Mu
𝑖

. (9)

Since eigenvalue 𝜆
𝑗
is implicitly related with topology

variable t, we use first-order Taylor series expansion for
eigenvalue to express their relationship explicitly.

Take the reciprocal of stiffness filter function as design
variables as follows:

𝑥
𝑖
=

1

𝑓
𝑘
(𝑡
𝑖
)
. (10)
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We have

𝑡
𝑖
= 𝑓
−1

𝑘
(𝑥
𝑖
) . (11)

Therefore, the stiffness matrix filter function, mass matrix
filter function, and weight filter function are given as follows:

𝑓
𝑘
(𝑡
𝑖
) =

1

𝑥
𝑖

; 𝑓
𝑚
(𝑡
𝑖
) = 𝑓
𝑚
[𝑓
−1

𝑘
(

1

𝑥
𝑖

)] ;

𝑓
𝑤
(𝑡
𝑖
) = 𝑓
𝑤
[𝑓
−1

𝑘
(

1

𝑥
𝑖

)] .

(12)

The global stiffness matrix K and the mass matrix M can be
calculated by

K =

𝑁

∑
𝑖=1

k
𝑖
=

𝑁

∑
𝑖=1

𝑓
𝑘
(𝑡
𝑖
) k
𝑖
=

𝑁

∑
𝑖=1

1

𝑥
𝑖

k0
𝑖

M =

𝑁

∑
𝑖=1

m
𝑖
=

𝑁

∑
𝑖=1

𝑓
𝑚
(𝑡
𝑖
)m0
𝑖
=

𝑁

∑
𝑖=1

𝑓
𝑚
[𝑓
−1

𝑘
(

1

𝑥
𝑖

)]m0
𝑖
.

(13)

In view of (9) we have the derivative of 𝜆
𝑗
to design variable

as follows:
𝜕𝜆
𝑗

𝜕𝑥
𝑖

= u𝑇
𝑗

𝜕K
𝜕𝑥
𝑖

u
𝑗
− 𝜆
𝑗
u𝑇
𝑗

𝜕M
𝜕𝑥
𝑖

u
𝑗
. (14)

Substituting (13) to (14), we have

𝜕𝜆
𝑗

𝜕𝑥
𝑖

= −u𝑇
𝑗

2k
𝑖

2𝑥
𝑖

u
𝑗
+ 𝛽 (𝑥

𝑖
) 𝜆
𝑗
u𝑇
𝑗

2m
𝑖

2𝑥
𝑖

u
𝑗

= −
2

𝑥
𝑖

(𝑈
𝑖𝑗
− 𝛽 (𝑥

𝑖
) 𝑉
𝑖𝑗
) ,

(15)

where

𝛽 (𝑥
𝑖
) =

𝑓


𝑚
[𝑓
−1

𝑘
(1/𝑥
𝑖
)] 𝑓
𝑘
(1/𝑥
𝑖
)

𝑓
𝑚
[𝑓−1
𝑘

(1/𝑥
𝑖
)] 𝑓
𝑘
(1/𝑥
𝑖
)
=

𝑓


𝑚
(𝑡
𝑖
) 𝑓
𝑘
(𝑡
𝑖
)

𝑓
𝑚
(𝑡
𝑖
) 𝑓
𝑘
(𝑡
𝑖
)
. (16)

In (15), 𝑈
𝑖𝑗

= (1/2)u𝑇
𝑗
k
𝑖
u
𝑗
and 𝑉

𝑖𝑗
= (1/2)𝜆

𝑗
u𝑇
𝑖
m
𝑖
u
𝑗

represent the strain energy and the kinetic energy of 𝑖th
element corresponding to the jth eigenmode, respectively. At
this moment, the derivatives of eigenvalue with respect to
all design variables can be obtained by subtracting the strain
energy and kinetic energy for element mode from the results
of modal analyses.

Using the first-order Taylor series expansion, the approx-
imate expression of eigenvalue 𝜆

𝑗
(t) can be obtained:

𝜆
𝑗 (t) = 𝜆

𝑗 (x) = 𝜆
𝑗
(x(])) +

𝑁

∑
𝑖=1

𝜕𝜆
𝑗

𝜕𝑥
𝑖

(𝑥
𝑖
− 𝑥
(])
𝑖

)

= 𝜆
𝑗
(x(])) +

𝑁

∑
𝑖=1

2 (𝑈
(])
𝑖𝑗

− 𝛽 (𝑥
(])
𝑖

)𝑉
(])
𝑖𝑗

)

−

𝑁

∑
𝑖=1

2

𝑥
(])
𝑖

(𝑈
(])
𝑖𝑗

− 𝛽 (𝑥
(])
𝑖

)𝑉
(])
𝑖𝑗

) 𝑥
𝑖
,

(17)

where superscript ] is the number at the ]th iteration.

If we define 𝐷 as

𝐷 =
{

{

{

1, for 𝜆
𝑗
≤ 𝜆
𝑗
,

−1, for 𝜆
𝑗
≥ 𝜆
𝑗
,

�̃�
𝑗
=

{

{

{

𝜆
𝑗
, (𝜆

𝑗
≥ 𝜆
𝑗
) ,

𝜆
𝑗
, (𝜆

𝑗
≤ 𝜆
𝑗
) ,

(18)

and further define

𝐴
𝑖𝑗
= 𝑈
(])
𝑖𝑗

− 𝛽 (𝑥
(])
𝑖

)𝑉
(])
𝑖𝑗

,

𝑐
𝑖𝑗
= −

2

𝑥
(])
𝑖

𝐴
𝑖𝑗
, 𝑐

𝑖𝑗
= −𝐷𝑐

𝑖𝑗
,

𝑑
𝑗
= −𝜆
𝑗
(x(])) −

𝑁

∑
𝑖=1

2𝐴
𝑖𝑗
, 𝑑

𝑗
= 𝐷 × (�̃�

𝑗
+ 𝑑
𝑗
) ,

(19)

then frequency constraints can be simplified by the following
inequality:

𝑁

∑
𝑖=1

𝑐
𝑖𝑗
𝑥
𝑖
≤ 𝑑
𝑗
. (20)

Thus ends the process of explicit approximation of the
frequency constraints.

4. Solution of the Improved Topology
Optimization Model

However, model (7) is a programming with nonlinear objec-
tive and linear constraints following the explicit process of
frequency constraints. We use second-order Taylor series
expansion to approximate the objective function and ignore
the constant item. The model is transformed into the follow-
ing quadratic programming model:

find t ∈ 𝐸
𝑁

make 𝑊 =

𝑁

∑
𝑖=1

(𝑎
𝑖
𝑥
2

𝑖
+ 𝑏
𝑖
𝑥
𝑖
) → min

s.t.
𝑁

∑
𝑖=1

𝑐
𝑖𝑗
𝑥
𝑖
≤ 𝑑
𝑗
, (𝑗 = 1, . . . , 𝐽)

1 ≤ 𝑥
𝑖
≤ 𝑥
𝑖
, (𝑖 = 1, . . . , 𝑁) .

(21)

As objective function varies with different filter functions,
investigation of the different cases following different types
of filter functions is necessary. Here we focus on PF and CEF.

When PF is applied as the filter function, it is given as
follows:

𝑓
𝑤
(𝑡
𝑖
) = 𝑡
𝛾𝑤

𝑖
; 𝑓

𝑘
(𝑡
𝑖
) = 𝑡
𝛾𝑘

𝑖
; 𝑓

𝑚
(𝑡
𝑖
) = 𝑡
𝛾𝑚

𝑖
, (22)

where 𝛾
𝑤, 𝛾𝑘, and 𝛾

𝑚 are all arbitrarily integers greater than
zero. In view of (22), we have 𝑡

𝑖
= 1/𝑥

1/𝛾𝑘

𝑖
, 𝑡𝛾𝑤
𝑖

= 1/𝑥
𝛾𝑤/𝛾𝑘

𝑖
=

1/𝑥
𝛼

𝑖
, and 𝛼 = 𝛾

𝑤
/𝛾
𝑘
.
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Therefore the objective function (7) can be rewritten as

𝑊 =

𝑁

∑
𝑖=1

𝑡
𝛾𝑤

𝑖
𝑤
0

𝑖
=

𝑁

∑
𝑖=1

𝑤
0

𝑖

𝑥𝛼
𝑖

≈

𝑁

∑
𝑖=1

(𝑎
𝑖
𝑥
2
+ 𝑏
𝑖
𝑥) , (23)

where 𝑎
𝑖
= 𝛼(𝛼+1)𝑤

0

𝑖
/2(𝑥
𝑖
)
𝛼+2 and 𝑏

𝑖
= −𝛼(𝛼+2)𝑤

0

𝑖
/(𝑥
𝑖
)
𝛼+1

are undetermined parameters.
When CEF is applied as the filter function, it is given as

follows:

𝑓
𝑤
(𝑡
𝑖
) =

𝑒
𝑡𝑖/𝛾𝑤 − 1

𝑒1/𝛾𝑤 − 1
; 𝑓

𝑘
(𝑡
𝑖
) =

𝑒
𝑡𝑖/𝛾𝑘 − 1

𝑒1/𝛾𝑘 − 1
;

𝑓
𝑚
(𝑡
𝑖
) =

𝑒
𝑡𝑖/𝛾𝑚 − 1

𝑒1/𝛾𝑚 − 1
.

(24)

We have 𝑥
𝑖
= 1/𝑓

𝑘
(𝑡
𝑖
) = (𝑒

1/𝛾𝑘 − 1)/(𝑒
𝑡𝑖/𝛾𝑘 − 1), and therefore

𝑓
𝑤
(𝑡
𝑖
) =

((𝑒
1/𝛾𝑘 − 1) /𝑥

𝑖
+ 1)
𝛾𝑘/𝛾𝑤

− 1

𝑒1/𝛾𝑤 − 1
;

𝑓
𝑚
(𝑡
𝑖
) =

((𝑒
1/𝛾𝑘 − 1) /𝑥

𝑖
+ 1)
𝛾𝑘/𝛾𝑚

− 1

𝑒1/𝛾𝑚 − 1
.

(25)

Similarly, the objective function in (7) can be expressed as

𝑁

∑
𝑖=1

((𝑒
1/𝛾𝑘 − 1) /𝑥

𝑖
+ 1)
𝛾𝑘/𝛾𝑤

− 1

𝑒1/𝛾𝑤 − 1
𝑤
0

𝑖
≈

𝑁

∑
𝑖=1

(𝑎
𝑖
𝑥
2

𝑖
+ 𝑏
𝑖
𝑥
𝑖
) , (26)

where

𝑎
𝑖
=

1

2
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𝑘

𝛾
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(27)

They are two undetermined parameters.
The dual model of (21) is

find z∈ E𝐽

make − Φ (z) → min

s.t. z
𝑗
≥ 0, (𝑗 = 1, . . . 𝐽) ,

(28)

where z is the design variables in dual model:

Φ (z) = min
1≤𝑡𝑖≤𝑥

(𝐿 (x, z)) ;

𝐿 (x, z) =

𝑁

∑
𝑖=1

(𝑎
𝑖
𝑥
2

𝑖
+ 𝑏
𝑖
𝑥
𝑖
) +

𝐽

∑
𝑗=1

(𝑧
𝑗
(

𝑁

∑
𝑖=1

𝑐
𝑖𝑗
𝑥
𝑖
− 𝑑
𝑗
)) .

(29)

Here 𝐿(x, z) is a Lagrange augmented function in (28).
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≤ 𝜀

Figure 1: Flow chart of the iterative solution procedure.

Then DSQP is employed to solve (28), and the precision
of convergence is controlled to be 0.001. With the above
analysis and solving of (28), the optimal topology structure
with continuous design variables is obtained.

5. Numerical Simulation

Based on the above analysis, we outline the following compu-
tational procedure with a flow chart (Figure 1); it is used for
maximizing theweight of structure constrained by frequency.

Following the above flow chart, we develop a program
based on the platform of MSC Patran & Nastran to solve the
improved topology optimal model. In order to demonstrate
the effectiveness of the proposed method, two structures
are presented as inputs. The first one is a cantilever with
fundamental frequency constraint; the second one is a 3D
beam with two concentrated masses by multiple frequency
constraints. For the computation, the initial values of topol-
ogy variables are all given as unit (𝑡 = 1); the lowest bounds of
topology variables and the convergence precision values are
0.01 and 0.001, respectively.

5.1. Example 1. Example 1 is a cantilever with size 100 × 50
× 50mm3. It is fixed at one end as shown in Figure 2, and a
concentrated mass Mc = 50 g is attached at the center of the
other end. Young’s modulus 𝐸 = 100GPa, Poisson’s ratio 𝜇 =

0.3, andmass density 𝜌= 1000 kg/m3.The structure is divided
into 30 × 16 × 16 eight-node hexahedron elements. The
5010Hz fundamental frequency of the cantilever is calculated
by finite element analysis, andwe set the frequency constraint
for the design problem as 𝑓

1
≥ 3500Hz.

The solving topology configuration of the cantilever with
different filter functions is given in Figure 3. Figures 3(a) and
3(b) show the whole optimal structure, and (c)-(d) show the
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50mm

50mm

100mm

Mc

Figure 2: A cantilever structure.

(a) (b)

(c) (d)

Figure 3: Topology configuration with different filter functions. (a) Topology configuration with PF; (b) topology configuration with CEF;
(c)-(d): the half optimal structure of (a)-(b).

half structure corresponding to (a)-(b). The performance of
topology optimization with different filter functions is given
in Table 1. The iterative curve of computation with different
filter functions is described in Figure 4.

5.2. Example 2. The beam (40 × 10 × 10 cm3) with two ends
fixed is presented in Figure 5. Two concentrated masses with
𝑀
𝑐1

= 𝑀
𝑐2

= 5 kg are located on the upper surface of 1/3
and 2/3 span. Young’s modulus E = 100GPa, Poisson’s ratio
𝜇 = 0.3, and mass density 𝜌 = 1000 kg/m3. The structure

is divided into 30 × 8 × 8 eight-node hexahedron elements.
The first computed fundamental frequency of the beam is
1343.5Hz and the second one is 1495.1 Hz. The set constraint
frequencies are 𝑓

1
≥ 1000Hz, 𝑓

2
≥ 1100Hz.

The solving topology configuration of the beam with
different filter functions is given in Figure 6. The perfor-
mances of topology optimization with different filter func-
tions are given in Table 2. To describe the dynamics of
optimal structure, the first three modal shapes of optimal
structure with two different filter functions are computed
and displayed in Figure 7. The frequency changing with time
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Figure 5: The beam with two ends fixed.

Table 1: Performance of topology optimization with different
algorithms and filter functions.

Method DSQP

PF
Iteration 41
𝑓
1
(Hz) 3502.0270996

Mass (g) 73.033882813

CEF
Iteration 34
𝑓
1
(Hz) 3501.9787598

Mass (g) 70.509476563

in the optimization process is presented in Figure 8 with
different filter functions.

6. Conclusion

In this paper, an improved frequency topology optimization
model of three-dimensional continuum structure is devel-
oped based on ICM method. CEF, a new filter function, is
selected to recognize the design variables, as well as to imple-
ment much better the changing process of design variables
from “discrete” to “continuous” and back to “discrete.” Explicit

Table 2: Performance of topology optimization with different
algorithms and filter functions.

Method DSQP

PF

Iteration 33
𝑓
1
(Hz) 1000.392

𝑓
2
(Hz) 1100.647

Mass (g) 1760.004

CEF

Iteration 30
𝑓
1
(Hz) 1000.551

𝑓
2
(Hz) 1100.791

Mass (g) 1682.534

formulations of frequency constraints are given based on
filter functions and first-order Taylor series expansion and
by extracting structural strain and structural kinetic energy
from the results of structural modal analysis. An improved
optimal model is formulated using CEF and the explicit
frequency constraints. The program based on DSQP for
solving the optimal model is developed on the platform of
MSC Patran & Nastran.

Finally, two examples of three-dimensional continuum
structure show that clear and stable configurations can be
obtained using ICM method. We find that configurations
computed with DSQP combined PF and DSQP combined
CEF are similar between one and the other in the case of fun-
damental frequency constraint. But we can find that DSQP
combined CEF has the best performance for the optimization
example from the point of view of optimal objective and
iterative numbers. We also compute the first three order
modal shapes of optimal structure with two different filter
functions in multiple frequency constraints. The vibration
modes from two filter functions are the same and the iteration
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Figure 6: Topology configuration with different filter functions. (a) Topology configuration with PF; (b) topology configuration with CEF.
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curves of the first three order frequencies show that structural
frequencies satisfy the frequency constraints. Therefore, all
the computing results indicate that the proposed method is
also feasible for multiple frequency constraints.
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